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Abstract. Experiments on a variety of systems have shown that layered liquids are unstable under shear

even if the liquid layers are planes of constant velocity. We investigate the stability of smectic-A like liquids

under shear using Molecular Dynamics simulations and a macroscopic hydrodynamic theory (including the

layer normal and the director as independent variables). Both methods show an instability of the layers,

which sets in above a critical shear rate. We find a remarkable qualitative and reasonable quantitative

agreement between both methods for the spatial homogeneous state and the onset of the instability.

PACS. 61.30.Dk Continuum models and theories of liquid crystal structure – 61.25.Hq Macromolecular and

polymer solutions; polymer melts; swelling – 05.70.Ln Nonequilibrium and irreversible thermodynamics

– 83.10.Rs Computer simulation of molecular and particle dynamics – 83.50.Ax Steady shear flows,

viscometric flow

1 Introduction

Rheological properties of many complex fluids are of wide-

spread interest, e.g., in industrial processing of compound

materials or biological applications of lipid membranes.
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Subjected to an applied shear flow, layered liquids

show an interesting coupling of the layer orientation and

the flow field. Experiments on systems which differ sig-

nificantly in their microscopic details show nevertheless

striking similarities in their macroscopic behavior under

shear. The systems under investigation include lyotropic

lamellar phases (both low molecular weight (LMW) [1–

5] and polymeric [6]), LMW liquid crystals (LCs) [7–9],
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block copolymers [10–15] and liquid crystalline side-chain

polymers [16,17]. In addition to these microscopic differ-

ences, the way of applying the shear varies between the

systems under consideration. Whereas the highly viscous

diblock copolymer melts are usually subjected to a large

amplitude oscillatory shear (e.g., in a plate-plate geom-

etry), the low viscosity materials are typically subjected

to a steady strain rate (e.g., in a Couette cell). Due to

these different experimental methods a direct and quanti-

tative comparison between all the systems mentioned is a

non-trivial and open question.

All systems however have in common that starting

with an aligned sample where the layers are parallel to

the planes of constant velocity (“parallel” orientation), the

layering is stable up to a certain critical shear rate [1,2,

6–9,13]. At higher shear rates, depending on the system

either multi-lamellar vesicles [1,3,6] (“onions”, typically

in solvent-rich lyotropic systems) or layers perpendicular

to the vorticity direction [13,14,18] (typically in concen-

trated lyotropic systems and diblock copolymer melts) de-

velop.

The experimental similarities between systems of dif-

ferent molecular constituents indicate that a theoretical

description of these reorientations can be constructed—

at least to some extent—from a common generic basis. A

description including specific differences must refer closer

to the microscopic details. The well established standard

hydrodynamic description of smectic-A LCs [19–22] is a

good macroscopic starting point for such a theoretical ap-

proach.

As first shown by Delaye et al. [23] and Clark and

Meyer [24] thermotropic smectic-A LCs are very sensitive

against dilations of the layers. Above a very small, but fi-

nite, value of the dilation the LC develops undulations of

the layers to reduce strain locally. Within the framework

of standard smectic-A hydrodynamics Oswald and Ben-

Abraham considered a situation where a dilative strain

is superimposed with a steady shear [25]. When a shear

flow is applied (with a parallel orientation of the layers),

the onset for undulations is unchanged only if the wave

vector of the undulations points in the vorticity direction.

Whenever this wave vector has a component in the flow

direction, the onset of the undulation instability is aug-

mented by a portion proportional to the applied shear

rate. No destabilizing mechanism for well aligned parallel

layers is present in standard smectic-A hydrodynamics.

Recently, Auernhammer, Brand and Pleiner proposed

an extension of this description [26,27]. Considering both

the director of the underlying nematic order and the layer

normal of the smectic layers, they showed the possibility

of a shear-induced undulation instability due to shear flow

even in well aligned parallel layers. Within the framework

of irreversible hydrodynamics (which allows the inclusion

of both dissipative and reversible effects) they derived the

macroscopic dynamic equations of the system and per-

formed a linear stability analysis of these equations. As

always, this linear stability analysis is limited to the on-

set of the first instability. We will review their approach

in Sect. 2. In a different approach Bruinsma and Rabin

[28] considered the effect of shear flow on the layer fluctu-
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ations. They concluded that a destabilization of the lay-

ers is likely to occur due to suppressed thermal fluctua-

tions as a result of shear flow. Later a similar approach

was used by Zilman and Granek [29], focusing their at-

tention on short wavelength fluctuations. These fluctua-

tions are suppressed in their model for energetic reasons

and lead to an undulation instability of the layers. For

block copolymers Williams and MacKintosh [30] found by

minimizing a free energy of the layers (including shear

stress dependent terms) a tendency of these layers to re-

duce their thickness under shear, leading to an undula-

tion instability similar to dilated smectic-A LCs. Near the

isotropic–lamellar transition Fredrickson [31] found the

possibility of a parallel to perpendicular transition using

a field-theoretic approach and fluctuating hydrodynamic

equations. We are not aware of any macroscopic hydro-

dynamic approach within the framework of the smectic-A

like phase besides [26,27].

To our knowledge there has been very little work on

simulations of lamellar lyotropic or copolymeric systems

under shear flow conditions. Recently, Kumaran et al. used

the Lattice Boltzmann simulation method in order to in-

vestigate the effect of shear on a smectic liquid crystal [32].

Lamellar layers are introduced into their system as a con-

centration field. This simulation was however restricted to

two dimensions, and hence only able to study shear align-

ment, but not the undulation instability. Reorientation

under applied shear has also been investigated in earlier

MD simulations on a similar system [33,34]. In these sim-

ulations the layers partially broke apart and reorganized

after the reorientation process. No hint for complex defects

(like screw dislocations) were found in these simulations.

Apparently, much larger systems must be used to study

such defects.

In this paper we present a comparison between ana-

lytic results obtained by the approach of Auernhammer et

al. [26,27] and Molecular Dynamics (MD) simulations of

a model system of idealized amphiphiles. We restrict our-

selves in the present paper to the analysis of defect-free

systems. The results of the simulations show a remarkable

qualitative as well as quantitative agreement with the the-

oretical prediction, but they also pose new questions.

The paper is organized as follows: In Sect. 2 we review

the analytic method and give the analytic results. There-

after (Sect. 3.1) we discuss the simulation technique and

present the simulation results in Sect. 3.2. We compare

the results of these two approaches and discuss similari-

ties and differences in Sect. 4, followed by some concluding

remarks (Sect. 5).

2 Analytical Theory

We assume an idealized shear geometry which is motivated

by the simulated system (see Sect. 3.1). As shown in Fig. 1,

the layers of the fluid lie in the xy plane and so do the

planes of constant velocity. The sample has a thickness d,

the uppermost layer moves with a constant velocity v0/2

to the right and the lowermost layer moves with −v0/2

to the left. Thus the system is subjected to a mean shear

rate γ̇ = v0/d. As in the simulated system, we fix only the
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mean velocity at the boundaries to the values given above,

but no further restriction is imposed on the velocity field.

In a first approach, all systems mentioned in the in-

troduction can be described using the standard formu-

lation of smectic-A hydrodynamics [21]. In this descrip-

tion the layers are assumed to be a two dimensional fluid.

Consequently, the layers do not couple directly to the ap-

plied shear flow and the observed reorientation cannot be

explained using standard smectic-A hydrodynamics. Re-

cently, Auernhammer, Brand and Pleiner [26,27] intro-

duced a new degree of freedom in smectic-A hydrody-

namics which allows to describe the destabilization of a

parallel aligned sample under an applied shear flow. In

the following we will review briefly their model.

2.1 Physical Mechanism

In a smectic liquid crystal one can easily define two direc-

tions: the normal to the layers p̂ and an average over the

molecular axes, the director, n̂. In the standard formula-

tion of smectic-A hydrodynamics these two directions are

parallel by construction. It has been shown that in the

vicinity of phase transitions (either nematic to smectic-A

or smectic-A to smectic-C∗) director fluctuations around

the layer normal are of physical interest [35–37]. Further-

more, n̂ and p̂ differ significantly in their interaction with

an applied shear flow.

As mentioned above, parallel layers cannot couple di-

rectly to an applied shear flow. And so does the layer

normal: it stays unchanged as long as the flow direction

lies within the layers. In contrast, it is well known from

nematic hydrodynamics that the director feels a torque in

a shear flow. This torque leads—in the simplest case—to a

flow aligning behavior of the director. The key assumption

in the model of [26,27] is that a torque of this type is still

present in a smectic-A liquid crystal and acts only on the

director and not on the layer normal. Both are coupled

such that n̂ and p̂ are parallel in equilibrium.

Subjected to a shear flow the layer normal will stay

unchanged, but the director will tilt in the direction of

the flow until the torques due to the flow and to the cou-

pling to the layer normal balance one another. For any

given shear rate a finite, but usually small, angle θ be-

tween n̂ and p̂ will result. This finite angle has important

consequences on the layers: Since the preferred thickness

of the layers is proportional to the projection of the direc-

tor on the layer normal, a finite angle θ between n̂ and p̂

is equivalent to an effective dilation (see Fig. 2) of the lay-

ers (the actual layer thickness is larger than the preferred

layer thickness)1. Roughly speaking, shear has a similar

effect on the layers as an external dilation of the system

along the layer normal. As in the case of standard smectic-

A hydrodynamics [24,23], this effective dilation will lead

to a undulation instability of the layers above a certain

threshold. Thus the layers can easily fill more space in

z direction. Within the framework of standard smectic-

1 One could argue that the director tilt also leads to a mod-

ification of the lateral pressure and the lateral compressibility.

For the present system however this effect manifests itself in

the same way as the effective dilation (and is included in the

appropriate elastic constant).
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A hydrodynamics it has been shown (see Ref. [25]) that

sheared and dilated systems undulate with a wave vec-

tor along the vorticity direction of the flow, i.e., the y

direction, see Fig. 1. Since the extended smectic-A hydro-

dynamics of Refs. [26,27] is equivalent to the standard

description in the limit of a vanishing tilt angle θ, we as-

sume the wave vector of the undulations also to lie along

the vorticity direction. Later we will show that this as-

sumption is in agreement with the simulation results. The

wavelength of this undulation instability is given by the

lateral size of the simulation box, since the system has no

other large-scale length in vorticity direction.

2.2 Set of Macroscopic Equations

The framework of irreversible thermodynamics [20,22,38,

39] allows to determine the macroscopic hydrodynamic

equations of the above model smectic-A [26,27]. A linear

stability analysis of these equations directly gives the sta-

bility region of the parallel orientation. One should point

out that such a linear analysis does not allow any predic-

tion of the pattern formed above the onset of the instabil-

ity.

Since we consider only small deformations of the paral-

lel orientation, it is convenient to introduce a new variable

u (the layer displacement along the z axis) in addition to n̂

and p̂ (u is connected to p̂ via p̂ = [∇(z−u)]/[|∇(z−u)|]).

Starting from the energy density and the dissipation func-

tion of the system, the currents and quasi-currents in the

balance equations of all macroscopic variables are derived.

To illustrate the idea of the model we will discuss the en-

ergy density in some detail. For more details we refer the

reader to Refs. [26,27]. Neither the director n̂ nor the layer

normal does distinguish between head and tail, thus they

are required to appear only in even powers in the energy

density. Furthermore the energy density of the system is

invariant under rigid rotations and homogeneous transla-

tions of the whole system.

In the spirit of the model the energy density consists

of three parts, a nematic (En), a smectic-A (Es), and a

coupling between them (Ec):

E = En + Es + Ec. (1)

For the nematic and smectic part we adopt the con-

ventional notation, i.e., the Frank free energy density

(consisting of splay, twist and bend contribution) and

curvature of the layers and layer compression (see, e.g.,

Ref. [21])

En =
1

2
K1(∇ · n̂)2

+
1

2
K2[n̂ · (∇× n̂)]2 +

1

2
K3[n̂ × (∇× n̂)]2 (2)

Es =
1

2
K

(

∇2

⊥
u
)2

, +
1

2
B0 (∇zu)

2
, (3)

with the elastic constants K1, K2, K3, K, and B0 (con-

nected with nematic splay, twist and bend deformations

and smectic layer curvature and layer compression, re-

spectively) and the transverse nabla symbol ∇⊥ (which

includes only the coordinates perpendicular to the pre-

ferred direction p̂).

As mentioned above, rigid rotations of the system can-

not contribute to the energy density due to rotational in-

variance, but relative rotations of n̂ versus p̂ may con-

tribute to the energy. Consequently, we assume the cou-
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pling term to be quadratic in the angle between n̂ and

p̂. To ensure a positive coupling constant we choose the

following version of this term:

Ec =
1

2
B1(n̂ × p̂)2. (4)

This form has the advantage that is vanishes not only if

n̂ is parallel to p̂ but also for an anti-parallel alignment

of both directions. We note that this term, in contrast to

the other terms entering the free energy density, is non-

hydrodynamic, since it does not vanish in the limit of small

wave number excitations (i.e., q → 0). It thus leads dy-

namically to a relaxation and not to diffusive behavior in

the long wavelength limit.

Bend deformations are rather higher order gradient

corrections to layer dilations and can be neglected. In the

hydrodynamics of smectics twist deformations are forbid-

den, because in this case no space filling layered structure

is possible. In this paper we assume that the angle be-

tween n̂ and p̂ is small and, consequently, also the twist

term has to be small and will be neglected. Splay of the

director field and layer curvature are very similar deforma-

tions, consequently we can combine both into one single

term with a new elastic constant (which we call K). Using

all these approximations the final form of the free energy

density is given by

Eapprox =
1

2
K

(

∇2

⊥
u
)2

+
1

2
B0 (∇zu)2

+
1

2
B1(n̂ × p̂)2. (5)

The other relations used in the derivation of the macro-

scopic hydrodynamic equations are constructed in the

same way, combining nematic and smectic parts. With

the standard procedure the balance equations for all hy-

drodynamic variables can be determined [22,26,27,38]. In

the following we assume an incompressible fluid, i.e., a

constant mass density ρ. The balance equations for the

unknown quantities (the layer displacement u, the direc-

tor field n̂ and the velocity field v) are finally given by:

∂

∂t
u + vj∇ju = vz + λp∇jΨj , (6)

∂

∂t
ni + vj∇jni = λijk∇jvk −

1

γ1

δ⊥ikhk, (7)

ρ

(

∂

∂t
+ vj∇j

)

vi

= −∇j

{

Ψj(∇iu − δiz) − λkjihk − νijkl∇lvk

}

−∇iP. (8)

This set of equations is closed by the continuity equation

for an incompressible fluid,

∇ivi = 0. (9)

For a more compact notation we used in these equations

the flow alignment tensor

λijk = 1/2
[

(λ − 1)δ⊥ijnk + (λ + 1)δ⊥iknj

]

along with the flow alignment parameter λ, the transverse

Kronecker symbol δ⊥ij = δij −ninj , the conjugate variables

hi and Ψi (related to n̂ and ∇u via hi = (δE)/(δni) and

Ψi = (δE)/(δ∇iu) ), the rotational viscosity γ−1

1
, the per-



T. Soddemann, G. K. Auernhammer, et al.: Shear-induced Undulation of Smectic-A 7

meation constant λp, and the viscosity tensor

νijkl = ν2(δjlδik + δilδjk)

+ 2(ν1 + ν2 − 2ν3)ninjnknl

+ (ν3 − ν2)(njnlδik + njnkδil

+ ninkδjl + ninlδjk)

+ (ν4 − ν2)δijδkl

+ (ν5 − ν4 + ν2)(δijnknl + δklninj).

The components of vector quantities are indexed, e.g., vj

refers to the components of the velocity field v. We make

use of the Einstein summation convention.

In the director equation [Eq. (7)] the right hand side

expresses the nematic flow alignment and director diffu-

sion. The right hand side of Eq. (8) is the divergence of

the stress tensor, which consists of the coupling to the

layer displacement (the smectic equivalent to the Erickson

stress) and the director (the back-flow term), the viscous

terms (containing, as for all uniaxial materials, the five

viscosities) and the pressure gradient.

To guarantee the normalization of n̂ it is convenient to

express n̂ in angular variables:

nx = sin θ sin φ, (10)

ny = sin θ sin φ, (11)

nz = cos θ. (12)

If we denote the right hand side of Eq. (7) with Yi, the

balance equations for θ and φ are given by

∂

∂t
θ + vj∇jθ = Yx cos θ cosφ + Yy cos θ sinφ

− Yz sin θ, (13)

∂

∂t
φ + vj∇jφ = − Yx

sin φ

sin θ
+ Yy

cosφ

sin θ
. (14)

2.3 Director Tilt, Dilation, and Undulations

Before discussing stability of the governing equations, let

us focus first on some technical points. Since undulating

lamellae lie no longer in the xy plane, their layer normal

is no longer parallel to the z axis. To measure the correct

layer dilation we must expand (∂u)/(∂z) along the current

layer normal. The lowest non-trivial expansion leads to the

well known replacement [23,24,26]

∇zu → ∇zu −
1

2
(∇⊥u)

2
(15)

in the energy density of the system. As discussed above,

due to the shear induced director tilt the preferred layer

thickness is smaller than the actual layer thickness. This

effective dilation takes the position of applied dilation in

earlier works (see, e.g., Refs.[23,24]). Due to these argu-

ments, the final version of the compression term in the

energy density reads

1

2
B0

{

∇zu + [1 − cos θ] −
1

2
(∇⊥u)

2

}2

.

The boundary conditions for our further analysis are

deduced from the boundary conditions in the simulations.

Since the simulation algorithm uses periodic boundary

conditions and allows particles to move through the upper

and lower boundary, there is no need for the undulation

amplitude to vanish at boundaries. We assume this am-

plitude to be constant throughout the sample. As we will

show later, this is in good agreement to the simulation re-

sults. Only the average of the x component of the velocity

field is controlled in the simulations. So we fix only the av-

erage vx at the upper and lower boundary. Differently to
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the undulation instability in an experimental system with

rigid boundaries, in the simulated system there is no in-

trinsic hydrodynamic length scale. The only macroscopic

length scale is given by the lateral size of the simulation

box (Lx = Ly = L).

In the analysis of the above Eqs. (6, 8, 13 and 14) we

first look for a spatially homogeneous state and then per-

form a linear stability analysis of this state. We assume

that the boundaries have no direct orienting effect on the

director. The preferred homeotropic orientation of the di-

rector is only due to the parallel alignment of the layers

and the coupling between n̂ and p̂. This implies that the

director field is constant throughout the layer, if ∇zvx

is constant. Under these assumptions the linear velocity

profile

v0 = γ̇zêx (16)

satisfies linear momentum conservation Eq. (8) and ∇zvx

is constant. Inserting this velocity profile in Eq. (13) and

supposing an unchanged layered structure leads to the

following stationary and spatially homogeneous modifica-

tions of the director field:

(

λ + 1

2
− λ sin2(θ0)

)

γ̇

=
B1

γ1

sin(θ0) cos(θ0)

+
B0

γ1

sin(θ0)[1 − cos(θ0)]. (17)

For small shear rates the director tilt θ0 is proportional to

the applied shear rate:

θ0 = γ̇
γ1

B1

λ + 1

2
+ O(γ̇3). (18)

Equation (17) gives a one to one correspondence between

shear rate and tilt angle. Thus we can use θ0 to eliminate

the shear rate in the governing equations and take the tilt

angle θ0 as control parameter (instead of the shear rate

γ̇). Whenever necessary we can use Eq. (17) to determine

the shear rate for any given tilt angle.

Let us now consider the evolution of the average di-

rector field as a function of the applied shear rate. We

assume that all variables depend only on the time and

the z coordinate and that the shear is such that the lay-

ered structure is unaffected by the shear. Averaging the

linearized form of Eq. (13) over z, we get

∂

∂t
〈θ(t)〉 =

λ + 1

2
〈γ̇(t)〉 −

B1

γ1

〈θ(t)〉. (19)

In Eq. (19) the brackets 〈〉 indicate the average

over z: 〈θ(t)〉 = (1/d)
∫ d/2

−d/2
θ(z, t)dz and 〈γ̇(t)〉 =

(1/d)
∫ d/2

−d/2
∇zvx(z, t)dz. In the discussion of our results

we will drop these brackets for simplicity. Note that in

the simulations of the following section 〈γ̇(t)〉 is an input

parameter and thus is known exactly. After a step like

start of the average shear

〈γ̇(t)〉 =











0, t ≤ 0

γ̇ = const., t > 0

(20)

the average director tilt approaches its stationary value

with a characteristic time τ = γ1/B1:

〈θ(t)〉 = γ̇
γ1(λ + 1)

2B1

[

1 − exp

(

−t
B1

γ1

)]

. (21)

As shown in Fig. 2 this director tilt has important con-

sequences: The non-vanishing projection of n̂ on the flow

direction directly leads to a z-component of the director

nz = cos(θ) less than unity. Following the discussion in

Sect. 2.1, this tilt of n̂ is equivalent to an effective dilation

of the layers.
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Similar to dilated smectic-A [23,24], this effective di-

lation will lead to an undulation instability of the layers.

We determine the onset of this instability performing a

linear stability analysis of the governing equations, i.e.,

we add to the spatially homogeneous state (see above)

small perturbations. For example we replace the spatial

homogeneous director tilt θ0 by

θ0 → θ0 + θ1, (22)

with θ1 ≪ θ0. Inserting this ansatz in the hydrodynamic

equations we can deduce a linear set of equations for the

small perturbations (for more details see [27]). For any

set of materials parameters it turns out that one can dis-

tinguish two regimes of angles θ0 (and, correspondingly,

of shear rates). For small angles the growth rate of the

small perturbations is negative for all wave vectors. This

means that any perturbation must die out within a certain

time, i.e., we expect the system to be stable in the limit of

small shear rates. Above a certain threshold value of the

tilt angle the layers accommodate the effective dilation

by rotating locally, i.e., undulations develop (see Fig. 3).

Technically speaking, in this second regime of tilt angles

the growth rate of fluctuations within in a certain range

of wave vectors becomes positive. In the linear analysis we

determine for each wave vector the tilt angle at which the

growth rate equals zero and thus we get a curve which sep-

arates the the stable from the unstable region (the curve

of marginal stability or neutral curve). Minimizing this

curve with respect to the wave vector leads to the onset

values of the instability (the critical values).

As discussed in Sect. 2.1, for our further calculations

we make use of some results about sheared and dilated

smectic-A liquid crystals [25]: The critical shear rates is

lowest, if the wave vector of the undulations points along

the vorticity direction of the flow (q = qêy). Note that

our system has some important differences in comparison

to Ref. [25], namely, the inclusion of the director dynam-

ics and the boundary conditions. In the analytic part of

this paper we test for an undulation instability with a

wave vector in the vorticity direction. In contrast, the un-

dulations in the simulation form without any assumption

about their wave vector and hence justify our choice. Ac-

cordingly, our ansatz for the small perturbations in the

case of the layer displacement is given by:

u1 = A cos(qy), (23)

with an infinitesimally small amplitude A. A similar

ansatz is taken for the other unknown quantities. The ab-

sence of an x and z dependence in this ansatz allows to

reduce the number of unknown quantities. From the con-

tinuity equation it follows directly that vy,1 must vanish.

Similarly, the perturbations of the director tilt θ1 and the

pressure p1 can be shown to equal to zero. Consequently,

the full set of unknown quantities consists only of the di-

rector’s azimuthal angle φ1, the layer displacement u1, the

velocity component along the shear flow vx,1 and along the

unperturbed layer normal vz,1.

One might look for a closed expression for the critical

tilt angle and expand the solvability condition in powers

of θ0. But it turns out that the simplest physically rea-

sonable approximation includes terms up to O(θ4) and,
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consequently, any closed expression is rather complicated

and of little practical use. Additionally this approximation

still differs significantly from the solution of the full sys-

tem. For these reasons we determine the critical tilt angle

numerically and omit the approximative solution.

The reduction in the number of unknown quantities

causes also a significant reduction in the number of ma-

terial parameters necessary for a detailed comparison be-

tween analytic theory and MD simulation. To describe

the onset of the instability, the set of material parameters

consists of the energetic constants B0, B1 and K, the flow

alignment parameter λ and the viscosity constants γ1, ν2

and ν3. For the comparison with the simulations we can

use dimensionless quantities by rescaling the energy den-

sity with B1, the length with the lateral system size L and

the viscosities with γ1.

In Figs. 4 to 6 we present the critical tilt angle above

which the undulations set in as a function of various ma-

terial parameters. For a better comparison with the sim-

ulations we used typical values for the system of Sect. 3.

If not stated otherwise the parameters were (in dimen-

sionless units) B0/B1 = 6, K
B1

(

2π
L

)2
= 0.08, λ = 0.8,2

νi/γ1 = 0.05 and λp/γ1 = 10−3. We did not present the

corresponding plots for νi and λp, because the critical tilt

angle does not depend on this parameters over a wide

range of the parameter values.

2 Note that the a stationary solution also occurs for |λ| < 1.

The tumbling state known from nematics in the range |λ| < 1

does not occur in our system due to the smectic layering.

To complete the theoretical part let us briefly come

back to dilated smectic-A without shear. Following the

analysis of [24] and [23] the neutral curve in this case is

given by

ǫ = q2
K

B0

. (24)

where ǫ is the relative dilation. Since q is known in the

simulated system (q = 2π/L) we can directly conclude

that the critical dilation is

ǫc =

(

2π

L

)2
K

B0

. (25)

3 Molecular Dynamics Simulations

3.1 Simulation Model and Methods

For the simulation of our model layered liquids we use

a model for amphiphilic systems recently introduced by

some of the authors [33]. Its important features are re-

viewed in the following.

The fluid consists of tetramer chains, where each chain

is composed of spherical particles of the same size. We in-

troduce two particle types A and B, such that a tetramer

has the structure A-A-B-B, and such that A and B ef-

fectively repel each other while like particles attract each

other. If this repulsion is strong enough, the system spon-

taneously forms a lamellar phase. In Ref. [33] the thermo-

dynamic and structural properties of this model were dis-

cussed in detail for the case of A-B dimers, while Ref. [34]

has studied the non-equilibrium properties of the dimer

model under shear. In the present study we have chosen

tetramers instead, in order to reduce the diffusion of the
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particles perpendicular to the layers. This model can be

viewed as a coarse-grained mesoscopic model of diblock

copolymers or small surfactants. All particles exhibit a

hard core which provides an effective excluded volume. A

convenient choice for this is a Lennard–Jones (LJ) poten-

tial that is truncated at the minimum, and shifted:

ULJ =















4 ε

[

(σ

r

)12

−
(σ

r

)6

+
1

4

]

r ≤ 21/6σ

0 r ≥ 21/6σ.

(26)

The parameters ε and σ give the scales for energy and

length. Without loss of generality they can be chosen to

be unity in this system.

From polymer simulations it is known that it is com-

putationally efficient to link the particles via anharmonic

FENE (“finitely extendible nonlinear elastic”) springs

with spring constant k and maximum extension R0:

UFENE =















− 1

2
kR2

0
ln

[

1 −

(

r

R0

)2
]

r < R0

∞ r ≥ R0.

(27)

The parameters for the FENE potential are chosen to be

k = 5 and R0 = 2.0.

The effective repulsion between unlike species (i.e.,

their tendency to unmix if they were not connected) is

implemented by introducing an additional attraction be-

tween like species [33]. Thus, for A-A and B-B pairs, the

original LJ potential, see Eq. (26), is modified to

ULJcos =































































4

[

(

1

r

)12

−

(

1

r

)6

+
1

4

]

− ϕ r ≤ 21/6

1

2
ϕ

[

cos(αr2 + β) − 1
]

21/6 ≤ r ≤ 1.5

0 r ≥ 1.5,

(28)

where ϕ, the depth of the attractive tail, drives the for-

mation of the lamellar phase, and α and β are chosen to

make the potential continuous and differentiable every-

where [33].

For our typical density ρ = 0.85 (in terms of

monomers), the first-order transition from the disordered

to the lamellar phase occurs at ϕ = 0.78± 0.04 [40], while

the nematic phase is not accessible [41].

The MD simulation is run in the NVT ensemble in a

box of size Lx×Ly×Lz with periodic boundary conditions.

Shear is applied by using the algorithm of F. Müller-Plathe

[42]: Two layers at z = 0 and z = Lz/2 are driven into the

+x and −x direction, respectively, see Fig. 7, while the

space in between is left untouched (except for the thermo-

stat). The driving is facilitated by suitable exchanges of

particle velocities in x direction [42], which works well for

large systems, or by a uniform force, which is more suitable

for small systems [43]. The amount of driving is continu-

ously adjusted in order to keep the sample-averaged shear

rate strictly constant. As a thermostat we use a method

analogous to Dissipative Particle Dynamics (DPD) [44].

As discussed in detail in Ref. [43], this is very suitable

for shear simulations, since DPD is strictly local, momen-

tum conserving, and Galilei invariant, i.e., fully consistent

with hydrodynamics, and thus profile-unbiased. In order

to avoid a strong influence on the dynamics a rather small

DPD friction parameter was chosen.

Further simulation parameters are: i) temperature

kBT = 1.0, ii) strength of the attractive well ϕ = 1.1

(deep in the lamellar phase), iii) number of tetramers
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N = 36864, iv) MD time step ∆t = 0.01. The system

was started in a perfectly aligned state. Then the shear

rate was increased step by step, where we took the final

steady state configuration of the previous run as start-

ing state for the next. By this procedure, we covered the

interval γ̇ ∈ [0; 0.025].

In order to minimize finite size effects, the box size

was carefully adjusted to the layered structure. As checked

previously, this procedure guarantees that the thermody-

namic properties do not depend on the system size [33,

34]. In the analytic part of the paper we have shown that

the wavelength of the undulations is given by the lateral

box size. Consequently, one expects that the critical tilt

angle depends on the size of the simulated system (see

definition of the dimensionless parameters at the end of

Sect. 2). In this respect, a variation of the box size would

have been desirable but is beyond the scope of the present

study.

Note that a step-wise increase in γ̇ actually means an

increase in the average velocity of the driving layers. A

new linear profile is established only after some transient

time governed by the viscous momentum transport into

the sample. After this transient, data in the steady state

were taken.

3.2 Simulation Results

Figure 8 shows the shear rate as a function of the director

tilt angle. This peculiar form of plotting the simulation

data has been used here in order to be able to compare

the data directly to the predictions of the theory, espe-

cially equation (17), which can only be written as γ̇(θ0).

We observe that, rather than being zero or constant, θ0

increases with increasing strain rate. A non–zero tilt angle

of the director in flow direction means that flow aligning

behavior of the director is present; we will discuss this

further in the next section.

Up to a strain rate of γ̇ = 0.01, flow alignment is the

only response of the director to shear flow. We increased

the strain rate further in steps of ∆γ̇ = 0.002 and we

observed undulations in our simulation beyond γ̇ = 0.01.

Figure 9 shows a simulation snapshot of the system at a

strain rate of γ̇ = 0.015 which clearly exhibits an undulat-

ing system with waves in vorticity direction (left to right).

The amplitude of the undulation waves, which does not

vary along the z axis, has been determined as a function of

the shear rate. In order to do this, ny, the vorticity com-

ponent of the director, was measured as a function of the

y-coordinate. For small amplitudes, the amplitude of the

undulations of ny is proportional to the undulation ampli-

tude of the layers themselves. We are only interested in the

general behavior in regard of the magnitude of the ampli-

tude; for this reason the amplitude of the undulations in

ny is a good measure. Figure 10 shows the amplitude of ny

undulations as a function of the shear rate. The non-zero

values below a shear rate of γ̇ ≈ 0.011 are due to thermal

noise, above γ̇ ≈ 0.011 the amplitude increases until the

layers reorient at γ̇ > 0.025.

For a better understanding of the system we will com-

pare the simulation results reported above to a dilation

“experiment” where the system gets dilated in one direc-
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tion, along the layer normal in our case, while the lateral

dimension are kept constant. At low dilation no effect of

the stretching is observable, beyond a certain percentage

of elongation ǫ of the simulation box undulations of the

layers set in. The undulation amplitude can be measured

in the same way as in the case of shear and the results are

shown in Fig. 11. The onset for those undulations takes

place at a ǫ = 1.9% stretching. The amplitude of the un-

dulations increases until roughly 3% dilation. Beyond 3%

the layers of the non–isochoric dilated system become un-

stable and break apart. Note that in this latter case, the

undulations occur in both x and y direction.

4 Discussion

The simulation results of the preceeding section are quite

obviously very similar to the picture developed using the

analytic theory. The most outstanding similarities are the

presence of the director tilt and the onset of an undulation

instability above a threshold value for the shear rate. In

this section we will present a more detailed comparison

between the results of Secs. 2 and 3. With the performed

simulations we are able to determine almost all the dimen-

sionless parameters of the system without making use of

the onset of the undulation instability. This in turn en-

ables a check of the set of parameters by comparing the

observed (simulated) undulation threshold to the thresh-

old predicted by the analytic theory (using the material

parameters).

We start our discussion with the stationary and dy-

namic behavior of the director tilt below the onset of un-

dulations. In the analytical part we showed that the time

dependence of the average director tilt after a step like

start of the shear will approach its stationary value within

a characteristic time given by τ = γ1/B1 [see Eq. (21)].

Figure 12 gives a comparison of the time evolution of the

average director tilt after a step like start of the shear for

different shear rates. Note that in the simulations the av-

erage shear rate is given as input parameter and the direc-

tor measured is the average director. The time to establish

the average shear is short compared with the characteris-

tic time associated with the director tilt. Since Eq. (21)

is only valid for small θ we must restrict our analysis of

the numerical data to small shear rates. Both shear rates

used lead to the same values for B1/γ1 and λ, namely,

B1

γ1

= 0.045± 0.004, (29)

λ = 0.88 ± 0.1. (30)

In principle most of the parameters could be derived

from a fit of Eq. (17) to the data plotted in Fig. 8, where

we show the stationary response of the director tilt as a

function of shear rate. But it turns out that such a fit

is rather imprecise. Instead, we use the previously derived

flow alignment parameter to reduce the uncertainty in the

fit. The value for B1/γ1 in this fit is consistent with the

results to Fig. 12. Following this procedure we can derive

the last undetermined parameter of Eq. (17)

B0

γ1

= 0.22 ± 0.14 (31)

With the results for B0/γ1 and B1/γ1 at hand we can

provide now an estimate for the ratio B0/B1.

B0

B1

= 5.3 ± 3.4 (32)
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Let us turn for a moment to the simulations of the

dilated system where no shear is present. Those show an

onset of the undulation instability at a dilation of about

2%. Assuming a square root dependence of the amplitude

beyond onset we get (see dashed line in Fig. 11)

ǫc = 1.6% ± 0.2% (33)

Inserting this value along with the estimate from above

for B0/γ1 in Eq. (25) we obtain

K

B1

(

2π

L

)2

= 0.085 ± 0.055. (34)

Besides the renormalized viscosities νi/γ1 all relevant pa-

rameters are now determined. The analytical theory pre-

dicts only a slight influence of the viscosities on the onset

of undulations as long as νi/γ1 & 0.05. If we assume this

relation to hold, the predicted threshold value for the un-

dulation instability is

θc = 0.35
+0.45

−0.20
. (35)

For a good estimate of the critical shear rate we assume

a square root dependence of the undulations amplitude

and, thus, find a simulated critical shear rate of

γ̇c,sim = 0.0103± 0.0007. (36)

Transforming this simulated threshold value with Eq. (17)

and the above parameters, we find the simulated critical

tilt angle to be

θc,sim = 0.18 ± 0.02 (37)

Thus, we can conclude that, within the error bars, the an-

alytic theory is in qualitative as well as reasonable quanti-

tative agreement with the simulation results in the range

of validity of the linear theory.

5 Conclusion

In this paper we have shown that the director (as defined

in a nematic liquid crystal) has its own independent dy-

namics in the smectic-A phase. To do so we have used

two independent methods, namely, a linear stability anal-

ysis of the macroscopic, hydrodynamic equations [26,27]

and a molecular dynamics simulation of a model bilayer

smectic-A [33]. The simulation of this model system for

layered liquids shows, above a critical shear rate, an undu-

lation instability, which arises spontaneously. The analytic

theory tests for the stability of the spatially homogenous

state against undulations and also finds a critical shear

rate. Despite the differences in the approaches, both meth-

ods (molecular dynamics simulations and analytic theory)

are in good qualitative and reasonable quantitative agree-

ment in the range of validity of both methods. At low shear

rates we observe a director tilt in the simulations which

corresponds to analytical predictions. Increasing the shear

rate above a critical value leads (in the simulations and

in the analytic theory) to an undulation instability of the

layers. Using a number of further simulations on the same

system, we can determine an (almost complete) set of ma-

terial parameters for the simulated system independent of

the threshold value of the tilt angle. Inserting these pa-

rameters in the analytical calculations we can show that

both methods are in agreement within the error bars. For

many purposes, we conclude that the accessible size of the

simulated systems is now in the range covered by contin-

uum approaches (as, e.g., hydrodynamic theory) and the
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comparison between both kinds of approaches may have

stimulating effects for both fields.
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FIGURES

Fig. 1. In the analytical part of this paper we consider a

laterally infinite layer with the uppermost and lowermost layer

moving in opposite directions, but with equal velocity. The

depicted molecules illustrate the principal structure and are

not meant to give any microscopic detail.

Fig. 2. A finite angle between n̂ and p̂ leads to a tendency

of the layers to reduce their thickness. Supposing a constant

number of layers in the sample, this tendency is equivalent to

an effective dilation along the layer normal. For small angles

between n̂ and p̂ the relative effective dilation is given by 1

2
θ2

(picture taken from Ref. [27]).

Fig. 3. Above a certain threshold, the effective dilation due

to the director tilt will lead to undulations of the layers. Note

the difference in directions: The director is tilted in the flow

direction, whereas the wave vector points along the y axis. This

configuration cancels the direct coupling between the flow and

the undulations.
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Fig. 4. Critical tilt angle versus the dimensionless compression

modulus of the layers (see text for further comments).

�
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Fig. 5. In the relevant parameter range the critical tilting

angle increases with λ.
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� 
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Fig. 6. Critical tilt angle versus the dimensionless bending

modulus of the layers.

Fig. 7. Orientation of the shear flow in the simulation. The

maximum flow directions are sketched by the arrows. The shear

at the bottom is equal to the periodic image above the top of

the box. The middle slab is moving in opposite direction. Note

that both, the upper and the lower half of the simulated system

correspond on their own to the system considered in Sect. 2.
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Fig. 8. Strain rate as a function of the tilt angle. This peculiar

form of presenting the data has been chosen in order to facil-

itate a direct comparison with the theory, especially Eq. (17).

The solid line is a fit of this equation to the data (see Sect. 4

for more details).

Fig. 9. Undulations in the simulated model system. At a strain

rate of γ̇ = 0.015 clearly undulations have developed. As con-

sidered in the theory, undulations in the vorticity direction are

present. Note that the undulation amplitude does not change

along the z axis.

_
Amplitude 0.020.010
0.160.120.080.04

Fig. 10. Undulation amplitude due to shear. The amplitude

of the undulations A is given as a function of the strain rate γ̇.

At a shear rate of γ̇ ≈ 0.01 undulations set in. The amplitude

of these undulations grows continuously with increasing shear

rate. The dashed line shows a fit to data points starting at

γ̇ > 0.01 assuming a square root dependence of the amplitude

above the undulation onset.yx
�Amplitude 0.030.020.010

0.120.10.080.060.040.020
Fig. 11. Undulation amplitude as a function of the dilation

ǫ. For values of the dilation of ǫ ≈ 0.019 the system starts to

respond with undulations and the amplitude increases contin-

uously until the layers break apart for ǫ > 3%. The dashed line

(

0000000
000��s��

) shows a fit to the data points assuming a square root

dependence of the amplitude above onset.
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Fig. 12. Time evolution of the director tilt after a step like

start of the shear for two different final shear rates (0.008 and

0.010 in Lennard-Jones units). The lines show the fit to the

data using Eq. (21).


