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A Generi
 Computer Model for Amphiphili
 SystemsT. Soddemann a, B. D�unweg, and K. KremerMax Plan
k Institute for Polymer Resear
hA
kermannweg 10, D{55128 Mainz, GermanyDe
ember 4, 2001Abstra
t. We present a simple but versatile o�{latti
e model for 
omputer simulation studies of am-phiphili
 systems, 
onstru
ted mainly for the purpose of 
omputational eÆ
ien
y. The surfa
tant mole
ulesare modeled as A{B dimers, where unlike spe
ies repel ea
h other, while identi
al spe
ies are also subje
t toan attra
tion whose strength drives the various ordering phenomena. This latter potential has been tunedfor a good mat
h of interparti
le distan
es, while its short range fa
ilitates fast for
e 
al
ulations. Themost important properties of the model are investigated by Mole
ular Dynami
s simulation. In parti
ular,we study the stability of the 
uid ordered lamellar phase, as well as the unmixing of the binary 
uid ofpure A and B.PACS. 82.70.Uv Surfa
tants, mi
ellar solutions, vesi
les, lamellae, amphiphili
 systems { 61.20.Ja Com-puter simulation of liquid stru
ture { 64.70.Md Transitions in liquid 
rystals { 64.75.+g Solubility, segre-gation, and mixing; phase separation { 61.30.Cz Mole
ular and mi
ros
opi
 models and theories of liquid
rystal stru
ture { 61.30.Dk Continuum models and theories of liquid 
rystal stru
ture1 Introdu
tionAmphiphiles are an extremely important 
lass ofmole
ules, o�ering numerous appli
ations, and showing avery ri
h physi
al behavior. In a very broad sense, thesemole
ules 
an be viewed as being 
omposed of two spe
ies(whi
h we shall denote by A and B), whose intera
tionsare su
h that they would show a strong tenden
y towardsphase separation. This is however prohibited, sin
e thetwo spe
ies are 
hemi
ally linked. Systems of amphiphiles
an form 
omplex morphologies, in order to bring the alikespe
ies 
lose to ea
h other. The details of these morpholo-gies depend on the mole
ular ar
hite
ture, and on theamount of solvent (i. e. pure A, pure B, or mole
ules witha high aÆnity towards either A or B, or non{sele
tivesolvent) [1℄. In 
ase of symmetri
 mole
ules without sol-vent the typi
al stru
ture is a lamellar phase where thesystem organizes in parallel sheets, with the mean mole
-ular axis (the dire
tor) perpendi
ular to the sheets, andalternating (from layer to layer) orientation of the meanA ! B ve
tor. In the language of liquid 
rystals, su
ha phase is referred to as a sme
ti
{A phase. For pra
ti-
al appli
ations, the mole
ules are parti
ularly importantbe
ause they enri
h at interfa
es between A and B or simi-lar mole
ules, thus drasti
ally redu
ing the interfa
ial ten-sion. The most 
ommon examples are tensides with a hy-drophili
 \head" and a hydrophobi
 \tail", whi
h 
an bea present address: Johns Hopkins University, Department ofPhysi
s and Astronomy, 3400 North Charles Street, Baltimore,MD 21218, USA

used as soaps, and biomembranes 
omposed of lipid bilay-ers. Another very important 
lass are diblo
k 
opolymers,where \head" and \tail" both 
onsist of a large numberof monomers. The full phase diagram of these systemshas not yet been theoreti
ally explored beyond the mean{�eld level [1℄; this is only one reason why one would like tohave a 
omputer model available whi
h mimi
ks the be-havior of these systems. Beyond the equilibrium stru
ture,the systems also show extremely interesting and not fullyunderstood non{equilibrium phenomena, like shear align-ment of lamellar stru
tures [2,3℄, the formation of \onion"stru
tures [4℄, or \
as
ade nu
leation" of A droplets ina B phase shielded by amphiphiles under the in
uen
eof 
ontinuous driving [5{7℄. For investigations 
on
erningthe fundamental me
hanisms in these phenomena, atom-isti
 models are 
omputationally too expensive, and alsonot needed, sin
e the basi
 physi
s is identi
al. For manyquestions it is even unimportant to distinguish betweenlow{mole
ular weight tensides or lipids and blo
k 
opoly-mers. Although atomisti
 simulations 
an nowadays rea
hquite impressive length and time s
ales [8℄, it is never-theless 
lear that phenomena like shear alignment [2,3℄,whi
h happen on hydrodynami
 length and time s
ales,and require large systems, are out of rea
h. For this reason,there has been a long tradition of 
omputer simulationsof models whi
h 
oarse{grain the underlying 
hemistry.Depending on the question under 
onsideration, di�erentlevels of 
hemi
al detail are needed. While \united atom"approa
hes [9℄ still attempt to 
at
h most 
hemi
al fea-tures, other models keep only the most salient features,
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 Systemsi. e. the tenden
y to unmix, the 
onne
tivity, and some-times a sket
hy representation of the mole
ular ar
hite
-ture (for example a large asymmetry in the size of \head"and \tail"). This redu
tion in the number of degrees offreedom yields a tremendous 
omputational speedup; inour work with polymer models we found fa
tors of 104 oreven more [10℄. For a long time, latti
e models [11,12℄ havebeen very popular. However, we strongly believe that withnowadays' 
omputers featuring fast 
oating point arith-meti
s, a 
ontinuum model o�ers pra
ti
ally the same
omputational eÆ
ien
y, while at the same time beingable to mu
h more easily implement 
omplex physi
al sit-uations like shear 
ow, and avoid latti
e artifa
ts (likeunphysi
ally large bending of lamellar sheets, in
ompati-bility of the natural layer spa
ing with the latti
e 
onstant,no 
ontinuous rotation of mole
ules, et
.). The most logi-
al 
hoi
e are, in essen
e, standard Lennard{Jones parti-
les 
onne
ted by springs, and suitably 
hosen intera
tionsto distinguish A and B. Compared to the \united atom"approa
h [9℄, substantial amounts of CPU time 
an besaved by avoiding the 
ompli
ated bond{bending terms.Su
h models have already su

essfully been implementedbefore [13{16℄, and simulations on rather large s
ales havebeen performed [16℄. Nevertheless, within the 
lass of thesemodels there is still opportunity for further optimization,whi
h so far has apparently not been exploited. It is thepurpose of the present paper to �ll this gap. The modelwhi
h we wish to outline here is in spirit very similar tothat of Ref. [16℄; however, there are some small but im-portant di�eren
es. Firstly, we limit the intera
tion rangeto only the nearest{neighbor shell, su
h that the numberof for
e 
al
ulations is redu
ed substantially. Se
ondly, weuse a more eÆ
ient thermostat, whi
h allows us to usea time step about twi
e as large. We estimate that thesetwo improvements make our simulations roughly one orderof magnitude faster. Thirdly, we use the strength of theattra
tive intera
tion as the temperature{like parameter,while keeping the average kineti
 energy and the 
urvatureof the potentials 
onstant. This is optimal for Mole
ularDynami
s, allowing us to use the same large time stepthroughout in the phase diagram. In the present paper,we wish to outline the simplest prototypi
 version of su
hmodels, and test its behavior (in parti
ular, phase behav-ior) in simple equilibrium situations where the expe
tedphysi
s is 
lear. Extensions to more 
ompli
ated versions,whi
h mimi
k the underlying 
hemistry in a slightly moredetailed way [17℄, and appli
ations to nontrivial physi
alsituations, like simulations of shear alignment [18℄, are leftfor future publi
ations.The paper is organized as follows: In Se
. 2 we out-line the reasoning and some of the test runs whi
h havelead us to the �nal formulation of our model. In Se
. 3we des
ribe the most important properties of the systemas obtained by simulations, in parti
ular its phase behav-ior, demonstrating that it is indeed useful for the desiredpurpose. Finally, we 
on
lude in Se
. 4.

2 Development of the Model2.1 Intera
tionsThe basi
 ingredients of our model are parti
les whi
hintera
t through spheri
ally symmetri
 potentials. Thesepotentials should be 
ontinuous, in order to fa
ilitate astandard Mole
ular Dynami
s pro
edure like the Verletalgorithm [19℄, and short{ranged, in order to keep thenumber of for
e 
al
ulations at a minimum. A 
onvenient
hoi
e for this is a Lennard{Jones (LJ) potential that istrun
ated at the minimum, and shifted:ULJ = 8<:4� ���r �12 � ��r �6 + 14� r � 21=6�0 r � 21=6� : (1)This potential has found widespread appli
ations for thesimulation of bead{spring models for polymers [20,21℄.Here, � sets the energy s
ale and � the length s
ale. We willhen
eforth use Lennard{Jones units where � = � = 1; themass m of the parti
les is also set to unity, su
h that timeis measured in units of � = (�2m=�)1=2. A typi
al densesystem is 
hara
terized by a parti
le density of � = 0:85,and temperature kBT = 1. This dense repulsive Lennard{Jones 
uid will be the referen
e system from whi
h we
onstru
t our model. The pair 
orrelation fun
tion (PCF)g(r), i. e. the normalized density{density 
orrelation fun
-tion, with g(r)! 1 for r !1, is shown in Fig. 1 for thisLJ 
uid.As a minimal model for amphiphili
 mole
ules, we just
onsider dimers of di�erent spe
ies. From the polymer sim-ulations it is known that it is 
omputationally eÆ
ient tolink the dimers via anharmoni
 FENE (\�nitely extensi-ble nonlinear elasti
") springs with spring 
onstant k andmaximum extension R0:UFENE =8><>:� 12kR20 ln"1�� rR0�2# r < R01 r � R0 : (2)While for the polymer simulations usually the valuesk = 30 and R0 = 1:5 are used [20℄, we here use a some-what weaker attra
tion, k = 5, R0 = 2. The reason isthat we wish to adjust the typi
al bond length to thetypi
al interparti
le distan
e in the dense Lennard{Jones
uid (rather 
lose to 21=6, see Fig. 1). By this mat
h wemake sure that the model will also allow for an ensemblewhere the 
onne
tivity is not �xed, but the bonds are 
re-ated and deleted between monomers. If the length s
aleswould not �t, attempts of su
h pro
esses would mu
h toofrequently be reje
ted [17℄. Another important aspe
t ofusing an in
reased bond length is the enlarged softness ofa layer with respe
t to shear: The longer the bonds are,the more freedom they have to be tilted with respe
t tothe layer normal, while still avoiding strong intra{layer
onta
ts between unlike spe
ies.Furthermore, the model needs to in
lude di�erent in-tera
tions between A and B parti
les, in order to distigu-ish them and drive the tenden
y towards phase separation.
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 Systems 3The simplest model has identi
al intera
tions for A{A andfor B{B 
onta
ts, while an A{B 
onta
t is more repulsive,or less attra
tive, and thus unfavorable. Ideally, one wouldlike to do this via repulsive potentials only, for exampleby in
reasing the prefa
tor in Eq. 1 for A{B 
onta
ts,the advantage being twofold: Firstly, one would sti
k toa very short intera
tion range, and thus to few for
e 
al-
ulations, and se
ondly the system would not exhibit agas{liquid transition, whi
h is not of interest per se, andwould only introdu
e an unwanted 
ompli
ation into thesystem. A
tually, this approa
h has been very su

essfulto model the phase separation of polymer blends, and themi
rophase separation of blo
k 
opolymers [22℄. In that
ase, however, a very small di�eren
e in the intera
tionis already suÆ
ient to drive the phase transition, as thepolymerization strongly redu
es the translational entropy,resulting in T
 / N , where T
 is the 
riti
al tempera-ture, and N the degree of polymerization. Conversely, ourlow{mole
ular weight system would need a quite strongrepulsion between A and B in order to a

ess phase sep-aration. Note that it is 
omputationally more eÆ
ient tovary the intera
tion strength to drive the phase transi-tion, rather than the temperature | the potentials areoptimized su
h that the Mole
ular Dynami
s, with its in-terplay between potential energy and kineti
 energy, runsbest for kBT = 1. Tests have then shown that a
tually avery strong repulsion would be needed, requiring a verysmall time step, whi
h again is ineÆ
ient. For this reason,we have resorted to the se
ond 
hoi
e, and in
luded anattra
tive tail between the A{A pairs and the B{B pairs,while the A{B 
onta
ts are just subje
t to the purely re-pulsive Lennard{Jones potential.For the 
hoi
e of the attra
tive tail, the following 
on-siderations for this �rst version of our model are impor-tant: (i) In the general spirit of a minimal model, wewant to avoid the presen
e of several mole
ular lengths
ales, whi
h might lead to 
ompetition, frustration, et
.So we want that the typi
al interparti
le distan
e is thesame for A{A, B{B, and A{B bonds. In other words: Theadditional attra
tive tail should not substantially distortthe pair 
orrelation fun
tion g(r) of the original repulsiveLennard{Jones 
uid, at least with respe
t to the positionsof the maxima and minima. Guided by the same idea, wehad already adjusted the parameters of the bond poten-tial, Eq. 2. (ii) The tail should be rather short{ranged, forreasons of eÆ
ien
y. (iii) In order to avoid instabilities inMole
ular Dynami
s simulations, the potential should be
ontinuous, and have 
ontinuous �rst derivatives.For these reasons, the potential should remain un-
hanged for 0 < r < 21=6, while the attra
tive tail shouldrea
h from r = 21=6 to the �rst minimum of g(r) (whi
ho

urs roughly at r = 1:5, as seen from Fig. 1), su
hthat only the �rst neighbor shell is in
luded in the in-tera
tion. Su
h a potential will then of 
ourse allow for agas{liquid transition, and, as a potential 
ompli
ation, fa-vor 
rystallization into an f

 stru
ture, sin
e any frustra-tion e�e
ts between length s
ales have been deliberatelyavoided. These issues will be 
onsidered in the next se
tionin more detail. The tail should thus have zero derivative

at r = 21=6 and at r = 1:5, while it should have the valueszero at r = 1:5, and �� at r = 21=6, where � is the depthof the attra
tive part, and is used by us as the independentparameter by whi
h we drive the system into the orderedphase. Using a shifted 
osine wave in r2, one thus obtainsULJ
os = 8>>>>>><>>>>>>:4"�1r�12 ��1r�6 + 14#� � r � 21=612� �
os(�r2 + �)� 1� 21=6 � r � 1:50 r � 1:5 ;(3)where � and � are determined as the solutions of the linearset of equations 21=3�+ � = � (4)2:25�+ � = 2�; (5)i. e. � = 3:1730728678 and � = �0:85622864544.As an alternative, we also tried a third{order polyno-mial in r2, Up=� = A+ r2(B + r2(C + r2D)); (6)where the same requirements yield A = 7:979574673, B =�17:52538691, C = 10:84948485, D = �2:060727237.However, in ben
hmarks we found that this potential isonly a few per
ent faster than the 
osine version, thereason being that the trigonometri
 fun
tions are imple-mented as fast hardware instru
tions on the pro
essors weused (Compaq Alpha EV5, EV56, EV6, EV67, and IntelPentium II and III). We therefore kept the original ver-sion, Eq. 3. All results that follow will ex
lusively refer tothis potential.Figure 1 shows the resulting g(r) of a monomer 
uidof N = 10000 parti
les who are all subje
t to ULJ
os.While � = 0 is the original repulsive Lennard{Jones 
uid,the amplitude is systemati
ally in
reasing with �. How-ever, the position of the maxima and minima is nearlyun
hanged, as desired. � = 2:0 is 
lose to the 
uid{solidtransition (see below).Figure 2 
ompares g(r) to the bond lengths whi
h re-sult from the FENE potential, Eq. 2, at a typi
al statepoint � = 1:5. It is seen that also these lengths mat
hquite ni
ely.2.2 Computational DetailsThe simulation method we apply is Mole
ular Dynami
s(MD). For the basi
s of MD we refer the reader to Refs.[19,23℄. For stabilization purposes, we use a Langevin ther-mostat [24℄. The equations of motion are given bym�ri = �riU � � _ri;+Wi(t) (7)where the fri
tion 
oeÆ
ient � and the strength of therandom noise Wi(t) are related via the 
u
tuation dissi-pation theorem:hWi(t) �Wj(t0)i = 6kBT�ÆijÆ(t� t0): (8)
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 SystemsU denotes the sum over all intera
tions of the bead i, andthe temperature is always �xed at the value kBT = 1:0.The equations of motion are integrated by using a velo
ityVerlet updating s
heme [19℄. The simulations were 
arriedout in the 
onstant volume (NVT) as well as in the 
on-stant pressure (NPT) ensemble. For the NPT ensemblesimulation a modi�ed velo
ity Verlet algorithm was used,and the \box" degree of freedom 
oupled to a Langevinheat bath as well [25℄. The time step used in the simu-lation was �t = 0:01. The fri
tion 
onstant is set to thesmall value � = 0:5, thus ensuring that our dynami
s isnot too far away from the Hamiltonian limit. For a reason-able 
hoi
e of parameters for the NPT ensemble, see Ref.[25℄. The simulation box was always 
ubi
 with periodi
boundary 
onditions. We used a highly optimized domainde
omposition s
heme in order to run the simulations inparallel on a Cray T3E. For more details of this algorithm,we refer the reader to Ref. [26℄.Figure 3 shows that indeed the strategy of 
on�ningthe intera
tion range to the �rst neighbor shell pays o� interms of 
omputational eÆ
ien
y: While the purely repul-sive system is 
learly by far the fastest, we only lose a fa
-tor of two in speed when in
reasing the intera
tion rangeto 1:5. If we would have used the \
anoni
al" intera
tionrange 2:5, then the loss would rather be a fa
tor of eight.Although modern 
omputers are fairly fast, this speedupis nevertheless of importan
e for the large system sizeswhi
h are needed to study, for example, non{equilibriumphenomena in shear 
ow.We also augmented our algorithm by Monte Carlo(MC) moves. Firstly, in order to study the unmixing ofunlike monomers (just a binary 
uid, with no 
onne
-tivity potential), we used a semi{grand
anoni
al ensem-ble where the total number of parti
les is �xed, whilethe fra
tion of A (or B) parti
les is allowed to 
u
tuate,su
h that the 
hemi
al potential di�eren
e �� is beingheld �xed. For symmetry reasons, the unmixing o

urs at�� = 0. The 
u
tuations in 
omposition are then fa
ili-tated via sto
hasti
 \
ips", whi
h 
an 
hange an A parti
leto a B parti
le, or vi
e versa [22℄. This was implementedvia a simple single spin 
ip algorithm using the standardMetropolis [27℄ 
riterion.Se
ondly, one might also think about the analogouspro
edure for a system of dimers: An A-B dimer is\
ipped" to a B-A dimer, or vi
e versa. Su
h a s
hemewould 
ertainly somewhat speed up the equilibration whena lamellar stru
ture is formed. Nevertheless, we have notimplemneted these moves, sin
e they would have requiredsubstantial 
ommuni
ation in our parallel program. Itsdata stru
ture builds dire
tly on that of Ref. [26℄, wherethe elementary units are the monomers, su
h that a dimer
an be 
rossing pro
essor boundaries. Furthermore, oneshould note that these dimer 
ips are far less impor-tant than the spin 
ips in the binary 
uid: An unmixingsystem without the MC pro
edure would exhibit a 
on-served order parameter and hen
e \hydrodynami
 slow-ing down", i. e. the ne
essity of transport over ma
ro-s
opi
 distan
es. Conversely, in the 
ase of the formationof a lamellar stru
ture, the order parameter is not 
on-

served, su
h that only lo
al rearrangements are ne
essary.A fully grand{
anoni
al s
heme, in whi
h the 
on
entra-tion of ea
h spe
ies, in
luding the amphiphiles, is 
on-trolled via 
hemi
al potentials, is 
urrently being devel-oped [17℄. This approa
h is expe
ted to be very useful forbinary and ternary systems of solvent(s) and amphiphiles.3 Simulation Results3.1 Identi
al MonomersThe simplest system to study 
onsists of identi
almonomers only. Figure 4 gives a rough sket
h of the ex-pe
ted phase diagram in the (�; P ){plane, P denoting thepressure. Both a gas{liquid transition as well as a 
uid{solid transition are expe
ted, although the gas{liquid tran-sition must not ne
essarily o

ur [28℄. Sin
e we are mainlyinterested in the behavior at densities near the typi
alvalue � = 0:85, we have not attempted to answer thisquestion and map out the phase diagram as a whole. Werather restri
ted ourselves to varying � at 
onstant pres-sure P = 1:0; previous test runs had shown that this isa typi
al pressure for a dimer system at the typi
al highdensity near the order{disorder transition (ODT), see be-low. Our results indi
ate that along this 
hosen path onlya 
uid{solid transition o

urs.This transition was lo
ated by obtaining a hysteresisloop of the density as a fun
tion of �, for a system ofN = 10000 parti
les; this large system size was ne
essaryin order to obtain good a

ura
y in the metastable states.We started in the 
uid phase and in
reased � systemati-
ally, until a jump in the density was observed, after whi
hwe swept ba
k. The �nal 
on�guration of the previous runwas always used as initial 
on�guration for the next �value; the data were always taken over suÆ
iently shortruns su
h that no jumping ba
k and forth between the 
o-existing phases was observed. Figure 5 shows the resultinghysteresis loop. We did not attempt to lo
ate the 
uid{solid transition very a

urately (this would have requiredthermodynami
 integration or �nite{size s
aling [29℄), butit is quite 
lear that it o

urs for 1:4 < � < 1:8. Therefore,the simulations of the amphiphili
 systems should 
learlyavoid su
h large � values.The solid phase is further 
hara
terized by a stronglyredu
ed di�usion. Figure 6 shows the mean square dis-pla
ement (MSD) of a single parti
le as a fun
tion of timefor di�erent � values along the path we had studied. Tothis end we simulated an N = 500 parti
le system in theNVT ensemble, starting o� from the �nal 
on�gurationsof the 
orresponding NPT run. The di�usion 
onstant isextra
ted from the long{time behavior via the Einsteinrelation in d spatial dimensions (here d = 3)D = limt!1 12dth(r(t)� r(0))2i; (9)resulting in the values given in Table 1. Note that themean square displa
ement has to be measured in the
enter{of{mass referen
e frame of the overall system,
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h di�uses as well. While di�usive behavior is observedwithout any problems in the 
uid phase, it turns out thatat the state point in the solid phase (� = 2:4) the mobil-ity is a
tually so small that we were unable to observe theleaving of the lo
al \
age" on the time s
ale of our simula-tion; hen
e we are only able to give an upper bound for thedi�usion 
onstant there. Moreover, it should be noted thatthe data for � = 1:9 
orrespond to a metastable 
uid; therun whi
h produ
ed these data was substantially shorterthan the 
orresponding run for Fig. 5, su
h that the sys-tem did not have enough time to go into the solid phase.Details of the 
rystal stru
ture are revealed by thestati
 stru
ture fa
tor S(q), whi
h we show in Fig. 7 for� = 2:4 in 
omparison to � = 1:4; 1:8; 2:0 in the liquidstate for an N = 10000 system along the path studied.One 
learly sees a mu
h more pronoun
ed stru
ture withlong{range order. The position of the peaks is 
ompati-ble with an f

 
rystal [30℄. Moreover, a determination ofthe number of nearest neighbors via integration over the�rst peak of g(r) yields the value 12, as expe
ted for thef

 stru
ture. � = 2:0 is still a metastable liquid (again,these data were taken from a mu
h shorter run than thosefor Fig. 5), as seen from the density. Here the �rst maxi-mum of S(q) has a value of roughly 3:5, 
learly above 2:8,whi
h, a

ording to the empiri
al Hansen{Verlet 
riterion[31℄, should mark the onset of 
rystallization.3.2 Binary MixtureFor a system whi
h 
ontains rather two di�erent spe
iesA and B, the phase behavior be
omes more 
ompli
ated,sin
e at large values of � the two spe
ies will unmix(ma
rophase separation, MPS). The qualitative phase dia-gram whi
h we expe
t is drawn in Fig. 8. We have studiedMPS in the semi{grand
anoni
al ensemble for a systemat �xed density � = 0:85 as a fun
tion of �. This situa-tion is qualitatively depi
ted in Fig. 9. It is parti
ularlyimportant to know if the MPS o

urs for smaller � than
rystallization | otherwise no 
uid phase in the unmixedstate would exist, and it would be quite unlikely that adimer system exhibits a 
uid lamellar phase.The order parameter is given by m = NA � NB and
an vary from �N to +N . A

ording to the usual the-ory of �nite{size s
aling [29℄, the standard 
umulant ratio1�hm4i=(3 hm2i2), plotted as a fun
tion of � for di�erentsystem sizes, should interse
t at one point whi
h is a verygood estimate for �
. Sin
e a
tually the value of the ratioat the interse
tion point is known (it depends only on theuniversality 
lass and assumes the value 0.47 for the 
aseof three{dimensional Ising{like 
riti
al behavior [32℄), wehave only studied a single system size N = 4000, with avery long run. The resulting 
umulant ratio is plotted inFig. 10, from whi
h we 
an roughly estimate �
 = 0:65,whi
h is fortunately far below the 
uid{solid transition.One should expe
t that the ODT for a dimer system willo

ur at a somewhat higher � value. The reason is rathersimple: Compared to the formation of a lamellar phase,unmixing is mu
h more eÆ
ient in removing internal in-terfa
es. Therefore the ODT has a weaker driving for
e

and hen
e needs a stronger 
oupling. For this reason, itmust be 
he
ked if the ODT o

urs before 
rystallization.3.3 Dimeri
 SystemsA system of A{B dimers allows for three independent or-der parameters within the liquid phase. First of all, themole
ules 
an orient along a spontaneously sele
ted axis(the dire
tor), without distinguishing between A and B.If no additional ordering would o

ur, then su
h a phasewould be nemati
. Nemati
 ordering is measured via thesymmetri
 and tra
eless Saupe tensor [33℄Qij = 32 �r̂ir̂j � 13Æij� ; (10)where i and j are Cartesian indi
es, Æij is the Krone
kersymbol, and r̂ denotes a unit ve
tor along the mole
u-lar axis. In the isotropi
 phase the volume average (orensemble average) of Qij is identi
ally zero, while inthe uniaxial nemati
 phase Qij has the three eigenval-ues (S;�S=2;�S=2), where S > 0 is the nemati
 orderparameter, whi
h at most 
an assume the value S = 1
orresponding to the perfe
tly ordered state. In our sim-ulation, we measured, at any parti
ular time, the volumeaverage of Qij and determined the largest eigenvalue. Thetime average of these de�nes the numeri
al estimate forS. Furthermore, there 
an be breaking of translationalinvarian
e and the formation of a sme
ti
 phase. In asme
ti
{A phase, the sheets are perpendi
ular to the di-re
tor. This 
an be measured by studying the density{density 
orrelation fun
tion (or the stru
ture fa
tor) alongthe dire
tor, where it exhibits quasi long{range order [34℄,and perpendi
ular to it, where the stru
ture is 
uid{like.Finally, there 
an also be an orientation of the A{Bmole
ules along the dire
tor axis n̂: The ve
tor from A toB 
an either point with identi
al probabilities in the dire
-tion +n̂ and�n̂ (disordered state), or prefer one parti
ulardire
tion (ordered state).For our system, there are only two 
uid phases present:The disordered phase, where all order parameters vanish,and the lamellar phase, in whi
h all three order parametersare nonzero. Further 
uid phases, whi
h are theoreti
allypossible (i. e. not prohibited by fundamental symmetryarguments), like a disordered sme
ti
 or nemati
 phase,or an oriented nemati
 phase, are not expe
ted for oursystem, and they have not been observed. The expe
tedqualitative phase diagram is thus shown in Fig. 11, wherewe also show the path along whi
h we have studied theorder{disorder transition at 
onstant volume and 
onstantnumber of dimers.It is 
lear that the ODT must be of �rst order, sin
ealready nemati
 ordering enfor
es �rst{order behavior, asis known from symmetry analysis and Landau{deGennestheory [33℄. There is thus a slight problem with study-ing the ODT in the 
onstant{volume ensemble: Stri
tlyspoken, one must expe
t that the isotropi
 and lamellar
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oexisten
e, and there-fore phase separation (i. e. unmixing of the isotropi
 andthe lamellar phase) must o

ur. However, it is expe
tedthat the density di�eren
e is so small that the phases willnot unmix unless the system is extremely large: For a smallsystem, the free energy penalty of introdu
ing an inter-fa
e into the system will outweigh the bulk free energygain obtained from phase separation. Indeed, we 
he
kedthat both 
oexisting phases, whi
h we found via hysteresisloops for S (see below), have roughly the same pressureat the same state point. This shows that the approa
his 
onsistent within our numeri
al resolution. For high{a

ura
y studies however, this issue must be kept in mind.The 
onstant{pressure ensemble was not used sin
e it is
omputationally more expensive and less easy to handle.Another 
riti
ism against the 
onstant{volume ensem-ble is the in
ompatibility of the linear box size L withthe sme
ti
 layer spa
ing d. However, when the systembe
omes large, then this distortion be
omes small. Fur-thermore, one has to take into a

ount that the layers
an rotate with respe
t to the box, and this allows fornon{integer ratios L=d: The periodi
 boundary 
onditionsenfor
e that there must be integers mx, my, and mz su
hthat the layer spa
ing in x dire
tion is L=mx (for the y andz dire
tions analogously). If the origin of the 
oordinatesystem is in the �rst layer, then the se
ond layer is givenby n̂ �r = d, where n̂ is the dire
tor unit ve
tor. This equa-tion must therefore hold spe
i�
ally for r = (L=mx; 0; 0),and thus n̂x = (d=L)mx (for y and z analogously). Nor-malization of n̂ thus implies L=d =qm2x +m2y +m2z, i. e.any ratio that 
an be represented in this form is permitted,and the system will 
hoose the numbersmx,my andmz tominimize the deviation from the optimum layer spa
ing.For Fig. 12, whi
h shows a typi
al 
on�guration deep inthe lamellar phase, we �rst had measured the sheet thi
k-ness and then adjusted the system size in order to �t thesheets ni
ely (L=d integer). We therefore study a systemnot of 100000 monomers, but rather N = �d3(L=d)3 =97336. One easily obtains a ni
e lamellar phase whi
h ex-tends over the whole sample if the simulation is startedin an ordered state. Su
h a 
on�guration is shown in theleft part. Conversely, if the system is quen
hed from thedisordered state, the system �rst develops a multi{domainstru
ture, as shown in the right part. Su
h a 
on�gurationthen relaxes very slowly into the true equilibrium state, byannealing the domain walls. Figure 13 shows the hystere-sis loop in the nemati
 order parameter S for this system.Ea
h state point was observed for 2000 LJ time units;the bran
h in the ordered phase was obtained by simulat-ing a system whi
h was originally prepared in a perfe
tlyordered state. The data 
orresponding to the disorderedbran
h at intermediate S values 
orrespond to time aver-ages over the slow relaxation pro
ess of domain annealingand are hen
e not true equilibrium averages. The ODT isthus lo
alized at roughly � = 1:2. This result 
oin
ideswith a simulation of a smaller system N = 10000 whi
hwas run under 
onstant pressure 
onditions P = 1:0 (starsand boxes in Fig. 13).

The important point is that the ODT o

urs at asmaller � value than what we found previously for 
rystal-lization of the monomer system. Hen
e one should expe
tthat the observed lamellar phase is indeed 
uid, whi
h isne
essary for our model to be useful for real amphiphili
systems. To establish that this is true, we have studiedthe stru
ture fa
tor in the dire
tion of, and perpendi
ularto, the dire
tor, plus the single parti
le dynami
s in bothdire
tions.The stru
ture fa
tor measured in the dire
tion of thedire
tor should exhibit power{law singularities at q = nq0,where n = 1; 2; : : : and q0 = 2�=d, where d is the layerspa
ing [34℄: S(q) / jq � nq0j�2+n2� , where � > 0 isnon{universal and depends on the elasti
 
onstants. Fig-ure 14, showing the n = 1 peak, exhibits this behaviorquite ni
ely; the drawn 
urve is for q0 = 3:36 (i. e. alayer spa
ing d = 1:87) and � = 0. The value of � forour system is rather small 
ompared to two, und thus wefound that our system size and statisti
al a

ura
y wereinsuÆ
ient to determine a meaningful number. A
tually,the data are 
ompatible with any value of � in the range�0:3 � � � 0:2. A rather small value of � is quite typ-i
al for analogous experimental systems [35℄. The stru
-ture fa
tor in the dire
tions perpendi
ular to the dire
tor
learly shows 
uid stru
ture, as expe
ted (see Fig. 15).Finally, the liquid 
rystalline behavior also 
learly showsup in the anisotropy of the dynami
s, see Fig. 16: Whilethe in{plane di�usion (measured via the mean square dis-pla
ement in the dire
tions perpendi
ular to the dire
tor)is nearly unhindered, with quite similar behavior as in theliquid phase of the monomers, the inter{plane di�usion isstrongly redu
ed, similar to the behavior in the monomer
rystal. The resulting di�usion 
onstants are listed in Ta-ble 2, where again the values for inter{plane di�usion areupper bounds only.4 Con
lusions and OutlookWe have introdu
ed a new simple 
ontinuum simulationmodel for the investigation of amphiphili
 and 
opoly-meri
 systems. This model, or rather straightforward gen-eralizations of it, is 
apable of reprodu
ing many essen-tial physi
al 
hara
teristi
s in the targeted area of inter-est. Compared to previous generi
 
ontinuum models [13{16℄ our new model o�ers important te
hni
al advantages:All intera
tions are short ranged; therefore the numberof intera
ting pairs is relatively small, resulting in good
omputational eÆ
ien
y. We estimate this improvementto be roughly an order of magnitude. Furthermore, ourapproa
h of varying the strength of the attra
tive inter-a
tion as the temperature{like variable, while keeping ki-neti
 energy and 
urvature of the potential 
onstant, isideally suited for MD, sin
e a broad range of \tempera-tures" 
an be s
anned without the need to use a smallertime step.The stru
ture of the monomeri
 
uid is hardly a�e
tedby the attra
tive tail 
ompared to the purely repulsiveLennard{Jones 
uid. The binary 
uid of two disliking
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omponents phase separates; this happens at an intera
-tion strength whi
h is roughly half the value of the in-tera
tion strength of the order{disorder transition, wherethe A{B dimeri
 liquid forms the liquid lamellar phase.We did not �nd any indi
ation for any other ordered 
uidphase for the dimer system. Both from stru
tural analy-sis and from the observation of fast two{dimensional dif-fusion, we demonstrated that the lamellar phase is still
uid; 
rystallization o

urs for stronger intera
tions. Thedi�usion 
onstants of the pure 
uid and the one withinlayers of dimers are of the same order of magnitude undersame 
onditions. This establishes that the model at leastsatis�es the basi
 requirements.The presented version is the most simple variant.Starting from there, one 
an generalize the model in aquite straightforward way, and 
onne
t not only two, butmore monomers, as has been done previously [14,16℄, un-til one �nally arrives at a model for a blo
k 
opolymer.A great variety of mole
ular ar
hite
tures is thus a

essi-ble. By this, one automati
ally in
ludes the e�e
ts of taillength and of internal 
onformational entropy, whi
h of
ourse 
ontrols the e�e
tive intera
tion. How many andwhi
h intramole
ular degrees of freedom should be in-
luded depends on the question under 
onsideration, andis not obvious, sin
e in part these may rather be in
or-porated by e�e
tive (usually density{ and temperaturedependent) potentials. This question is far from settled;within the framework of polymer simulations it is an a
-tive area of resear
h [36℄. As an example for su
h a gener-alized model, let us 
onsider surfa
tants whi
h 
onsist ofan A monomer, followed by four B monomers, and an Amonomer again. In Fig. 17 we show a snapshot 
on�gura-tion of a system of su
h mole
ules diluted in an A solvent(not shown). A bi
ontinuous phase is stable at the simu-lated parameter values; however, we have not analyzedthis systemati
ally. This 
learly shows that non{trivial
on�gurations and phases are a

essible to our simula-tion approa
h. It is also possible, within the frameworkof the present 
lass of models, to devise a system wherea single layer, arranged at the interfa
e between A (\wa-ter") and B (\oil") solvent, would exhibit spontaneous
urvature: This is simply a
hieved by making one of thetypes of monomers larger than the other one; note thatthe monomer \size" is 
ontrolled via the repulsive 
oreof the intera
tions. Furthermore, bond bending potentialsand torsional potentials 
an be introdu
ed. Thus one 
an\dress" the model further and further, until one arrivesat a des
ription whi
h is quite similar to a \united atom"model, at the expense of more and more 
ompli
ated 
al-
ulations. In parti
ular, it is possible to 
onstru
t \hardrods", whose liquid{
rystalline ordering is mainly drivenby pa
king. Whi
h kind of model is needed depends verymu
h on the physi
al question under 
onsideration; asa rule of thumb, more and more 
hemi
al detail will beneeded the smaller the length s
ale under 
onsiderationis. For many interesting phenomena, atomisti
 simulationswill remain indispensable. Our model, on the 
ontrary, isexpe
ted to work best for 
olle
tive phenomena whi
h o
-
ur on large (mesos
opi
 or hydrodynami
) length and

time s
ales, like morphology formation of 
omplex phases,shear alignment of lamellar stru
tures, et
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 Systems 9� 1.4 1.5 1.7 1.9 2.4D 33:9 � 10�3 26:4 � 10�3 15:1 � 10�3 8:74 � 10�3 0:177 � 10�3Table 1. Pure 
uid system di�usion 
onstants for di�erentvalues of the potential depth �. The value for � = 2:4 must be
onsidered as an upper bound.
� 1.2 1.4 1.5Din-plane 14:5 � 10�3 11:9 � 10�3 9:72 � 10�3Dinter-plane 1:3 � 10�3 0:6 � 10�3 0:6 � 10�3Table 2. Di�usion 
onstants for dimeri
 systems. Din-plane de-notes the two{dimensional di�usion 
onstants within a layer inthe lamellar phase. Dinter-plane represents the di�usion perpen-di
ular to the layers. These latter values must be 
onsideredas upper bounds.
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Fig. 17. Snapshot of a 
onformation in the bi
ontinuous phaseof ABBBBA surfa
tants (see text), where A monomers are
oded light and B monomers dark. Solvent parti
les (spe
iesA) are not shown. The surfa
tant 
on
entration is 
lose to 0.35and the simulation was 
arried out at � = 1:3 with N = 27000parti
les in total.


