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Abstract. We present a simple but versatile off-lattice model for computer simulation studies of am-
phiphilic systems, constructed mainly for the purpose of computational efficiency. The surfactant molecules
are modeled as A-B dimers, where unlike species repel each other, while identical species are also subject to
an attraction whose strength drives the various ordering phenomena. This latter potential has been tuned
for a good match of interparticle distances, while its short range facilitates fast force calculations. The
most important properties of the model are investigated by Molecular Dynamics simulation. In particular,
we study the stability of the fluid ordered lamellar phase, as well as the unmixing of the binary fluid of
pure A and B.

PACS. 82.70.Uv Surfactants, micellar solutions, vesicles, lamellae, amphiphilic systems — 61.20.Ja Com-
puter simulation of liquid structure — 64.70.Md Transitions in liquid crystals — 64.75.4-g Solubility, segre-
gation, and mixing; phase separation — 61.30.Cz Molecular and microscopic models and theories of liquid

crystal structure — 61.30.Dk Continuum models and theories of liquid crystal structure

1 Introduction

Amphiphiles are an extremely important class of
molecules, offering numerous applications, and showing a
very rich physical behavior. In a very broad sense, these
molecules can be viewed as being composed of two species
(which we shall denote by A and B), whose interactions
are such that they would show a strong tendency towards
phase separation. This is however prohibited, since the
two species are chemically linked. Systems of amphiphiles
can form complex morphologies, in order to bring the alike
species close to each other. The details of these morpholo-
gies depend on the molecular architecture, and on the
amount of solvent (i. e. pure A, pure B, or molecules with
a high affinity towards either A or B, or non-selective
solvent) [1]. In case of symmetric molecules without sol-
vent the typical structure is a lamellar phase where the
system organizes in parallel sheets, with the mean molec-
ular axis (the director) perpendicular to the sheets, and
alternating (from layer to layer) orientation of the mean
A — B vector. In the language of liquid crystals, such
a phase is referred to as a smectic—A phase. For practi-
cal applications, the molecules are particularly important
because they enrich at interfaces between A and B or simi-
lar molecules, thus drastically reducing the interfacial ten-
sion. The most common examples are tensides with a hy-
drophilic “head” and a hydrophobic “tail”, which can be
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used as soaps, and biomembranes composed of lipid bilay-
ers. Another very important class are diblock copolymers,
where “head” and “tail” both consist of a large number
of monomers. The full phase diagram of these systems
has not yet been theoretically explored beyond the mean—
field level [1]; this is only one reason why one would like to
have a computer model available which mimicks the be-
havior of these systems. Beyond the equilibrium structure,
the systems also show extremely interesting and not fully
understood non—equilibrium phenomena, like shear align-
ment of lamellar structures [2,3], the formation of “onion”
structures [4], or “cascade nucleation” of A droplets in
a B phase shielded by amphiphiles under the influence
of continuous driving [5-7]. For investigations concerning
the fundamental mechanisms in these phenomena, atom-
istic models are computationally too expensive, and also
not needed, since the basic physics is identical. For many
questions it is even unimportant to distinguish between
low—molecular weight tensides or lipids and block copoly-
mers. Although atomistic simulations can nowadays reach
quite impressive length and time scales [8], it is never-
theless clear that phenomena like shear alignment [2,3],
which happen on hydrodynamic length and time scales,
and require large systems, are out of reach. For this reason,
there has been a long tradition of computer simulations
of models which coarse-grain the underlying chemistry.
Depending on the question under consideration, different
levels of chemical detail are needed. While “united atom”
approaches [9] still attempt to catch most chemical fea-
tures, other models keep only the most salient features,
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i. e. the tendency to unmix, the connectivity, and some-
times a sketchy representation of the molecular architec-
ture (for example a large asymmetry in the size of “head”
and “tail”). This reduction in the number of degrees of
freedom yields a tremendous computational speedup; in
our work with polymer models we found factors of 10* or
even more [10]. For a long time, lattice models [11,12] have
been very popular. However, we strongly believe that with
nowadays’ computers featuring fast floating point arith-
metics, a continuum model offers practically the same
computational efficiency, while at the same time being
able to much more easily implement complex physical sit-
uations like shear flow, and avoid lattice artifacts (like
unphysically large bending of lamellar sheets, incompati-
bility of the natural layer spacing with the lattice constant,
no continuous rotation of molecules, etc.). The most logi-
cal choice are, in essence, standard Lennard—Jones parti-
cles connected by springs, and suitably chosen interactions
to distinguish A and B. Compared to the “united atom”
approach [9], substantial amounts of CPU time can be
saved by avoiding the complicated bond—bending terms.
Such models have already successfully been implemented
before [13-16], and simulations on rather large scales have
been performed [16]. Nevertheless, within the class of these
models there is still opportunity for further optimization,
which so far has apparently not been exploited. It is the
purpose of the present paper to fill this gap. The model
which we wish to outline here is in spirit very similar to
that of Ref. [16]; however, there are some small but im-
portant differences. Firstly, we limit the interaction range
to only the nearest—neighbor shell, such that the number
of force calculations is reduced substantially. Secondly, we
use a more efficient thermostat, which allows us to use
a time step about twice as large. We estimate that these
two improvements make our simulations roughly one order
of magnitude faster. Thirdly, we use the strength of the
attractive interaction as the temperature-like parameter,
while keeping the average kinetic energy and the curvature
of the potentials constant. This is optimal for Molecular
Dynamics, allowing us to use the same large time step
throughout in the phase diagram. In the present paper,
we wish to outline the simplest prototypic version of such
models, and test its behavior (in particular, phase behav-
ior) in simple equilibrium situations where the expected
physics is clear. Extensions to more complicated versions,
which mimick the underlying chemistry in a slightly more
detailed way [17], and applications to nontrivial physical
situations, like simulations of shear alignment [18], are left
for future publications.

The paper is organized as follows: In Sec. 2 we out-
line the reasoning and some of the test runs which have
lead us to the final formulation of our model. In Sec. 3
we describe the most important properties of the system
as obtained by simulations, in particular its phase behav-
ior, demonstrating that it is indeed useful for the desired
purpose. Finally, we conclude in Sec. 4.

2 Development of the Model
2.1 Interactions

The basic ingredients of our model are particles which
interact through spherically symmetric potentials. These
potentials should be continuous, in order to facilitate a
standard Molecular Dynamics procedure like the Verlet
algorithm [19], and short-ranged, in order to keep the
number of force calculations at a minimum. A convenient
choice for this is a Lennard—Jones (LJ) potential that is
truncated at the minimum, and shifted:
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This potential has found widespread applications for the
simulation of bead—spring models for polymers [20,21].
Here, € sets the energy scale and o the length scale. We will
henceforth use Lennard—Jones units where ¢ = o = 1; the
mass m of the particles is also set to unity, such that time
is measured in units of 7 = (¢2m/€)'/2. A typical dense
system is characterized by a particle density of p = 0.85,
and temperature kT = 1. This dense repulsive Lennard-
Jones fluid will be the reference system from which we
construct our model. The pair correlation function (PCF)
g(r), i. e. the normalized density—density correlation func-
tion, with g(r) — 1 for » — oo, is shown in Fig. 1 for this
LJ fluid.

As a minimal model for amphiphilic molecules, we just
consider dimers of different species. From the polymer sim-
ulations it is known that it is computationally efficient to
link the dimers via anharmonic FENE (“finitely extensi-
ble nonlinear elastic”) springs with spring constant k& and
maximum extension Ry:
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While for the polymer simulations usually the values
k =30 and Ry = 1.5 are used [20], we here use a some-
what weaker attraction, & = 5, Ry = 2. The reason is
that we wish to adjust the typical bond length to the
typical interparticle distance in the dense Lennard—Jones
fluid (rather close to 2'/6, see Fig. 1). By this match we
make sure that the model will also allow for an ensemble
where the connectivity is not fixed, but the bonds are cre-
ated and deleted between monomers. If the length scales
would not fit, attempts of such processes would much too
frequently be rejected [17]. Another important aspect of
using an increased bond length is the enlarged softness of
a layer with respect to shear: The longer the bonds are,
the more freedom they have to be tilted with respect to
the layer normal, while still avoiding strong intra-layer
contacts between unlike species.

Furthermore, the model needs to include different in-
teractions between A and B particles, in order to distigu-
ish them and drive the tendency towards phase separation.
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The simplest model has identical interactions for A—A and
for B-B contacts, while an A-B contact is more repulsive,
or less attractive, and thus unfavorable. Ideally, one would
like to do this via repulsive potentials only, for example
by increasing the prefactor in Eq. 1 for A-B contacts,
the advantage being twofold: Firstly, one would stick to
a very short interaction range, and thus to few force cal-
culations, and secondly the system would not exhibit a
gas—liquid transition, which is not of interest per se, and
would only introduce an unwanted complication into the
system. Actually, this approach has been very successful
to model the phase separation of polymer blends, and the
microphase separation of block copolymers [22]. In that
case, however, a very small difference in the interaction
is already sufficient to drive the phase transition, as the
polymerization strongly reduces the translational entropy,
resulting in T, o N, where T, is the critical tempera-
ture, and N the degree of polymerization. Conversely, our
low—molecular weight system would need a quite strong
repulsion between A and B in order to access phase sep-
aration. Note that it is computationally more efficient to
vary the interaction strength to drive the phase transi-
tion, rather than the temperature — the potentials are
optimized such that the Molecular Dynamics, with its in-
terplay between potential energy and kinetic energy, runs
best for kT = 1. Tests have then shown that actually a
very strong repulsion would be needed, requiring a very
small time step, which again is inefficient. For this reason,
we have resorted to the second choice, and included an
attractive tail between the A—A pairs and the B-B pairs,
while the A-B contacts are just subject to the purely re-
pulsive Lennard—Jones potential.

For the choice of the attractive tail, the following con-
siderations for this first version of our model are impor-
tant: (i) In the general spirit of a minimal model, we
want to avoid the presence of several molecular length
scales, which might lead to competition, frustration, etc.
So we want that the typical interparticle distance is the
same for A—A, B-B, and A-B bonds. In other words: The
additional attractive tail should not substantially distort
the pair correlation function g(r) of the original repulsive
Lennard—Jones fluid, at least with respect to the positions
of the maxima and minima. Guided by the same idea, we
had already adjusted the parameters of the bond poten-
tial, Eq. 2. (ii) The tail should be rather short-ranged, for
reasons of efficiency. (iii) In order to avoid instabilities in
Molecular Dynamics simulations, the potential should be
continuous, and have continuous first derivatives.

For these reasons, the potential should remain un-
changed for 0 < r < 26, while the attractive tail should
reach from r = 2'/6 to the first minimum of g(r) (which
occurs roughly at r = 1.5, as seen from Fig. 1), such
that only the first neighbor shell is included in the in-
teraction. Such a potential will then of course allow for a
gas—liquid transition, and, as a potential complication, fa-
vor crystallization into an fcc structure, since any frustra-
tion effects between length scales have been deliberately
avoided. These issues will be considered in the next section
in more detail. The tail should thus have zero derivative

at r = 21/6 and at r = 1.5, while it should have the values
zero at r = 1.5, and —¢ at r = 2'/6_ where ¢ is the depth
of the attractive part, and is used by us as the independent
parameter by which we drive the system into the ordered
phase. Using a shifted cosine wave in 72, one thus obtains

1\ 12 1\ °
R
r r
ULJ = )
o 16 [cos(ar? + 3) — 1] 21/6 < <15
0 r>1.5

- (3)

where o and 3 are determined as the solutions of the linear
set, of equations

Mg+ f=m (4)
2.25a + f = 2, (5)

i. e. a=3.1730728678 and 3 = —0.85622864544.
As an alternative, we also tried a third—order polyno-

mial in 72,

Uy = A+7r*(B +1r*C +r’D)), (6)

where the same requirements yield A = 7.979574673, B =
—17.52538691, C' = 10.84948485, D = —2.060727237.
However, in benchmarks we found that this potential is
only a few percent faster than the cosine version, the
reason being that the trigonometric functions are imple-
mented as fast hardware instructions on the processors we
used (Compaq Alpha EV5, EV56, EV6, EV67, and Intel
Pentium IT and III). We therefore kept the original ver-
sion, Eq. 3. All results that follow will exclusively refer to
this potential.

Figure 1 shows the resulting g(r) of a monomer fluid
of N = 10000 particles who are all subject to Uf jcos-
While ¢ = 0 is the original repulsive Lennard—Jones fluid,
the amplitude is systematically increasing with ¢. How-
ever, the position of the maxima and minima is nearly
unchanged, as desired. ¢ = 2.0 is close to the fluid—solid
transition (see below).

Figure 2 compares g(r) to the bond lengths which re-
sult from the FENE potential, Eq. 2, at a typical state
point ¢ = 1.5. It is seen that also these lengths match
quite nicely.

2.2 Computational Details

The simulation method we apply is Molecular Dynamics
(MD). For the basics of MD we refer the reader to Refs.
[19,23]. For stabilization purposes, we use a Langevin ther-
mostat [24]. The equations of motion are given by

mrl = —VZU — Ff‘i,+Wi(t) (7)

where the friction coefficient I and the strength of the
random noise W;(t) are related via the fluctuation dissi-
pation theorem:

(W(t) - W;(t")) = 6kgTT6;;0(t —t'). (8)
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U denotes the sum over all interactions of the bead i, and
the temperature is always fixed at the value kT = 1.0.
The equations of motion are integrated by using a velocity
Verlet updating scheme [19]. The simulations were carried
out in the constant volume (NVT) as well as in the con-
stant pressure (NPT) ensemble. For the NPT ensemble
simulation a modified velocity Verlet algorithm was used,
and the “box” degree of freedom coupled to a Langevin
heat bath as well [25]. The time step used in the simu-
lation was At = 0.01. The friction constant is set to the
small value I' = 0.5, thus ensuring that our dynamics is
not too far away from the Hamiltonian limit. For a reason-
able choice of parameters for the NPT ensemble, see Ref.
[25]. The simulation box was always cubic with periodic
boundary conditions. We used a highly optimized domain
decomposition scheme in order to run the simulations in
parallel on a Cray T3E. For more details of this algorithm,
we refer the reader to Ref. [26].

Figure 3 shows that indeed the strategy of confining
the interaction range to the first neighbor shell pays off in
terms of computational efficiency: While the purely repul-
sive system is clearly by far the fastest, we only lose a fac-
tor of two in speed when increasing the interaction range
to 1.5. If we would have used the “canonical” interaction
range 2.5, then the loss would rather be a factor of eight.
Although modern computers are fairly fast, this speedup
is nevertheless of importance for the large system sizes
which are needed to study, for example, non—equilibrium
phenomena in shear flow.

We also augmented our algorithm by Monte Carlo
(MC) moves. Firstly, in order to study the unmixing of
unlike monomers (just a binary fluid, with no connec-
tivity potential), we used a semi—grandcanonical ensem-
ble where the total number of particles is fixed, while
the fraction of A (or B) particles is allowed to fluctuate,
such that the chemical potential difference Ay is being
held fixed. For symmetry reasons, the unmixing occurs at
Ap = 0. The fluctuations in composition are then facili-
tated via stochastic “flips”, which can change an A particle
to a B particle, or vice versa [22]. This was implemented
via a simple single spin flip algorithm using the standard
Metropolis [27] criterion.

Secondly, one might also think about the analogous
procedure for a system of dimers: An A-B dimer is
“flipped” to a B-A dimer, or vice versa. Such a scheme
would certainly somewhat speed up the equilibration when
a lamellar structure is formed. Nevertheless, we have not
implemneted these moves, since they would have required
substantial communication in our parallel program. Its
data structure builds directly on that of Ref. [26], where
the elementary units are the monomers, such that a dimer
can be crossing processor boundaries. Furthermore, one
should note that these dimer flips are far less impor-
tant than the spin flips in the binary fluid: An unmixing
system without the MC procedure would exhibit a con-
served order parameter and hence “hydrodynamic slow-
ing down”, i. e. the necessity of transport over macro-
scopic distances. Conversely, in the case of the formation
of a lamellar structure, the order parameter is not con-

served, such that only local rearrangements are necessary.
A fully grand—canonical scheme, in which the concentra-
tion of each species, including the amphiphiles, is con-
trolled via chemical potentials, is currently being devel-
oped [17]. This approach is expected to be very useful for
binary and ternary systems of solvent(s) and amphiphiles.

3 Simulation Results
3.1 Identical Monomers

The simplest system to study consists of identical
monomers only. Figure 4 gives a rough sketch of the ex-
pected phase diagram in the (¢, P)-plane, P denoting the
pressure. Both a gas—liquid transition as well as a fluid—
solid transition are expected, although the gas-liquid tran-
sition must not necessarily occur [28]. Since we are mainly
interested in the behavior at densities near the typical
value p = 0.85, we have not attempted to answer this
question and map out the phase diagram as a whole. We
rather restricted ourselves to varying ¢ at constant pres-
sure P = 1.0; previous test runs had shown that this is
a typical pressure for a dimer system at the typical high
density near the order—disorder transition (ODT), see be-
low. Our results indicate that along this chosen path only
a fluid—solid transition occurs.

This transition was located by obtaining a hysteresis
loop of the density as a function of ¢, for a system of
N = 10000 particles; this large system size was necessary
in order to obtain good accuracy in the metastable states.
We started in the fluid phase and increased ¢ systemati-
cally, until a jump in the density was observed, after which
we swept back. The final configuration of the previous run
was always used as initial configuration for the next ¢
value; the data were always taken over sufficiently short
runs such that no jumping back and forth between the co-
existing phases was observed. Figure 5 shows the resulting
hysteresis loop. We did not attempt to locate the fluid—
solid transition very accurately (this would have required
thermodynamic integration or finite—size scaling [29]), but
it is quite clear that it occurs for 1.4 < ¢ < 1.8. Therefore,
the simulations of the amphiphilic systems should clearly
avoid such large ¢ values.

The solid phase is further characterized by a strongly
reduced diffusion. Figure 6 shows the mean square dis-
placement (MSD) of a single particle as a function of time
for different ¢ values along the path we had studied. To
this end we simulated an NV = 500 particle system in the
NVT ensemble, starting off from the final configurations
of the corresponding NPT run. The diffusion constant is
extracted from the long—time behavior via the Einstein
relation in d spatial dimensions (here d = 3)

. 1
D_tlggoﬁ

2
((x(t) —r(0))"), (9)
resulting in the values given in Table 1. Note that the
mean square displacement has to be measured in the
center—of-mass reference frame of the overall system,



T. Soddemann, B. Diinweg, and K. Kremer: A Generic Computer Model for Amphiphilic Systems 5

which diffuses as well. While diffusive behavior is observed
without any problems in the fluid phase, it turns out that
at the state point in the solid phase (¢ = 2.4) the mobil-
ity is actually so small that we were unable to observe the
leaving of the local “cage” on the time scale of our simula-
tion; hence we are only able to give an upper bound for the
diffusion constant there. Moreover, it should be noted that
the data for ¢ = 1.9 correspond to a metastable fluid; the
run which produced these data was substantially shorter
than the corresponding run for Fig. 5, such that the sys-
tem did not have enough time to go into the solid phase.

Details of the crystal structure are revealed by the
static structure factor S(g), which we show in Fig. 7 for
¢ = 2.4 in comparison to ¢ = 1.4,1.8,2.0 in the liquid
state for an NV = 10000 system along the path studied.
One clearly sees a much more pronounced structure with
long—range order. The position of the peaks is compati-
ble with an fec crystal [30]. Moreover, a determination of
the number of nearest neighbors via integration over the
first peak of g(r) yields the value 12, as expected for the
fce structure. ¢ = 2.0 is still a metastable liquid (again,
these data were taken from a much shorter run than those
for Fig. 5), as seen from the density. Here the first maxi-
mum of S(¢) has a value of roughly 3.5, clearly above 2.8,
which, according to the empirical Hansen—Verlet criterion
[31], should mark the onset of crystallization.

3.2 Binary Mixture

For a system which contains rather two different species
A and B, the phase behavior becomes more complicated,
since at large values of ¢ the two species will unmix
(macrophase separation, MPS). The qualitative phase dia-
gram which we expect is drawn in Fig. 8. We have studied
MPS in the semi—grandcanonical ensemble for a system
at fixed density p = 0.85 as a function of ¢. This situa-
tion is qualitatively depicted in Fig. 9. It is particularly
important to know if the MPS occurs for smaller ¢ than
crystallization — otherwise no fluid phase in the unmixed
state would exist, and it would be quite unlikely that a
dimer system exhibits a fluid lamellar phase.

The order parameter is given by m = Ny — Ny and
can vary from —N to +N. According to the usual the-
ory of finite-size scaling [29], the standard cumulant ratio
1—(m*) /(3 (m?)?), plotted as a function of ¢ for different
system sizes, should intersect at one point which is a very
good estimate for ¢.. Since actually the value of the ratio
at the intersection point is known (it depends only on the
universality class and assumes the value 0.47 for the case
of three—dimensional Ising-like critical behavior [32]), we
have only studied a single system size N = 4000, with a
very long run. The resulting cumulant ratio is plotted in
Fig. 10, from which we can roughly estimate ¢. = 0.65,
which is fortunately far below the fluid—solid transition.
One should expect that the ODT for a dimer system will
occur at a somewhat higher ¢ value. The reason is rather
simple: Compared to the formation of a lamellar phase,
unmixing is much more efficient in removing internal in-
terfaces. Therefore the ODT has a weaker driving force

and hence needs a stronger coupling. For this reason, it
must be checked if the ODT occurs before crystallization.

3.3 Dimeric Systems

A system of A—B dimers allows for three independent or-
der parameters within the liquid phase. First of all, the
molecules can orient along a spontaneously selected axis
(the director), without distinguishing between A and B.
If no additional ordering would occur, then such a phase
would be nematic. Nematic ordering is measured via the
symmetric and traceless Saupe tensor [33]

3/(.. 1
Qij =5 (Tﬂ'j - §5i]’> ;

where ¢ and j are Cartesian indices, ¢;; is the Kronecker
symbol, and 7 denotes a unit vector along the molecu-
lar axis. In the isotropic phase the volume average (or
ensemble average) of @;; is identically zero, while in
the uniaxial nematic phase ();; has the three eigenval-
ues (S,—S5/2,—S5/2), where S > 0 is the nematic order
parameter, which at most can assume the value S = 1
corresponding to the perfectly ordered state. In our sim-
ulation, we measured, at any particular time, the volume
average of (0;; and determined the largest eigenvalue. The
time average of these defines the numerical estimate for
S.

Furthermore, there can be breaking of translational
invariance and the formation of a smectic phase. In a
smectic—A phase, the sheets are perpendicular to the di-
rector. This can be measured by studying the density—
density correlation function (or the structure factor) along
the director, where it exhibits quasi long—range order [34],
and perpendicular to it, where the structure is fluid-like.

Finally, there can also be an orientation of the A-B
molecules along the director axis n: The vector from A to
B can either point with identical probabilities in the direc-
tion +7 and —n (disordered state), or prefer one particular
direction (ordered state).

For our system, there are only two fluid phases present:
The disordered phase, where all order parameters vanish,
and the lamellar phase, in which all three order parameters
are nonzero. Further fluid phases, which are theoretically
possible (i. e. not prohibited by fundamental symmetry
arguments), like a disordered smectic or nematic phase,
or an oriented nematic phase, are not expected for our
system, and they have not been observed. The expected
qualitative phase diagram is thus shown in Fig. 11, where
we also show the path along which we have studied the
order—disorder transition at constant volume and constant
number of dimers.

It is clear that the ODT must be of first order, since
already nematic ordering enforces first—order behavior, as
is known from symmetry analysis and Landau—deGennes
theory [33]. There is thus a slight problem with study-
ing the ODT in the constant-volume ensemble: Strictly
spoken, one must expect that the isotropic and lamellar

(10)
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phases have different densities at coexistence, and there-
fore phase separation (i. e. unmixing of the isotropic and
the lamellar phase) must occur. However, it is expected
that the density difference is so small that the phases will
not unmix unless the system is extremely large: For a small
system, the free energy penalty of introducing an inter-
face into the system will outweigh the bulk free energy
gain obtained from phase separation. Indeed, we checked
that both coexisting phases, which we found via hysteresis
loops for S (see below), have roughly the same pressure
at the same state point. This shows that the approach
is consistent within our numerical resolution. For high—
accuracy studies however, this issue must be kept in mind.
The constant—pressure ensemble was not used since it is
computationally more expensive and less easy to handle.

Another criticism against the constant—volume ensem-
ble is the incompatibility of the linear box size L with
the smectic layer spacing d. However, when the system
becomes large, then this distortion becomes small. Fur-
thermore, one has to take into account that the layers
can rotate with respect to the box, and this allows for
non—integer ratios L/d: The periodic boundary conditions
enforce that there must be integers m,, m,, and m, such
that the layer spacing in z direction is L/m,, (for the y and
z directions analogously). If the origin of the coordinate
system is in the first layer, then the second layer is given
by n-r = d, where n is the director unit vector. This equa-
tion must therefore hold specifically for r = (L/m,,0,0),
and thus n, = (d/L)m, (for y and z analogously). Nor-

malization of 7 thus implies L/d = \/m2 +m2 + mZ, i. e.
any ratio that can be represented in this form is permitted,
and the system will choose the numbers m,, m, and m_ to

minimize the deviation from the optimum layer spacing.

For Fig. 12, which shows a typical configuration deep in
the lamellar phase, we first had measured the sheet thick-
ness and then adjusted the system size in order to fit the
sheets nicely (L/d integer). We therefore study a system
not of 100000 monomers, but rather N = pd®(L/d)® =
97336. One easily obtains a nice lamellar phase which ex-
tends over the whole sample if the simulation is started
in an ordered state. Such a configuration is shown in the
left part. Conversely, if the system is quenched from the
disordered state, the system first develops a multi—-domain
structure, as shown in the right part. Such a configuration
then relaxes very slowly into the true equilibrium state, by
annealing the domain walls. Figure 13 shows the hystere-
sis loop in the nematic order parameter S for this system.
Each state point was observed for 2000 LJ time units;
the branch in the ordered phase was obtained by simulat-
ing a system which was originally prepared in a perfectly
ordered state. The data corresponding to the disordered
branch at intermediate S values correspond to time aver-
ages over the slow relaxation process of domain annealing
and are hence not true equilibrium averages. The ODT is
thus localized at roughly ¢ = 1.2. This result coincides
with a simulation of a smaller system N = 10000 which
was run under constant pressure conditions P = 1.0 (stars
and boxes in Fig. 13).

The important point is that the ODT occurs at a
smaller ¢ value than what we found previously for crystal-
lization of the monomer system. Hence one should expect
that the observed lamellar phase is indeed fluid, which is
necessary for our model to be useful for real amphiphilic
systems. To establish that this is true, we have studied
the structure factor in the direction of, and perpendicular
to, the director, plus the single particle dynamics in both
directions.

The structure factor measured in the direction of the
director should exhibit power—law singularities at ¢ = nqy,
where n = 1,2,... and ¢y = 27/d, where d is the layer

spacing [34]: S(q) o |¢— nqo|_2+nQ"7 where > 0 is
non—universal and depends on the elastic constants. Fig-
ure 14, showing the n = 1 peak, exhibits this behavior
quite nicely; the drawn curve is for ¢ = 3.36 (i. e. a
layer spacing d = 1.87) and n = 0. The value of n for
our system is rather small compared to two, und thus we
found that our system size and statistical accuracy were
insufficient to determine a meaningful number. Actually,
the data are compatible with any value of n in the range
—0.3 < 1 < 0.2. A rather small value of 5 is quite typ-
ical for analogous experimental systems [35]. The struc-
ture factor in the directions perpendicular to the director
clearly shows fluid structure, as expected (see Fig. 15).
Finally, the liquid crystalline behavior also clearly shows
up in the anisotropy of the dynamics, see Fig. 16: While
the in—plane diffusion (measured via the mean square dis-
placement in the directions perpendicular to the director)
is nearly unhindered, with quite similar behavior as in the
liquid phase of the monomers, the inter—plane diffusion is
strongly reduced, similar to the behavior in the monomer
crystal. The resulting diffusion constants are listed in Ta-
ble 2, where again the values for inter—plane diffusion are
upper bounds only.

4 Conclusions and Outlook

We have introduced a new simple continuum simulation
model for the investigation of amphiphilic and copoly-
meric systems. This model, or rather straightforward gen-
eralizations of it, is capable of reproducing many essen-
tial physical characteristics in the targeted area of inter-
est. Compared to previous generic continuum models [13—
16] our new model offers important technical advantages:
All interactions are short ranged; therefore the number
of interacting pairs is relatively small, resulting in good
computational efficiency. We estimate this improvement
to be roughly an order of magnitude. Furthermore, our
approach of varying the strength of the attractive inter-
action as the temperature-like variable, while keeping ki-
netic energy and curvature of the potential constant, is
ideally suited for MD, since a broad range of “tempera-
tures” can be scanned without the need to use a smaller
time step.

The structure of the monomeric fluid is hardly affected
by the attractive tail compared to the purely repulsive
Lennard—Jones fluid. The binary fluid of two disliking
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components phase separates; this happens at an interac-
tion strength which is roughly half the value of the in-
teraction strength of the order—disorder transition, where
the A-B dimeric liquid forms the liquid lamellar phase.
We did not find any indication for any other ordered fluid
phase for the dimer system. Both from structural analy-
sis and from the observation of fast two—dimensional dif-
fusion, we demonstrated that the lamellar phase is still
fluid; crystallization occurs for stronger interactions. The
diffusion constants of the pure fluid and the one within
layers of dimers are of the same order of magnitude under
same conditions. This establishes that the model at least
satisfies the basic requirements.

The presented version is the most simple variant.
Starting from there, one can generalize the model in a
quite straightforward way, and connect not only two, but
more monomers, as has been done previously [14,16], un-
til one finally arrives at a model for a block copolymer.
A great variety of molecular architectures is thus accessi-
ble. By this, one automatically includes the effects of tail
length and of internal conformational entropy, which of
course controls the effective interaction. How many and
which intramolecular degrees of freedom should be in-
cluded depends on the question under consideration, and
is not obvious, since in part these may rather be incor-
porated by effective (usually density— and temperature
dependent) potentials. This question is far from settled;
within the framework of polymer simulations it is an ac-
tive area of research [36]. As an example for such a gener-
alized model, let us consider surfactants which consist of
an A monomer, followed by four B monomers, and an A
monomer again. In Fig. 17 we show a snapshot configura-
tion of a system of such molecules diluted in an A solvent
(not shown). A bicontinuous phase is stable at the simu-
lated parameter values; however, we have not analyzed
this systematically. This clearly shows that non—trivial
configurations and phases are accessible to our simula-
tion approach. It is also possible, within the framework
of the present class of models, to devise a system where
a single layer, arranged at the interface between A (“wa-
ter”) and B (“oil”) solvent, would exhibit spontaneous
curvature: This is simply achieved by making one of the
types of monomers larger than the other one; note that
the monomer “size” is controlled via the repulsive core
of the interactions. Furthermore, bond bending potentials
and torsional potentials can be introduced. Thus one can
“dress” the model further and further, until one arrives
at a description which is quite similar to a “united atom”
model, at the expense of more and more complicated cal-
culations. In particular, it is possible to construct “hard
rods”, whose liquid—crystalline ordering is mainly driven
by packing. Which kind of model is needed depends very
much on the physical question under consideration; as
a rule of thumb, more and more chemical detail will be
needed the smaller the length scale under consideration
is. For many interesting phenomena, atomistic simulations
will remain indispensable. Our model, on the contrary, is
expected to work best for collective phenomena which oc-
cur on large (mesoscopic or hydrodynamic) length and

time scales, like morphology formation of complex phases,
shear alignment of lamellar structures, etc.
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o| 14 | 15 | w7 | 19 | 2.4

D [339-107° ] 264-107° | 151 -107% | 8.74 - 107° | 0.177 - 107°
Table 1. Pure fluid system diffusion constants for different
values of the potential depth ¢. The value for ¢ = 2.4 must be
considered as an upper bound.

) 1.2 1.4 1.5
Dinplane | 14.5-107% [ 11.9 - 1073 | 9.72 - 1073
Dinter-plane | 1.3 1072 | 0.6 -107® | 0.6 - 1072

Table 2. Diffusion constants for dimeric systems. Djn_plane de-
notes the two—dimensional diffusion constants within a layer in
the lamellar phase. Dinter-plane represents the diffusion perpen-
dicular to the layers. These latter values must be considered
as upper bounds.
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Fig. 1. Pair correlation function for different values of the
potential depth ¢ = 0.0, 0.5, 1.0, 1.5, 2.0. The curve with the
largest oscillations refers to ¢ = 2.0, the one with the smallest
to ¢ = 0.0, i. e. the purely repulsive Lennard—Jones fluid. The
inset shows the corresponding potentials.
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Fig. 2. Histogram of bond lengths for a system of dimers at
p = 0.85, ¢ = 1.5, compared to the pair correlation function
g(r) of a monatomic system at the same state point.
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Fig. 3. Number of Molecular Dynamics steps per particle
(“monomer moves”) per CPU second on two different hard-
ware platforms as indicated in the figure. We study systems of
pure monomers at density p = 0.85 with different ranges of in-
teraction r: Purely repulsive LJ potential (r = 2'/%), attractive
cosine potential for r = 1.5, 2.0, 2.5, and standard LJ potential
cut off at r = 2.5 (lower data points). The cosine potential was
run at strength ¢ = 1.5; the system size was always N = 1000
particles.

gas

fluid

Fig. 4. Qualitative sketch of the expected phase diagram of a
one—component system of monomers in the ¢—pressure plane.
The existence of the gas-liquid line was not proven numerically,
but is strongly expected. All transition lines are of first order;
the gas—liquid line ends in a critical point. Beyond this, there
is only a “fluid” phase where there is no more a difference
between gas and liquid. Furthermore, the diagram shows the
path along which we studied the fluid—solid transition (dashed
line).
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Fig. 5. Hysteresis loop of the density p as a function of the po-
tential depth ¢, at constant pressure P = 1.0, for N = 10000.
The crosses denote the sweep of increasing ¢, the diamonds
decreasing ¢.
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Fig. 6. Mean square displacement for different values of the
potential depth ¢.

S(a)

Fig. 7. Structure factor for systems with different values of the
potential depth ¢ = 1.4 (+), 1.8 (x), 2.0 () and 2.4 (O). Con-
figurations with ¢ < 2.0 exhibit a fluid-like structure, while
systems with higher values definitely show a crystal with fcc
order.
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Fig. 8. Qualitative sketch of the expected phase diagram of a
binary system of pure monomers in the ¢—pressure plane, for
fixed composition. The diagram is partly speculative even with
respect to its topology. The transition line between the mixed
and the unmixed state is of first order, except for the case of
composition 1/2 and liquid, where, due to the symmetry of
the model, the transition is of second order. The dashed line
denotes the path along which we have studied the unmixing
transition (constant volume).
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Fig. 9. Sketch of the unmixing phase diagram in the plane
(¢, Ap), where Ap is the chemical potential difference between
species A and B. The first—order line occurs at Ay = 0, for
reasons of A-B symmetry, and ends at an Ising-like critical
point ¢..
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Fig. 10. Fourth order cumulant ratio for a binary system of
N = 4000 particles in the semi-grandcanonical ensemble at
density p = 0.85 as a function of ¢. The horizontal line indi-
cates the value 0.47, which is the expected critical value for
the 3d Ising universality class.
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Fig. 11. Qualitative sketch of the expected phase diagram
of a system of A-B dimers in the ¢—pressure plane. Again,
the diagram is partly speculative. The dashed line denotes the
path along which we have studied the order—disorder transition
(constant volume). All transition lines are of first order.

Fig. 12. Typical configurations for a potential depth of ¢ =
1.3. The system is composed of 48668 A-B dimers at density
p = 0.85. Left: Aligned lamellae, produced by proper sample
preparation. Right: Lamellar domains, produced by quenching
a disordered system into the ordered phase.
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Fig. 13. Nematic order parameter S as a function of the poten-
tial depth ¢. The plusses denote the way from ¢ = 0 to larger
¢ for the system of N = 97336 particles, the crosses the reverse
direction. The corresponding data for the N = 10000 system
are represented by stars and boxes. The curves are drawn as
guide to the eye.
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Fig. 14. Structure factor of a system of N = 48668 dimers
at p = 0.85, ¢ = 1.3 in the direction of the director, with
¢o = 3.36. Also shown is a curve S(q) o |g — go| *. In order to
improve the statistics, the data include an average over wave
vectors (¢, qy,q:), where z is the layer normal direction, and
only a very small contribution in z and y direction was taken
into account: |¢g-| < 0.01, |¢-| < 0.01.

25 T

n
-
2 5 ]
++
L + ,
1.5 4 tp
= iy
o vy YR Crat
"
! T %*W *ﬁﬁ%ﬁ%ﬁﬁﬁ%
b kS
oY
05 jrr T+ q
0 ‘ ‘ ‘
1 2 3 4
q

Fig. 15. Structure factor of a system of N = 48668 dimers
at p = 0.85, ¢ = 1.3 in the directions perpendicular to the
director.
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Fig. 16. Mean square displacements for different values of the
potential depth ¢, inter—plane and in—plane in comparison.
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Fig. 17. Snapshot of a conformation in the bicontinuous phase
of ABBBBA surfactants (see text), where A monomers are
coded light and B monomers dark. Solvent particles (species
A) are not shown. The surfactant concentration is close to 0.35
and the simulation was carried out at ¢ = 1.3 with N = 27000
particles in total.
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