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A Generi Computer Model for Amphiphili SystemsT. Soddemann a, B. D�unweg, and K. KremerMax Plank Institute for Polymer ResearhAkermannweg 10, D{55128 Mainz, GermanyDeember 4, 2001Abstrat. We present a simple but versatile o�{lattie model for omputer simulation studies of am-phiphili systems, onstruted mainly for the purpose of omputational eÆieny. The surfatant moleulesare modeled as A{B dimers, where unlike speies repel eah other, while idential speies are also subjet toan attration whose strength drives the various ordering phenomena. This latter potential has been tunedfor a good math of interpartile distanes, while its short range failitates fast fore alulations. Themost important properties of the model are investigated by Moleular Dynamis simulation. In partiular,we study the stability of the uid ordered lamellar phase, as well as the unmixing of the binary uid ofpure A and B.PACS. 82.70.Uv Surfatants, miellar solutions, vesiles, lamellae, amphiphili systems { 61.20.Ja Com-puter simulation of liquid struture { 64.70.Md Transitions in liquid rystals { 64.75.+g Solubility, segre-gation, and mixing; phase separation { 61.30.Cz Moleular and mirosopi models and theories of liquidrystal struture { 61.30.Dk Continuum models and theories of liquid rystal struture1 IntrodutionAmphiphiles are an extremely important lass ofmoleules, o�ering numerous appliations, and showing avery rih physial behavior. In a very broad sense, thesemoleules an be viewed as being omposed of two speies(whih we shall denote by A and B), whose interationsare suh that they would show a strong tendeny towardsphase separation. This is however prohibited, sine thetwo speies are hemially linked. Systems of amphiphilesan form omplex morphologies, in order to bring the alikespeies lose to eah other. The details of these morpholo-gies depend on the moleular arhiteture, and on theamount of solvent (i. e. pure A, pure B, or moleules witha high aÆnity towards either A or B, or non{seletivesolvent) [1℄. In ase of symmetri moleules without sol-vent the typial struture is a lamellar phase where thesystem organizes in parallel sheets, with the mean mole-ular axis (the diretor) perpendiular to the sheets, andalternating (from layer to layer) orientation of the meanA ! B vetor. In the language of liquid rystals, suha phase is referred to as a smeti{A phase. For prati-al appliations, the moleules are partiularly importantbeause they enrih at interfaes between A and B or simi-lar moleules, thus drastially reduing the interfaial ten-sion. The most ommon examples are tensides with a hy-drophili \head" and a hydrophobi \tail", whih an bea present address: Johns Hopkins University, Department ofPhysis and Astronomy, 3400 North Charles Street, Baltimore,MD 21218, USA

used as soaps, and biomembranes omposed of lipid bilay-ers. Another very important lass are diblok opolymers,where \head" and \tail" both onsist of a large numberof monomers. The full phase diagram of these systemshas not yet been theoretially explored beyond the mean{�eld level [1℄; this is only one reason why one would like tohave a omputer model available whih mimiks the be-havior of these systems. Beyond the equilibrium struture,the systems also show extremely interesting and not fullyunderstood non{equilibrium phenomena, like shear align-ment of lamellar strutures [2,3℄, the formation of \onion"strutures [4℄, or \asade nuleation" of A droplets ina B phase shielded by amphiphiles under the inueneof ontinuous driving [5{7℄. For investigations onerningthe fundamental mehanisms in these phenomena, atom-isti models are omputationally too expensive, and alsonot needed, sine the basi physis is idential. For manyquestions it is even unimportant to distinguish betweenlow{moleular weight tensides or lipids and blok opoly-mers. Although atomisti simulations an nowadays reahquite impressive length and time sales [8℄, it is never-theless lear that phenomena like shear alignment [2,3℄,whih happen on hydrodynami length and time sales,and require large systems, are out of reah. For this reason,there has been a long tradition of omputer simulationsof models whih oarse{grain the underlying hemistry.Depending on the question under onsideration, di�erentlevels of hemial detail are needed. While \united atom"approahes [9℄ still attempt to ath most hemial fea-tures, other models keep only the most salient features,



2 T. Soddemann, B. D�unweg, and K. Kremer: A Generi Computer Model for Amphiphili Systemsi. e. the tendeny to unmix, the onnetivity, and some-times a skethy representation of the moleular arhite-ture (for example a large asymmetry in the size of \head"and \tail"). This redution in the number of degrees offreedom yields a tremendous omputational speedup; inour work with polymer models we found fators of 104 oreven more [10℄. For a long time, lattie models [11,12℄ havebeen very popular. However, we strongly believe that withnowadays' omputers featuring fast oating point arith-metis, a ontinuum model o�ers pratially the sameomputational eÆieny, while at the same time beingable to muh more easily implement omplex physial sit-uations like shear ow, and avoid lattie artifats (likeunphysially large bending of lamellar sheets, inompati-bility of the natural layer spaing with the lattie onstant,no ontinuous rotation of moleules, et.). The most logi-al hoie are, in essene, standard Lennard{Jones parti-les onneted by springs, and suitably hosen interationsto distinguish A and B. Compared to the \united atom"approah [9℄, substantial amounts of CPU time an besaved by avoiding the ompliated bond{bending terms.Suh models have already suessfully been implementedbefore [13{16℄, and simulations on rather large sales havebeen performed [16℄. Nevertheless, within the lass of thesemodels there is still opportunity for further optimization,whih so far has apparently not been exploited. It is thepurpose of the present paper to �ll this gap. The modelwhih we wish to outline here is in spirit very similar tothat of Ref. [16℄; however, there are some small but im-portant di�erenes. Firstly, we limit the interation rangeto only the nearest{neighbor shell, suh that the numberof fore alulations is redued substantially. Seondly, weuse a more eÆient thermostat, whih allows us to usea time step about twie as large. We estimate that thesetwo improvements make our simulations roughly one orderof magnitude faster. Thirdly, we use the strength of theattrative interation as the temperature{like parameter,while keeping the average kineti energy and the urvatureof the potentials onstant. This is optimal for MoleularDynamis, allowing us to use the same large time stepthroughout in the phase diagram. In the present paper,we wish to outline the simplest prototypi version of suhmodels, and test its behavior (in partiular, phase behav-ior) in simple equilibrium situations where the expetedphysis is lear. Extensions to more ompliated versions,whih mimik the underlying hemistry in a slightly moredetailed way [17℄, and appliations to nontrivial physialsituations, like simulations of shear alignment [18℄, are leftfor future publiations.The paper is organized as follows: In Se. 2 we out-line the reasoning and some of the test runs whih havelead us to the �nal formulation of our model. In Se. 3we desribe the most important properties of the systemas obtained by simulations, in partiular its phase behav-ior, demonstrating that it is indeed useful for the desiredpurpose. Finally, we onlude in Se. 4.

2 Development of the Model2.1 InterationsThe basi ingredients of our model are partiles whihinterat through spherially symmetri potentials. Thesepotentials should be ontinuous, in order to failitate astandard Moleular Dynamis proedure like the Verletalgorithm [19℄, and short{ranged, in order to keep thenumber of fore alulations at a minimum. A onvenienthoie for this is a Lennard{Jones (LJ) potential that istrunated at the minimum, and shifted:ULJ = 8<:4� ���r �12 � ��r �6 + 14� r � 21=6�0 r � 21=6� : (1)This potential has found widespread appliations for thesimulation of bead{spring models for polymers [20,21℄.Here, � sets the energy sale and � the length sale. We willheneforth use Lennard{Jones units where � = � = 1; themass m of the partiles is also set to unity, suh that timeis measured in units of � = (�2m=�)1=2. A typial densesystem is haraterized by a partile density of � = 0:85,and temperature kBT = 1. This dense repulsive Lennard{Jones uid will be the referene system from whih weonstrut our model. The pair orrelation funtion (PCF)g(r), i. e. the normalized density{density orrelation fun-tion, with g(r)! 1 for r !1, is shown in Fig. 1 for thisLJ uid.As a minimal model for amphiphili moleules, we justonsider dimers of di�erent speies. From the polymer sim-ulations it is known that it is omputationally eÆient tolink the dimers via anharmoni FENE (\�nitely extensi-ble nonlinear elasti") springs with spring onstant k andmaximum extension R0:UFENE =8><>:� 12kR20 ln"1�� rR0�2# r < R01 r � R0 : (2)While for the polymer simulations usually the valuesk = 30 and R0 = 1:5 are used [20℄, we here use a some-what weaker attration, k = 5, R0 = 2. The reason isthat we wish to adjust the typial bond length to thetypial interpartile distane in the dense Lennard{Jonesuid (rather lose to 21=6, see Fig. 1). By this math wemake sure that the model will also allow for an ensemblewhere the onnetivity is not �xed, but the bonds are re-ated and deleted between monomers. If the length saleswould not �t, attempts of suh proesses would muh toofrequently be rejeted [17℄. Another important aspet ofusing an inreased bond length is the enlarged softness ofa layer with respet to shear: The longer the bonds are,the more freedom they have to be tilted with respet tothe layer normal, while still avoiding strong intra{layerontats between unlike speies.Furthermore, the model needs to inlude di�erent in-terations between A and B partiles, in order to distigu-ish them and drive the tendeny towards phase separation.



T. Soddemann, B. D�unweg, and K. Kremer: A Generi Computer Model for Amphiphili Systems 3The simplest model has idential interations for A{A andfor B{B ontats, while an A{B ontat is more repulsive,or less attrative, and thus unfavorable. Ideally, one wouldlike to do this via repulsive potentials only, for exampleby inreasing the prefator in Eq. 1 for A{B ontats,the advantage being twofold: Firstly, one would stik toa very short interation range, and thus to few fore al-ulations, and seondly the system would not exhibit agas{liquid transition, whih is not of interest per se, andwould only introdue an unwanted ompliation into thesystem. Atually, this approah has been very suessfulto model the phase separation of polymer blends, and themirophase separation of blok opolymers [22℄. In thatase, however, a very small di�erene in the interationis already suÆient to drive the phase transition, as thepolymerization strongly redues the translational entropy,resulting in T / N , where T is the ritial tempera-ture, and N the degree of polymerization. Conversely, ourlow{moleular weight system would need a quite strongrepulsion between A and B in order to aess phase sep-aration. Note that it is omputationally more eÆient tovary the interation strength to drive the phase transi-tion, rather than the temperature | the potentials areoptimized suh that the Moleular Dynamis, with its in-terplay between potential energy and kineti energy, runsbest for kBT = 1. Tests have then shown that atually avery strong repulsion would be needed, requiring a verysmall time step, whih again is ineÆient. For this reason,we have resorted to the seond hoie, and inluded anattrative tail between the A{A pairs and the B{B pairs,while the A{B ontats are just subjet to the purely re-pulsive Lennard{Jones potential.For the hoie of the attrative tail, the following on-siderations for this �rst version of our model are impor-tant: (i) In the general spirit of a minimal model, wewant to avoid the presene of several moleular lengthsales, whih might lead to ompetition, frustration, et.So we want that the typial interpartile distane is thesame for A{A, B{B, and A{B bonds. In other words: Theadditional attrative tail should not substantially distortthe pair orrelation funtion g(r) of the original repulsiveLennard{Jones uid, at least with respet to the positionsof the maxima and minima. Guided by the same idea, wehad already adjusted the parameters of the bond poten-tial, Eq. 2. (ii) The tail should be rather short{ranged, forreasons of eÆieny. (iii) In order to avoid instabilities inMoleular Dynamis simulations, the potential should beontinuous, and have ontinuous �rst derivatives.For these reasons, the potential should remain un-hanged for 0 < r < 21=6, while the attrative tail shouldreah from r = 21=6 to the �rst minimum of g(r) (whihours roughly at r = 1:5, as seen from Fig. 1), suhthat only the �rst neighbor shell is inluded in the in-teration. Suh a potential will then of ourse allow for agas{liquid transition, and, as a potential ompliation, fa-vor rystallization into an f struture, sine any frustra-tion e�ets between length sales have been deliberatelyavoided. These issues will be onsidered in the next setionin more detail. The tail should thus have zero derivative

at r = 21=6 and at r = 1:5, while it should have the valueszero at r = 1:5, and �� at r = 21=6, where � is the depthof the attrative part, and is used by us as the independentparameter by whih we drive the system into the orderedphase. Using a shifted osine wave in r2, one thus obtainsULJos = 8>>>>>><>>>>>>:4"�1r�12 ��1r�6 + 14#� � r � 21=612� �os(�r2 + �)� 1� 21=6 � r � 1:50 r � 1:5 ;(3)where � and � are determined as the solutions of the linearset of equations 21=3�+ � = � (4)2:25�+ � = 2�; (5)i. e. � = 3:1730728678 and � = �0:85622864544.As an alternative, we also tried a third{order polyno-mial in r2, Up=� = A+ r2(B + r2(C + r2D)); (6)where the same requirements yield A = 7:979574673, B =�17:52538691, C = 10:84948485, D = �2:060727237.However, in benhmarks we found that this potential isonly a few perent faster than the osine version, thereason being that the trigonometri funtions are imple-mented as fast hardware instrutions on the proessors weused (Compaq Alpha EV5, EV56, EV6, EV67, and IntelPentium II and III). We therefore kept the original ver-sion, Eq. 3. All results that follow will exlusively refer tothis potential.Figure 1 shows the resulting g(r) of a monomer uidof N = 10000 partiles who are all subjet to ULJos.While � = 0 is the original repulsive Lennard{Jones uid,the amplitude is systematially inreasing with �. How-ever, the position of the maxima and minima is nearlyunhanged, as desired. � = 2:0 is lose to the uid{solidtransition (see below).Figure 2 ompares g(r) to the bond lengths whih re-sult from the FENE potential, Eq. 2, at a typial statepoint � = 1:5. It is seen that also these lengths mathquite niely.2.2 Computational DetailsThe simulation method we apply is Moleular Dynamis(MD). For the basis of MD we refer the reader to Refs.[19,23℄. For stabilization purposes, we use a Langevin ther-mostat [24℄. The equations of motion are given bym�ri = �riU � � _ri;+Wi(t) (7)where the frition oeÆient � and the strength of therandom noise Wi(t) are related via the utuation dissi-pation theorem:hWi(t) �Wj(t0)i = 6kBT�ÆijÆ(t� t0): (8)



4 T. Soddemann, B. D�unweg, and K. Kremer: A Generi Computer Model for Amphiphili SystemsU denotes the sum over all interations of the bead i, andthe temperature is always �xed at the value kBT = 1:0.The equations of motion are integrated by using a veloityVerlet updating sheme [19℄. The simulations were arriedout in the onstant volume (NVT) as well as in the on-stant pressure (NPT) ensemble. For the NPT ensemblesimulation a modi�ed veloity Verlet algorithm was used,and the \box" degree of freedom oupled to a Langevinheat bath as well [25℄. The time step used in the simu-lation was �t = 0:01. The frition onstant is set to thesmall value � = 0:5, thus ensuring that our dynamis isnot too far away from the Hamiltonian limit. For a reason-able hoie of parameters for the NPT ensemble, see Ref.[25℄. The simulation box was always ubi with periodiboundary onditions. We used a highly optimized domaindeomposition sheme in order to run the simulations inparallel on a Cray T3E. For more details of this algorithm,we refer the reader to Ref. [26℄.Figure 3 shows that indeed the strategy of on�ningthe interation range to the �rst neighbor shell pays o� interms of omputational eÆieny: While the purely repul-sive system is learly by far the fastest, we only lose a fa-tor of two in speed when inreasing the interation rangeto 1:5. If we would have used the \anonial" interationrange 2:5, then the loss would rather be a fator of eight.Although modern omputers are fairly fast, this speedupis nevertheless of importane for the large system sizeswhih are needed to study, for example, non{equilibriumphenomena in shear ow.We also augmented our algorithm by Monte Carlo(MC) moves. Firstly, in order to study the unmixing ofunlike monomers (just a binary uid, with no onne-tivity potential), we used a semi{grandanonial ensem-ble where the total number of partiles is �xed, whilethe fration of A (or B) partiles is allowed to utuate,suh that the hemial potential di�erene �� is beingheld �xed. For symmetry reasons, the unmixing ours at�� = 0. The utuations in omposition are then faili-tated via stohasti \ips", whih an hange an A partileto a B partile, or vie versa [22℄. This was implementedvia a simple single spin ip algorithm using the standardMetropolis [27℄ riterion.Seondly, one might also think about the analogousproedure for a system of dimers: An A-B dimer is\ipped" to a B-A dimer, or vie versa. Suh a shemewould ertainly somewhat speed up the equilibration whena lamellar struture is formed. Nevertheless, we have notimplemneted these moves, sine they would have requiredsubstantial ommuniation in our parallel program. Itsdata struture builds diretly on that of Ref. [26℄, wherethe elementary units are the monomers, suh that a dimeran be rossing proessor boundaries. Furthermore, oneshould note that these dimer ips are far less impor-tant than the spin ips in the binary uid: An unmixingsystem without the MC proedure would exhibit a on-served order parameter and hene \hydrodynami slow-ing down", i. e. the neessity of transport over maro-sopi distanes. Conversely, in the ase of the formationof a lamellar struture, the order parameter is not on-

served, suh that only loal rearrangements are neessary.A fully grand{anonial sheme, in whih the onentra-tion of eah speies, inluding the amphiphiles, is on-trolled via hemial potentials, is urrently being devel-oped [17℄. This approah is expeted to be very useful forbinary and ternary systems of solvent(s) and amphiphiles.3 Simulation Results3.1 Idential MonomersThe simplest system to study onsists of identialmonomers only. Figure 4 gives a rough sketh of the ex-peted phase diagram in the (�; P ){plane, P denoting thepressure. Both a gas{liquid transition as well as a uid{solid transition are expeted, although the gas{liquid tran-sition must not neessarily our [28℄. Sine we are mainlyinterested in the behavior at densities near the typialvalue � = 0:85, we have not attempted to answer thisquestion and map out the phase diagram as a whole. Werather restrited ourselves to varying � at onstant pres-sure P = 1:0; previous test runs had shown that this isa typial pressure for a dimer system at the typial highdensity near the order{disorder transition (ODT), see be-low. Our results indiate that along this hosen path onlya uid{solid transition ours.This transition was loated by obtaining a hysteresisloop of the density as a funtion of �, for a system ofN = 10000 partiles; this large system size was neessaryin order to obtain good auray in the metastable states.We started in the uid phase and inreased � systemati-ally, until a jump in the density was observed, after whihwe swept bak. The �nal on�guration of the previous runwas always used as initial on�guration for the next �value; the data were always taken over suÆiently shortruns suh that no jumping bak and forth between the o-existing phases was observed. Figure 5 shows the resultinghysteresis loop. We did not attempt to loate the uid{solid transition very aurately (this would have requiredthermodynami integration or �nite{size saling [29℄), butit is quite lear that it ours for 1:4 < � < 1:8. Therefore,the simulations of the amphiphili systems should learlyavoid suh large � values.The solid phase is further haraterized by a stronglyredued di�usion. Figure 6 shows the mean square dis-plaement (MSD) of a single partile as a funtion of timefor di�erent � values along the path we had studied. Tothis end we simulated an N = 500 partile system in theNVT ensemble, starting o� from the �nal on�gurationsof the orresponding NPT run. The di�usion onstant isextrated from the long{time behavior via the Einsteinrelation in d spatial dimensions (here d = 3)D = limt!1 12dth(r(t)� r(0))2i; (9)resulting in the values given in Table 1. Note that themean square displaement has to be measured in theenter{of{mass referene frame of the overall system,



T. Soddemann, B. D�unweg, and K. Kremer: A Generi Computer Model for Amphiphili Systems 5whih di�uses as well. While di�usive behavior is observedwithout any problems in the uid phase, it turns out thatat the state point in the solid phase (� = 2:4) the mobil-ity is atually so small that we were unable to observe theleaving of the loal \age" on the time sale of our simula-tion; hene we are only able to give an upper bound for thedi�usion onstant there. Moreover, it should be noted thatthe data for � = 1:9 orrespond to a metastable uid; therun whih produed these data was substantially shorterthan the orresponding run for Fig. 5, suh that the sys-tem did not have enough time to go into the solid phase.Details of the rystal struture are revealed by thestati struture fator S(q), whih we show in Fig. 7 for� = 2:4 in omparison to � = 1:4; 1:8; 2:0 in the liquidstate for an N = 10000 system along the path studied.One learly sees a muh more pronouned struture withlong{range order. The position of the peaks is ompati-ble with an f rystal [30℄. Moreover, a determination ofthe number of nearest neighbors via integration over the�rst peak of g(r) yields the value 12, as expeted for thef struture. � = 2:0 is still a metastable liquid (again,these data were taken from a muh shorter run than thosefor Fig. 5), as seen from the density. Here the �rst maxi-mum of S(q) has a value of roughly 3:5, learly above 2:8,whih, aording to the empirial Hansen{Verlet riterion[31℄, should mark the onset of rystallization.3.2 Binary MixtureFor a system whih ontains rather two di�erent speiesA and B, the phase behavior beomes more ompliated,sine at large values of � the two speies will unmix(marophase separation, MPS). The qualitative phase dia-gram whih we expet is drawn in Fig. 8. We have studiedMPS in the semi{grandanonial ensemble for a systemat �xed density � = 0:85 as a funtion of �. This situa-tion is qualitatively depited in Fig. 9. It is partiularlyimportant to know if the MPS ours for smaller � thanrystallization | otherwise no uid phase in the unmixedstate would exist, and it would be quite unlikely that adimer system exhibits a uid lamellar phase.The order parameter is given by m = NA � NB andan vary from �N to +N . Aording to the usual the-ory of �nite{size saling [29℄, the standard umulant ratio1�hm4i=(3 hm2i2), plotted as a funtion of � for di�erentsystem sizes, should interset at one point whih is a verygood estimate for �. Sine atually the value of the ratioat the intersetion point is known (it depends only on theuniversality lass and assumes the value 0.47 for the aseof three{dimensional Ising{like ritial behavior [32℄), wehave only studied a single system size N = 4000, with avery long run. The resulting umulant ratio is plotted inFig. 10, from whih we an roughly estimate � = 0:65,whih is fortunately far below the uid{solid transition.One should expet that the ODT for a dimer system willour at a somewhat higher � value. The reason is rathersimple: Compared to the formation of a lamellar phase,unmixing is muh more eÆient in removing internal in-terfaes. Therefore the ODT has a weaker driving fore

and hene needs a stronger oupling. For this reason, itmust be heked if the ODT ours before rystallization.3.3 Dimeri SystemsA system of A{B dimers allows for three independent or-der parameters within the liquid phase. First of all, themoleules an orient along a spontaneously seleted axis(the diretor), without distinguishing between A and B.If no additional ordering would our, then suh a phasewould be nemati. Nemati ordering is measured via thesymmetri and traeless Saupe tensor [33℄Qij = 32 �r̂ir̂j � 13Æij� ; (10)where i and j are Cartesian indies, Æij is the Kronekersymbol, and r̂ denotes a unit vetor along the moleu-lar axis. In the isotropi phase the volume average (orensemble average) of Qij is identially zero, while inthe uniaxial nemati phase Qij has the three eigenval-ues (S;�S=2;�S=2), where S > 0 is the nemati orderparameter, whih at most an assume the value S = 1orresponding to the perfetly ordered state. In our sim-ulation, we measured, at any partiular time, the volumeaverage of Qij and determined the largest eigenvalue. Thetime average of these de�nes the numerial estimate forS. Furthermore, there an be breaking of translationalinvariane and the formation of a smeti phase. In asmeti{A phase, the sheets are perpendiular to the di-retor. This an be measured by studying the density{density orrelation funtion (or the struture fator) alongthe diretor, where it exhibits quasi long{range order [34℄,and perpendiular to it, where the struture is uid{like.Finally, there an also be an orientation of the A{Bmoleules along the diretor axis n̂: The vetor from A toB an either point with idential probabilities in the dire-tion +n̂ and�n̂ (disordered state), or prefer one partiulardiretion (ordered state).For our system, there are only two uid phases present:The disordered phase, where all order parameters vanish,and the lamellar phase, in whih all three order parametersare nonzero. Further uid phases, whih are theoretiallypossible (i. e. not prohibited by fundamental symmetryarguments), like a disordered smeti or nemati phase,or an oriented nemati phase, are not expeted for oursystem, and they have not been observed. The expetedqualitative phase diagram is thus shown in Fig. 11, wherewe also show the path along whih we have studied theorder{disorder transition at onstant volume and onstantnumber of dimers.It is lear that the ODT must be of �rst order, sinealready nemati ordering enfores �rst{order behavior, asis known from symmetry analysis and Landau{deGennestheory [33℄. There is thus a slight problem with study-ing the ODT in the onstant{volume ensemble: Stritlyspoken, one must expet that the isotropi and lamellar



6 T. Soddemann, B. D�unweg, and K. Kremer: A Generi Computer Model for Amphiphili Systemsphases have di�erent densities at oexistene, and there-fore phase separation (i. e. unmixing of the isotropi andthe lamellar phase) must our. However, it is expetedthat the density di�erene is so small that the phases willnot unmix unless the system is extremely large: For a smallsystem, the free energy penalty of introduing an inter-fae into the system will outweigh the bulk free energygain obtained from phase separation. Indeed, we hekedthat both oexisting phases, whih we found via hysteresisloops for S (see below), have roughly the same pressureat the same state point. This shows that the approahis onsistent within our numerial resolution. For high{auray studies however, this issue must be kept in mind.The onstant{pressure ensemble was not used sine it isomputationally more expensive and less easy to handle.Another ritiism against the onstant{volume ensem-ble is the inompatibility of the linear box size L withthe smeti layer spaing d. However, when the systembeomes large, then this distortion beomes small. Fur-thermore, one has to take into aount that the layersan rotate with respet to the box, and this allows fornon{integer ratios L=d: The periodi boundary onditionsenfore that there must be integers mx, my, and mz suhthat the layer spaing in x diretion is L=mx (for the y andz diretions analogously). If the origin of the oordinatesystem is in the �rst layer, then the seond layer is givenby n̂ �r = d, where n̂ is the diretor unit vetor. This equa-tion must therefore hold spei�ally for r = (L=mx; 0; 0),and thus n̂x = (d=L)mx (for y and z analogously). Nor-malization of n̂ thus implies L=d =qm2x +m2y +m2z, i. e.any ratio that an be represented in this form is permitted,and the system will hoose the numbersmx,my andmz tominimize the deviation from the optimum layer spaing.For Fig. 12, whih shows a typial on�guration deep inthe lamellar phase, we �rst had measured the sheet thik-ness and then adjusted the system size in order to �t thesheets niely (L=d integer). We therefore study a systemnot of 100000 monomers, but rather N = �d3(L=d)3 =97336. One easily obtains a nie lamellar phase whih ex-tends over the whole sample if the simulation is startedin an ordered state. Suh a on�guration is shown in theleft part. Conversely, if the system is quenhed from thedisordered state, the system �rst develops a multi{domainstruture, as shown in the right part. Suh a on�gurationthen relaxes very slowly into the true equilibrium state, byannealing the domain walls. Figure 13 shows the hystere-sis loop in the nemati order parameter S for this system.Eah state point was observed for 2000 LJ time units;the branh in the ordered phase was obtained by simulat-ing a system whih was originally prepared in a perfetlyordered state. The data orresponding to the disorderedbranh at intermediate S values orrespond to time aver-ages over the slow relaxation proess of domain annealingand are hene not true equilibrium averages. The ODT isthus loalized at roughly � = 1:2. This result oinideswith a simulation of a smaller system N = 10000 whihwas run under onstant pressure onditions P = 1:0 (starsand boxes in Fig. 13).

The important point is that the ODT ours at asmaller � value than what we found previously for rystal-lization of the monomer system. Hene one should expetthat the observed lamellar phase is indeed uid, whih isneessary for our model to be useful for real amphiphilisystems. To establish that this is true, we have studiedthe struture fator in the diretion of, and perpendiularto, the diretor, plus the single partile dynamis in bothdiretions.The struture fator measured in the diretion of thediretor should exhibit power{law singularities at q = nq0,where n = 1; 2; : : : and q0 = 2�=d, where d is the layerspaing [34℄: S(q) / jq � nq0j�2+n2� , where � > 0 isnon{universal and depends on the elasti onstants. Fig-ure 14, showing the n = 1 peak, exhibits this behaviorquite niely; the drawn urve is for q0 = 3:36 (i. e. alayer spaing d = 1:87) and � = 0. The value of � forour system is rather small ompared to two, und thus wefound that our system size and statistial auray wereinsuÆient to determine a meaningful number. Atually,the data are ompatible with any value of � in the range�0:3 � � � 0:2. A rather small value of � is quite typ-ial for analogous experimental systems [35℄. The stru-ture fator in the diretions perpendiular to the diretorlearly shows uid struture, as expeted (see Fig. 15).Finally, the liquid rystalline behavior also learly showsup in the anisotropy of the dynamis, see Fig. 16: Whilethe in{plane di�usion (measured via the mean square dis-plaement in the diretions perpendiular to the diretor)is nearly unhindered, with quite similar behavior as in theliquid phase of the monomers, the inter{plane di�usion isstrongly redued, similar to the behavior in the monomerrystal. The resulting di�usion onstants are listed in Ta-ble 2, where again the values for inter{plane di�usion areupper bounds only.4 Conlusions and OutlookWe have introdued a new simple ontinuum simulationmodel for the investigation of amphiphili and opoly-meri systems. This model, or rather straightforward gen-eralizations of it, is apable of reproduing many essen-tial physial harateristis in the targeted area of inter-est. Compared to previous generi ontinuum models [13{16℄ our new model o�ers important tehnial advantages:All interations are short ranged; therefore the numberof interating pairs is relatively small, resulting in goodomputational eÆieny. We estimate this improvementto be roughly an order of magnitude. Furthermore, ourapproah of varying the strength of the attrative inter-ation as the temperature{like variable, while keeping ki-neti energy and urvature of the potential onstant, isideally suited for MD, sine a broad range of \tempera-tures" an be sanned without the need to use a smallertime step.The struture of the monomeri uid is hardly a�etedby the attrative tail ompared to the purely repulsiveLennard{Jones uid. The binary uid of two disliking



T. Soddemann, B. D�unweg, and K. Kremer: A Generi Computer Model for Amphiphili Systems 7omponents phase separates; this happens at an intera-tion strength whih is roughly half the value of the in-teration strength of the order{disorder transition, wherethe A{B dimeri liquid forms the liquid lamellar phase.We did not �nd any indiation for any other ordered uidphase for the dimer system. Both from strutural analy-sis and from the observation of fast two{dimensional dif-fusion, we demonstrated that the lamellar phase is stilluid; rystallization ours for stronger interations. Thedi�usion onstants of the pure uid and the one withinlayers of dimers are of the same order of magnitude undersame onditions. This establishes that the model at leastsatis�es the basi requirements.The presented version is the most simple variant.Starting from there, one an generalize the model in aquite straightforward way, and onnet not only two, butmore monomers, as has been done previously [14,16℄, un-til one �nally arrives at a model for a blok opolymer.A great variety of moleular arhitetures is thus aessi-ble. By this, one automatially inludes the e�ets of taillength and of internal onformational entropy, whih ofourse ontrols the e�etive interation. How many andwhih intramoleular degrees of freedom should be in-luded depends on the question under onsideration, andis not obvious, sine in part these may rather be inor-porated by e�etive (usually density{ and temperaturedependent) potentials. This question is far from settled;within the framework of polymer simulations it is an a-tive area of researh [36℄. As an example for suh a gener-alized model, let us onsider surfatants whih onsist ofan A monomer, followed by four B monomers, and an Amonomer again. In Fig. 17 we show a snapshot on�gura-tion of a system of suh moleules diluted in an A solvent(not shown). A biontinuous phase is stable at the simu-lated parameter values; however, we have not analyzedthis systematially. This learly shows that non{trivialon�gurations and phases are aessible to our simula-tion approah. It is also possible, within the frameworkof the present lass of models, to devise a system wherea single layer, arranged at the interfae between A (\wa-ter") and B (\oil") solvent, would exhibit spontaneousurvature: This is simply ahieved by making one of thetypes of monomers larger than the other one; note thatthe monomer \size" is ontrolled via the repulsive oreof the interations. Furthermore, bond bending potentialsand torsional potentials an be introdued. Thus one an\dress" the model further and further, until one arrivesat a desription whih is quite similar to a \united atom"model, at the expense of more and more ompliated al-ulations. In partiular, it is possible to onstrut \hardrods", whose liquid{rystalline ordering is mainly drivenby paking. Whih kind of model is needed depends verymuh on the physial question under onsideration; asa rule of thumb, more and more hemial detail will beneeded the smaller the length sale under onsiderationis. For many interesting phenomena, atomisti simulationswill remain indispensable. Our model, on the ontrary, isexpeted to work best for olletive phenomena whih o-ur on large (mesosopi or hydrodynami) length and
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T. Soddemann, B. D�unweg, and K. Kremer: A Generi Computer Model for Amphiphili Systems 9� 1.4 1.5 1.7 1.9 2.4D 33:9 � 10�3 26:4 � 10�3 15:1 � 10�3 8:74 � 10�3 0:177 � 10�3Table 1. Pure uid system di�usion onstants for di�erentvalues of the potential depth �. The value for � = 2:4 must beonsidered as an upper bound.
� 1.2 1.4 1.5Din-plane 14:5 � 10�3 11:9 � 10�3 9:72 � 10�3Dinter-plane 1:3 � 10�3 0:6 � 10�3 0:6 � 10�3Table 2. Di�usion onstants for dimeri systems. Din-plane de-notes the two{dimensional di�usion onstants within a layer inthe lamellar phase. Dinter-plane represents the di�usion perpen-diular to the layers. These latter values must be onsideredas upper bounds.
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Fig. 17. Snapshot of a onformation in the biontinuous phaseof ABBBBA surfatants (see text), where A monomers areoded light and B monomers dark. Solvent partiles (speiesA) are not shown. The surfatant onentration is lose to 0.35and the simulation was arried out at � = 1:3 with N = 27000partiles in total.


