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High-precision estimate of the hydrodynamic radius for self-avoiding walks
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The universal asymptotic amplitude ratio between the gyration radius and the hydrodynamic radius of self-
avoiding walks is estimated by high-resolution Monte Carlo simulations. By studying chains of length of up to
N = 2% ~ 34 x 10° monomers, we find that the ratio takes the value Rg/Ry = 1.5803940(45), which is several
orders of magnitude more accurate than the previous state of the art. This is facilitated by a sampling scheme
which is quite general and which allows for the efficient estimation of averages of a large class of observables.
The competing corrections to scaling for the hydrodynamic radius are clearly discernible. We also find improved
estimates for other universal properties that measure the chain dimension. In particular, a method of analysis
which eliminates the leading correction to scaling results in a highly accurate estimate for the Flory exponent of

v = 0.58759700(40).
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I. INTRODUCTION

A few years ago [1,2], one of the present authors demon-
strated significant progress in calculating universal properties
of self-avoiding walks (SAWSs) [3] on a lattice, which is the
standard model to describe the static equilibrium properties of
isolated polymer chains in good solvent. These advances were
made possible through the use of a recursive data structure
called the SAW-tree, which allows for very fast checking of
self-overlaps in Monte Carlo (MC) simulations based upon
the pivot algorithm [4-7], such that chains with up to N =
34 x 10° monomers (repeat units) could be studied. Universal
quantities that are accessible include critical exponents such as
the Flory exponent v = 0.587597(7) [1], which connects the
mean polymer size R with the degree of polymerization N via
the scaling law R o« bN", where b is the typical monomer size,
and universal amplitude ratios such as the ratio of two different
ways to define the size of the coil. The two most popular
measures are the mean squared radius of gyration, (Ré),
and the mean squared end-to-end distance, (R{). Denoting
the coordinates of the monomers by 7, i =1,...,N, the
corresponding observables are defined as
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In the limit of infinite chain length, Ref. [1] found the universal
ratio limN%oo(Ré)/(Ré) ~ 6.254.

Besides R and R, the hydrodynamic radius is a third
important measure of the coil dimension, which is measured
in dynamic light scattering experiments [8]. The inverse
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hydrodynamic radius is defined as
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with corresponding mean value (Rﬁl). This gives rise to

another interesting amplitude ratio, (Ré)l/ 2(RI; 1y, which is a
universal constant in the limit of infinitely long chains that we
denote as Rg/ Ry by abuse of notation. In the present paper we
will utilize the efficient algorithm of Refs. [1,2] to accurately
calculate this universal quantity.

Only two recent high-resolution simulation studies have
attempted to calculate the asymptotic ratio Rg/ Ry with good
accuracy: Dinweg et al. [9] find a value Rg/Ry = 1.591(7),
while Caracciolo et al. [10] quote Rg/Ry = 1.581(1). These
values are compatible with each other and also agree nicely
with the prediction of renormalization-group calculations [11],
Rg/Ry ~ 1.595. Mansfield and Douglas [12] have recently
calculated the hydrodynamic radius in the infinite-chain length
limit. However, while we calculate R;;' according to the
definition in Eq. (4), they define a related quantity Rjj (which
is an expectation value) via the Stokes-Einstein relation

D= kB_T, (6)

6w R}
where D is the translational diffusion coefficient of the
molecule in infinitely diluted solution, kg is the Boltzmann
constant, T is the absolute temperature, and 7 is the solvent
viscosity. Ry "according to Eq. (4) gives rise to the short-time
(or Kirkwood) approximation to the diffusivity, while the true
long-time value differs somewhat from the Kirkwood value
[12-14]. Therefore their result is not directly comparable with
ours. It will be shown that the present study has been able to
obtain (Ry !y according to Eq. (4) with substantially increased
accuracy, and our estimate, Rg/ Ry = 1.5803940(45), is again

in good agreement with Refs. [9,10].

A crucial aspect of the analysis of MC data is the
observation that such simulations necessarily deal with
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finite chains of length N, while the abovementioned values for
the universal numbers hold in the asymptotic limit N — oo.
For this reason, a good understanding of the finite-chain-length
effects (or corrections to scaling) is imperative for a correct
and meaningful extrapolation. This is particularly true for the
hydrodynamic radius since the corrections to scaling are very
strong [9,10,12]. While for (R%) and (R) the corrections are
given by [1]

(RZ) = DGN* (1 +agN™ +---), (7)

(RE) = DeN¥(1 + agN =21 4 ...), (8)

where the correction-to-scaling exponent A; =~ 0.53 [1], the
hydrodynamic radius has an additional correction of order
N~U=Y)_ with an exponent that is fairly close to A1, but which
will ultimately be the dominant correction:

(Ri')=DuN""(1 +auN~" +byN~ """+ ... ) (9)

here Dg, Dg, Dy, ag, ag, ay, by are nonuniversal ampli-
tudes. The origin of the N~U=") term has been discussed in
detail in Ref. [9]. These arguments shall not be repeated here;
we rather refer the interested reader to that paper.

It turns out that the Monte Carlo sampling of Ry ! with
the algorithm of Refs. [1,2] is somewhat more tricky than one
might expect at first glance. The reason for that problem is
intricately related to the underlying recursive data structure,
and it will be outlined in Sec. II. We have found a solution
to the problem by inventing a sampling strategy, which will
be elucidated in Sec. III. We then proceed in Sec. IV by
outlining computational details of our study. In Sec. V we
analyze our data and present a summary of results, including
our estimate for Rg/Ry and a much improved estimate for
v obtained by eliminating the leading correction to scaling.
Our simulations are more accurate than those of Ref. [1] and
hence allow us to also present improved estimates for the
universal amplitude ratio limy_,oo(R3)/(RE) = Dg/Dg and
A. Finally, we conclude in Sec. VI.

II. THE COMPUTATIONAL CHALLENGE

For our polymer simulations we utilize the pivot algorithm
[4,5], which is the most powerful known method for sampling
self-avoiding walks at fixed length. For SAWs on the simple
cubic lattice with N monomers, the probability of a pivot move
being successful decays as N~7 with p & 0.11. The standard
hash table implementation [5] then requires mean processing
time O(N) to generate an essentially new configuration with
respect to global observables such as Ré. Recent algorithmic
improvements [1,2,7] have further increased the relative
advantage of the pivot algorithm over other methods. We
utilize the SAW-tree data structure of Ref. [2] which allows
us to perform pivot moves for an N-step SAW in mean
processing time O(log N), resulting in mean processing time
O(N? log N) to generate an essentially new configuration with
respect to global observables.

The main ingredient of this implementation is a binary
tree data structure that recursively decomposes a chain into
subchains of decreasing length, until finally the monomer level
is reached. Each node on the tree stores aggregate information
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about its respective subchain, such as the coordinates of
its center of mass, its end-to-end vector, its squared radius
of gyration, and its bounding box (the smallest rectangular
parallelepiped aligned with the lattice that completely encloses
the subchain). Each geometric object within a bounding box
is stored not in terms of absolute coordinates but rather in
terms of coordinates relative to the origin and the orientation
of the box. Now, a pivot move will always mean that a
geometric transformation (combination of rotation, reflection,
and translation) is applied to some monomers. Instead of
moving all these monomers individually, the algorithm just
moves those bounding boxes that need to be moved. Some
bounding boxes will be big, some small, but the algorithm
will always pick those boxes that are as big as possible. For
example, in the simple case that the algorithm happens to just
move the monomers number 1,2,...,N/2, only one single
bounding box, corresponding to these monomers, is being
transformed. Because of the storing of relative coordinates, all
the data within such a box can be left as is and do not need to
be updated. In other words, the algorithm always attempts to
work at the highest possible levels of the tree and to avoid the
data-intensive low levels as much as possible. Furthermore,
since the coordinates of a box are known both from the
outside and from the inside, this information makes it possible
to recursively retrieve, starting from the top, the absolute
coordinates of any geometric object if they are needed.

After a node has been updated, it needs to pass information
to its higher-level node. For example, the end-to-end vector,
the center of mass, and the gyration radius at the higher level
will be changed, and so will be the bounding box. From there
this passing will be done recursively all the way to the very top.
However, information passing to lower levels is not needed,
and this is what makes the method fast. It can thus be shown
that the number of nodes that need to be updated is O(log N).
The check for overlaps can also be done with average case
O(log N) computational complexity. The crucial observation
is here that if two bounding boxes do not overlap, then this is
also true for all monomers that they contain. Only in case of
box overlap further investigation is needed, and this is again
done in a top-down recursive fashion.

It is also clear that the evaluation of the end-to-end vector
and of the center of mass are compatible with that approach.
The end-to-end vector of a subchain that is decomposed into
two sub-subchains is the sum of the end-to-end vectors of those
sub-subchains, and therefore it is sufficient to pass information
just to the higher-level node. Exactly the same statement holds
for the center of mass, where instead of a sum we have an
appropriately weighted average.

Although the method is slightly less obvious, the gyration
radius may also be calculated in such a recursive fashion, as
a few lines of straightforward algebra show that the following
decomposition holds:

N, > "
RS ZF{Rél + [Rewn — Reml*}
N, N S
+ W{Ré2+ |Revz — Reml*} (10)

Here RZ is the squared gyration radius of the subchain with N
monomers, while RZ, and RZ, are the corresponding squared
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gyration radii of the two sub-subchains, with N; and N,
monomers, respectively, while 13CM is the center of mass of
the subchain, and I_écwu, I_éCMZ are the corresponding centers
of mass of the sub-subchains. Thus, Eq. (10) allows us to
calculate the gyration radius recursively as well.

However, the hydrodynamic radius is an observable that
cannot be decomposed into subobservables of subchains.
The reason is that Ry;' involves interactions between distinct
monomers and cannot be written in a form that involves only
one-body terms (meaning that only sums of the form ), ...
occur, but not terms of the form 3. ..., >, ... and the

like). In contrast, ﬁE and also Ré can straightforwardly be
written in such a form.

Therefore, calculating Ry !is in principle much harder than
Rg or Rg, because a recursive evaluation cannot be done. The
brute-force approach, in which one would evaluate the full
double sum Zi £ rl.;l for each generated chain conformation,
will obviously not work: The computational complexity of
the sum, if done exactly, scales as O(N?) (perhaps with an
additional factor of O(log N) depending on the details of
the implementation). This could be improved to O(N) if the
hydrodynamic radius were evaluated via the fast multipole
method [15]. If we were using the hash table implementation
of the pivot algorithm then this would indeed be a very
effective approach, as the mean processing time to generate
anew SAW would also be O(N). However, both the naive and
fast multipole methods would dominate the mean processing
time required to generate a new SAW for the SAW-tree
implementation of O(N?log N). In other words, evaluation
of the full sum for the hydrodynamic radius would lead to
an algorithm for which nearly all advantages of the SAW-tree
implementation would be lost.

Our simple solution, whose computational complexity is
logarithmic in N, shall be outlined in the next section. From
the structure of the method as explained below, it is clear
that it can be applied to any observable that has the form
Yo A, Zii Ar(Fi 7)), Ziik As(F;,7j,Fy), and so on, as well
as combinations of these, and is thus quite general. However,
it may fail if one is interested in complex observables such as
knot types.

III. SAMPLING STRATEGY FOR CALCULATION OF THE
HYDRODYNAMIC RADIUS

The key to our approach to solve the abovementioned
problem is the following simple observation: We write

1 1 1 1 1
R_IZ— —_—= 1—— —_— R
H N2Zr,-j < N>N(N—I)Zr,-j

i#] i#]

(-3

where [---] denotes an average over all pairs. This means
that, for a given conformation of the chain, we can find the
observable R];l not only by brute-force calculation of the
sum but also by Monte Carlo sampling: We simply pick a
pair of monomers (i,j) uniformly at random from the set
of all monomer pairs and evaluate r;;'. If we do this often
and average over the results, this will stochastically converge
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FIG. 1. Exact results for (Rﬁl) for a Gaussian chain. Instead
of (R5') we rather plot the dimensionless ratio (Ry;')bN'/?//6,
where bN'/2/./6 is the asymptotic long-chain value for the gyration
radius (RZ)!/%. In other words, corrections to scaling are taken into
account only for the hydrodynamic radius but not for the gyration
radius. The argument on the abscissa, N ~!/2, reflects the leading-order
correction to scaling. Note also that the asymptotic value for N — oo
is Ro/Ru = 8/(3/7) ~ 1.5045.

toward Rﬁl/(l — N7, Actually, it is sufficient to do this only
once per generated chain conformation, since the average over
pairs will be automatically included in the overall sampling.

We thus write
1 1
math= (-3 (7)) 2

where the average (---) means the average over chain
conformations, and [- - -] is the average over monomer pairs;
these averaging operations are interchangeable.

This strategy gives rise to O(log N) computational com-
plexity for the operations being done for one chain confor-
mation, since finding the actual coordinates of monomers i
and j involves a recursive search along the binary tree. In
other words, the computational complexity of the observable
evaluation is comparable to the computational complexity to
perform a single update by attempting to perform a pivot move.

In order to test this idea, we first studied a Gaussian chain
in three-dimensional continuous space, with (r7;) = b*[i — j|,
as a simple toy model. For this model one finds analytically
by a Gaussian integral (ri;l) = ./6/7b~ i — j|~'/2, and the
remaining double sum is easily numerically evaluated to yield
an exact value for (Ry !y for any reasonable chain length
(including all corrections to scaling). The result is shown in
Fig. 1.

It is also very easy to stochastically generate such a
chain using Gaussian random numbers, based upon the
Box-Muller transformation. We therefore studied chains of
length 8 < N < 8192 and sampled (Ry 1) from 10° stochastic
realizations. We first calculated Rl;l in the conventional way
by brute-force evaluation of the double sum. Using the same
kind of plot as in Fig. 1, the results are indistinguishable from
the exact values. We hence rather show the deviation from the
exact result, using the same normalization as in Fig. 1 (i.e., we
study (Rﬁl) normalized by the asymptotic gyration radius of
a chain with the same N). The result is shown in Fig. 2. As
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FIG. 2. Difference between (R )bN'/?//6 (sampled value) and
(Rg"VbN'?//6 (exact value), as a function of chain length N.
Here the sampled value for (Rﬁl) results from averaging over
10° independent chains, using a full evaluation of the double sum
> 4 rl.;]. The error bars have been estimated as three times the
standard error of mean.

it should be, the sampled results are well compatible with the
exact values within error bars.

Using the same chains, we then sampled (R 1Y by the “one
pair of monomers per chain” sampling strategy as outlined
above. As seen in Fig. 3, again the results are nicely compatible
with the exact values within error bars. The important point to
notice is that the latter are only roughly a factor of 10 larger
than in the case of full evaluation, and this ratio varies only very
weakly (possibly logarithmically) with chain length, as shown
in Fig. 4. This, however, means quite clearly that the immense
computational effort to evaluate the double sum does not pay
off in terms of a substantially increased statistical accuracy
and that rather the “one pair of monomers per chain” method
is a much more efficient overall sampling strategy. One may
think of a variant of this scheme, where one rather picks pairs
(i, j) not uniformly, but rather with a probability o [i — j|™¢
for some . However, we expect such a change to only slightly
improve the statistical accuracy, compared to the tremendous
gain obtained by discarding the double sum. We hence did not
try such a refinement and kept using simple uniform sampling.
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FIG. 3. Same as Fig. 2, but now applying the refined sampling
strategy where the interparticle distance is only evaluated for one
randomly selected pair of monomers.
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FIG. 4. Ratio of the error bars from Figs. 3 and 2, as a function
of chain length N. As the statistical uncertainty of these data was not
sampled, we do not show statistical error bars. The straight line is the
function 1.1 + 1.3log N.

At this point, we wish to remark that it may also be useful
to pick more than just one pair of monomers per chain. This,
of course, helps to improve the statistical accuracy somewhat.
More importantly, however, this is needed if one is interested
not only in the average value but also in higher moments of the
distribution or in time correlation functions that characterize
the efficiency of the algorithm. Let us discuss this in more
detail for the variance of the inverse hydrodynamic radius.
Obviously, we have

var(Ry") = (Ry?) — (Ryy')’

w22l -GG

- UED-EIE o

where the last step is performed by using the same trick as
in Eq. (11) to convert the sum over monomers to an average.
To sample this by a one-pair-per-chain strategy is impossible,
however, since the form ([1/r]?) no longer permits us to just
exchange the averages (- - -) and [- - - ]. Rather, we have

DRI

where [[---]] is now an average involving four monomers
i,j,k,l with i # j and k # [. To obtain this average, one
needs to randomly pick such four monomers and calculate
ri;lrkjl. This latter average is again interchangeable with
(---) and hence is in accord with our general strategy.
Similar considerations apply for even higher moments or time
correlation functions. These considerations have motivated
us to run the simulation by not sampling one but rather two
monomer pairs per chain.

In practice, for the main computer experiment of self-

avoiding walks, the observable we sample is

_l<1 l)l l) 15
Q_Z N <r+r’ ’ (1)

which satisfies ([[Q]]) = (Rg").
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IV. DETAILS OF COMPUTER EXPERIMENT

We now briefly describe the details of the computer
experiment, which involved the pivot algorithm sampling of
self-avoiding walks for which the number of monomers N
varied from 512 to 33 554 432 (2%).

The pivot algorithm is ergodic and satisfies the detailed
balance condition [5] and so samples self-avoiding walks
uniformly at random. However, to avoid initialization bias, it is
necessary to run the pivot algorithm until the Markov chain is
indistinguishably close to equilibrium. In each case, the seed
self-avoiding walk was generated using the pseudodimerize al-
gorithm described in Ref. [2]; the system was then equilibrated
by performing approximately 20N successful pivots (no data
were collected during the initialization stage).

Now that an appropriate initial SAW configuration had
been generated, the computer experiment to collect data was
begun. At each time step, various observables were sampled:
The exact values for the squared end-to-end distance and the
radius of gyration were used, while the inverse hydrodynamic
radius and the square of the inverse hydrodynamic radius were
estimated using an unbiased estimator, as described in Sec. I11.

The computer experiment was run for 195 000 hours on
Dell PowerEdge FC630 machines with Intel Xeon E5-2680
processing units (these were run in hyperthreaded mode, which
gave a modest performance boost; 390 000 thread hours were
used). In total there were 1.70 x 10° batches of 10® attempted
pivots, and thus there were a grand total of 1.70 x 10'
attempted pivots across all walk sizes.

We confirmed that the batching method of error estimation
was reliably converging even for the largest values of N. This
indicates that the degree of correlation between consecutive
batches of 10% pivot attempts was minimal for each of our
global observables RZ, RZ, and Ry;', even for the largest size
where N = 2%,

The raw data that have been produced in this way are given
in the tables of Appendix B. We include estimates of the
amplitude ratios (RZ)/(R3) and (R3)"/?(R;') as they have
smaller confidence intervals than might naively be expected
from the estimates of (Ré) , (Ré), and (Ry 1Y due to correlations
between the observables RZ, RZ, and Ry;', which reduce the
variance of the ratio estimates.

We now briefly consider the properties of our Markov
chain sampling method, with a view to gauging the relative
effectiveness of our method for Ry;' versus the observable R2,
which can be calculated exactly in an efficient manner.

Given an observable A with variance var(A) = (A2) —
(A)?, we follow Ref. [6] and define the autocorrelation function
for this observable as

(AsAysr) — (A)?

paa(t) = var—(Aﬁ' (16)

The key quantity which measures the efficiency with which
A is sampled is the integrated autocorrelation time Ty, defined
as

l [o¢]
T(A) = 5+ 3 paald). (17)
t=1

Tine may be thought of as the number of Markov chain steps
required before the state is effectively new with respect to
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the observable A. For a sampling scheme where consecu-
tive estimates are completely uncorrelated, we would have
Tint(A) = 1/2. While 7y, may well be different for different
observables, for the pivot algorithm we expect that global
observables such as Ré, Ré, and Ry ! should decorrelate after
a constant number of successful pivots.

We can then calculate an a priori estimate of the expected
error on our estimate of the sample mean A for Nsample Markov
chain time steps:

2rim(A>var(A>>{ as)

stdev(A) = <
Nsample

Our goal in performing our Monte Carlo simulation is to
estimate (A) as accurately as possible for a given amount
of computer time. Usually, this entails either finding an
observable A’ for which (A’) = (A) but var(A’) < var(A), thus
allowing for more efficient sampling (variance reduction), or
finding a Markov chain with an improved move set which
reduces tj(A), or improving the efficiency of the computer
implementation which allows ngmpie to be increased for the
same computational effort.

Our situation is a unique mix of these: We instead estimate
an observable Q from Eq. (15) which can be much more
efficiently evaluated, thus increasing n¢,mple, but at the expense
of increasing the variance. The key question is what is the
performance penalty from doing this, relative to an efficient
exact method?

We examine this question by calculating the ratio of relative
errors in the estimates of (R Iy and (Ré), which we plot
in Fig. 5. There we see that the relative error for (Rﬁl) is
substantially below that for (Ré) , although the ratio is growing
with N, perhaps logarithmically. This behavior is qualitatively
the same as the situation for a Gaussian chain as shown in
Fig. 4. In fact, we expect that the relative performance penalty
should be somewhat less than that case, because pivot moves
are only successful on average once every O(N?) attempts
(p = 0.11 for the simple cubic lattice), and so Q is sampled
on O(NP?) occasions over a time period for which R ! remains
frozen.

Thus it seems that the performance penalty is quite modest.
Whether there exist alternatives to the observable Q which

0.60
0.55- o ©
<o
s &
LFRE 0.50+ ©°
SIS OO0
HE X
Sle 045 O
AR <><><>
0.404
0.35——- \ T " \
10° 10* 10° 108 107
N

FIG. 5. Plot of the ratio of relative errors for (Ry !y and (Ré).
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could significantly improve sampling performance is an open
research question.

V. ANALYSIS AND RESULTS

In this section we describe the analysis of data collected
in the tables of Appendix B. We initially fit the data for
standard observables with a model derived from their expected
asymptotic behavior; this is the conventional method. We then
describe a method which has been used previously for the Ising
model [16,17], which eliminates the leading-order correction
to scaling term and allows for a much improved estimate for
v. Next we analyze our data for the hydrodynamic radius and
present a summary of our results together with estimates from
the literature in Table I.

We first study the data for (Ré). Starting from Eq. (7),
we apply four-parameter fits to the data, where Dg, ag, v,
and A; are considered as fit parameters, while the higher-
order corrections to scaling are neglected. Because of the large
range of chain lengths and the high resolution accessible to our
simulation, these higher-order corrections cause systematic
errors in the fits at a comparable level to the statistical error. For
this reason, we do the fits for various ranges of chain lengths
(N = Nmin, Where Nyy, is varied systematically). The effect of
the higher-order corrections is then a systematic dependence
of the fit parameters on Ny,;,. In fact, the deviations for Dg
and v are expected to scale as Nomin, Where y is the correction-
to-scaling exponent corresponding to the first neglected term
(for a derivation, see Appendix A). In Eq. (7) it is believed that
there are in fact three competing next-to-leading correction
terms with exponents 1 (analytic), 2A; =~ 1.06, and A, ~ 1

TABLE 1. Summary of estimates of v, A;, and Rg/Ry. In
addition we have Dg/Dg = 6.253531(10) (cf. 6.2537(18) [1]), Dg =
0.1951413(26) (cf. 0.19514(4) [1]), and Dg = 1.220322(18) (cf.
1.22035(25) [1]). Note that results in the table are listed in reverse
chronological order, i.e., the most recently published work is at the
top.

Source? v Ay Rg/Ru
Present work 0.58759700(40)  0.528(8) 1.5803940(45)
[19]1CB 0.58775(83)

[21] Series 0.58772(17)

[11MC 0.587597(7) 0.528(12)

[221° Series 0.58774(22)

[10] MC 1.581(1)
[91 MC 1.591(7)
[23] MC 0.5874(2)

[24]°¢ Series 0.58755(55)

[251FTd =3 0.5882(11) 0.478(10)

[25]1 FT € bc 0.5878(11) 0.486(16)

[26] MCRG 0.58756(5) 0.5310(33)

[6] MC 0.5877(6) 0.56(3)

[11]1 FT ~1.595

*Abbreviations: MC, Monte Carlo; CB, conformal bootstrap; FT, field
theory; MCRG, Monte Carlo renormalization group.

®Using Egs. (74) and (75) of Ref. [22] with 0.516 < A; < 0.54.
“No error estimates were made in Ref. [24], but estimates for v were
in the range 0.5870 < v < 0.5881.
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FIG. 6. Systematic variation of the fitted amplitude of (R2) with
Nmin- The line of best fit to the final six values is shown, and we plot
our best estimate from these data of Dg = 0.1951400(80).

(A, is not known with any precision). Assuming a value y = 1
we thus plot the estimates for Dg and v as a function of N1.
For (Rl%:) we can apply the same analysis to Eq. (8).

We perform one further trick to reduce the influence of
unfitted correction to scaling terms and make extrapolation
easier. We multiply our raw data by 1 — ¢/N, where c is an
arbitrary constant chosen to reduce the curvature observed
in fits. Note that this trick does not change the leading or
next-to-leading asymptotic behavior of the observables, and
so if extrapolation is performed carefully this will not affect
our final estimates. We found that a good choice for (Ré)
was ¢ = 0.0, for (Ré) we had ¢ = 0.6, for (Ré)/(Ré) we had
¢ =0.2, for (Ry') we had ¢ = —0.2, and for (R2)"?(Ry;")
we had ¢ = —0.5.

We plot the resulting estimates in Figs. 6, 7, and 8. Note
that all error bars shown are statistical and arise from the
fitting procedure. To take into account the systematic error
from corrections to scaling we extrapolate to the left-hand
side of the plots where Ny, — 00. We choose our final
extrapolated value for the parameters by performing linear fits
of subsequent estimates, with an error bar which is sufficiently
large so as to account for both the observed statistical error and
unobserved systematic error which manifests itself in the plots
as nonlinear convergence. In the case of Fig. 8 we have the

1.22040]
1.22035

Dy,
1.22030- - §

1.22025+

1.22020 ! ‘ ‘ ‘
0.0000 0.0002 0.0004 0.0006 0.0008 0.0010

NL
FIG. 7. Systematic variation of the fitted amplitude of (RZ) with
Nmin- The line of best fit to the final six values is shown, and we plot
our best estimate from these data of Dg = 1.220345(35).
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FIG. 8. Systematic variation of the fitted value of v with Ny,
using both (R3) and (RZ) data. The line of best fit to the final six
values is shown, and we show our best estimate from these fits of
v = 0.5875970(14).

benefit of two observables giving estimates for v which have
different unfitted corrections, which increases the reliability of
the extrapolation procedure.

The fit in Fig. 8 gives v = 0.5875970(14), which improves
significantly on the literature, but we can do better, as we
show later in this section. Note that throughout this work
we usually report two significant figures for our confidence
intervals. This is not because we claim that these confidence
intervals are so precise, but because information is lost when
only one significant figure is used. For example, confidence
intervals of 35 x 107 and 44 x 1078 would both be reported
as a confidence interval of 4 x 107 if only one significant
figure were used.

Similarly, we can also study the ratio (Ré) / (Ré}, which
converges toward the universal amplitude ratio Dg / Dg. Taking
the ratio reduces the fits from four to three parameters, as the
powers of N 2v cancel out, and for this reason the estimate
Dg/ Dg is more accurate than for the individual amplitudes Dg
and Dg. The estimated values should again vary systematically
like N1, and the corresponding plot is Fig. 9. The universal
ratio is therefore found to take the asymptotic value Dg/Dg =
6.253531(10).

6.25356

6.25355-

) %
e thf %

6.25352——

6.25354
E

6.25351
0.0000

I I
0.0002 0.0004 0.0006

N1
FIG. 9. Systematic variation of our estimates of Dg/Dg with
Nmin- The line of best fit to the final six values is shown, and we show
our best estimate from these fits of Dg/Dg = 6.253531(10).
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N 0472
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FIG. 10. Systematic variation of the fitted value of A with Ny,
using data for (R%), (RZ) and their ratio. The line of best fit to the
final six values is shown, and we show our best estimate from these
fits of A; = 0.528(8).

Finally, we can also use these data to determine A, whose
value is found to be A; = 0.528(8). Again taking the next
to leading correction exponent as —1, the fitted value should
vary with Ny, like N21-1 ~ N-0472 The results are shown
in Fig. 10.

We now describe a method of analysis which allows us to
eliminate the leading correction to scaling and obtain a much
improved estimate for v.

It is a standard technique to use improved models for
simulations in statistical mechanics, where typically a pa-
rameter is chosen so that the leading correction to scaling
term for all observables is reduced sufficiently so that their
contributions are below the level of statistical error. For models
in the self-avoiding walk universality class, two such improved
models are the Domb-Joyce model [10] and the bead model
[18].

The basic idea of the method is very simple: Instead of
attempting to find an improved model, we find an improved
observable instead. This technique was previously used for the
three-dimensional dilute Ising model [16] and models in the
universality class of the three-dimensional Ising model [17].
Since (Ré) and (Ré) are independent measures of the size of
a polymer, the relative size of the leading correction to scaling
term for each of these observables is different. By forming an

improved observable Rizmp via the linear combination

R = R: —4.478R%, (19)

imp

we find that we are able to reduce the amplitude of the
leading correction to scaling to a level below the statistical
noise.

We are then able to fit (R2,_) by the truncated model

imp

(R2,) = DumpN>| 14+ - + 0 = (20)
imp p NA N ’

where we only fit Diy, and v, neglecting the O(e) term. We
confirm that this is indeed an excellent model for the data for
Nmin > 8192 as the reduced yx? of the fits is approximately 1.
By reducing the order of the fits from four parameters to two,
we obtain sensible fits even for Ny, up to 262 144, which are
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0.587599

0.587598
v

0.587597 § §

0.587596—

0.587595 ‘ ‘ ‘ ‘ ‘ ‘
0.00000  0.00004  0.00008  0.00012

-1
min

FIG. 11. Systematic variation of the fitted value of v with
Niin, using data for the improved combination (R ) = (Rg) —

4.478(Ré). The line of best fit to the final six values is shown, and
we show our best estimate from these fits of v = 0.58759700(40).

far more accurate than the estimates from fits of (Ré) and (Ré) .
We plot the resulting estimates for v against N .| in Fig. 11,
where it can be seen that convergence in the limit Ny, — 00
is smooth.

Note that in this case we did not use the additional trick of
multiplying by 1 — ¢/N. We have also checked the stability of
the method by varying the constant in Eq. (19), and find that
within the interval (4.473,4.483) the plot in Fig. 11 is quite
linear and can be extrapolated easily.

Note the substantial decrease in range and domain for the
plots from the standard approach in Fig. 8 as compared to the
new approach in Fig. 11. Purely from this method of analysis
we have managed to decrease the error by more than a factor
of three, from 14 x 107 to4 x 10~7. Our central estimate has
not changed, and our final estimate is v = 0.58759700(40).

We now perform one final trick to obtain improved
estimates for Dg and Dg. We first plot the estimates for
Djnp obtained from our two-parameter fits in Fig. 12. We
then use the fact that our estimate of Dg/Dg is more accurate

0.346490
0.346485—

Dimp
0.346480 % %

0.346475-

0.346470 : ‘ ‘ ‘ ‘ :
0.00000  0.00004  0.00008  0.00012

—1

min

FIG. 12. Systematic variation of the fitted value of Diy, =
Dy — 4.478 Dg with Ny, using data for the improved combination
(Rizmp) = (RZ) — 4.478(R%). The line of best fit to the final six
values is shown, and we show our best estimate from this fit of

Dimp = 0.3464795(45).
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Aanalytic

FIG. 13. Systematic variation of the fitted value of A, with Ny,
using data for (Rﬁ] ).

than the estimates of Dg and Dg individually, and form the
combinations

Dimp
Dp= ——m—7——, 21
1 — 4.478D¢/ Dx,
Dimp
Dg=———""0 (22)
Dg/Dg — 4.478

We combine the errors from Diy,, and Dg/Dg as if they
were independent and obtain the improved estimates Dg =
0.1951413(26) and Dg = 1.220322(18).

We now turn to the R;l data, where Eq. (9) applies. Again,
we start with a four-parameter fit, where we take the leading
order into account, plus the dominant correction to scaling.
The latter should be the analytic term, which is absent for
(Ré) and (Ré). If only those two terms are present, the fit
function can be written as

(Ryg') = DuN"" + EyN ", (23)

where the analytic value A, is one. This contribution is difficult
to distinguish from the next-order contribution, which scales
as N~+A0 ~ N~1116 where the exponent is only slightly
different. However, our data are accurate enough that this
is actually possible. We therefore apply a four-parameter fit
to the data according to Eq. (23), where A, is left as a fit
parameter. Using the results of Appendix A, these data should
then vary with Ny, according to A, oc NAae=v=41 = N 0116,
As seen in Fig. 13, they nicely extrapolate to A, =~ 1, with
a value that is clearly distinguishable from the next order
(1.116).

Finally, we focus on the universal amplitude ratio Rg/ Ry,
which was the original motivation to perform the present study.
This can be written as

(RE)"(Ry") = % +BN UL CNTM 4 (24)
H

where the omitted leading-order correction is O(N 1. We
now use the value for v as obtained from the (R3) and (Rz)
data, and treat the parameters Rg/ Ry, B, C,and A in Eq. (24)
as fit parameters in a four-parameter fit. The parameter Rg/ Ry
should then vary linearly with N The data are shown in
Fig. 14 and give rise to an estimate for the universal amplitude
ratio of Rg/Ry = 1.5803940(45).
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FIG. 14. Systematic variation of the fitted value of Rs/Ry with
Nmin- The line of best fit to the final six values is shown, and we plot
our best estimate from these data of Rg/Ry = 1.5803940(45).

Table I summarizes our results, with a comparison with
previous results from Monte Carlo, series expansion, field
theoretic, and conformal bootstrap methods. We wish to
highlight the recent conformal bootstrap estimate of v =
0.58775(83) [19] as this approach shows a great deal of
promise. The method has been spectacularly successful for
the three-dimensional Ising model giving v = 0.6299748(40)
[20]; in this case it is far superior to Monte Carlo methods.

VI. CONCLUSION

The combination of the pivot algorithm and the SAW-tree
data structure of Refs. [1,2] provides an extremely efficient
method to obtain the properties of long SAWs with high
accuracy. The SAW-tree allows for the efficient computa-
tion of obervables such as Ré and Ré, but not for other
observables such as Rﬁl, which leads to a unique problem:
How to efficiently sample an observable whose calculation
would dominate the runtime of the Markov chain sampling
algorithm? The key insight is that the observable does not need
to be calculated exactly in order to obtain accurate estimates;
instead we only need to find an unbiased estimator of the
observable which can be calculated efficiently and which has
moderate variance.

Starting from the observation that a large class of observ-
ables can be written as the sum of n-body terms involving
n monomers, where this series typically stops at low (and
in most cases at second) order, we propose a double sampling
scheme, where not only the chain conformations are generated
at random, but also the monomers that contribute to the n-body
interactions are picked at random, such that this evaluation
involving just a few monomers replaces an exhaustive sum
over all sets of » monomers. This leads to an efficient Monte
Carlo sampling for many observables, and the present work
demonstrates its usefulness by applying it to the problem
of sampling the hydrodynamic radius of three-dimensional
SAWs. Using this technique we estimated with high accuracy
the universal amplitude ratio Rg/Ry = 1.5803940(45) and
discerned the competing corrections to scaling for (Rﬁl).
Finally, we have constructed an improved observable for which
the leading correction to scaling has negligible amplitude and

PHYSICAL REVIEW E 94, 052102 (2016)

used it to obtain an improved estimate for the Flory exponent
of v = 0.58759700(40).
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APPENDIX A: FITTING STRATEGY

Here we will describe some of the details of the fitting
procedure used in the main text. The description will be quite
general, but we will refer to specific examples from the analysis
section.

Suppose we are interested in a certain observable, e.g.,
(Ré), as a function of chain length N. Let us denote this
observable as R(N). We expect that for R(N) there exists an
infinite asymptotic expansion in N:

(AD)

=Y @ NT + O, (A2)

oo
R(N) =) a;N*

i=1

M

o

i=1
where x| > xp > -+ > Xy > Xp41 > -+, such that x; de-
scribes the leading asymptotic power-law dependence, while
the exponents x,,x3, - - - correspond to the corrections to scal-
ing. The parameters «; are the corresponding amplitudes. Note
that the procedure described here can be straightforwardly
adapted to observables with different asymptotic behavior,
e.g., exponential growth with power law corrections.

Now we perform a computer experiment which gives us
R(N) for certain values of N. For an enumeration study this
information would be exact but typically involve quite small
N, while for a Monte Carlo computer experiment there would
be sampling error associated with these values but one could
reach large values of N and reduce the influence of corrections
to scaling.

Our principal goal in performing the computer experiment
is to estimate some of the quantities associated with this
asymptotic expansion such as the leading exponent x;, the
leading-order correction to scaling exponent x;, and the
leading amplitude «;.

We obtain estimates by performing nonlinear fits of our
data using Eq. (A1) by appropriately truncating the expansion
after M terms. We cannot perform a fit with an arbitrarily
large number of terms, as we only have data over a finite
range for N. There may also be asymptotic corrections with
comparable exponents, which makes it extremely difficult to
reliably distinguish between them, and for Monte Carlo there is
statistical error on R(N). Each of these factors is relevant in our
case: We have dataupto N = 235 our data has statistical error,
and next-to-leading corrections to scaling have comparable
exponents which are all around 1: 2A; =~ 1.06, A, ~ 1, and
1. So, in practice we can only make reliable fits of the leading
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correction to scaling. It is possible to fit the three competing
next-to-leading corrections with a single “effective” term with
exponent approximately one, but it is difficult to see how to
sensibly interpret such a procedure.

In the general case, we attempt to simultaneously adjust all
amplitudes ¢; and all exponents x; by the direct application
of a 2M-parameter nonlinear fit routine. If we include in the
fit 2M data points for R(N) then the fitted function S(N) will
be exact at those points, but more frequently we perform a
nonlinear weighted least squares fit [weighting appropriately
by the statistical error in our estimates of R(N)] and so S(N)
will instead be an approximation. Regardless, by design we
have S(N) ~ R(N), where we are careful to ensure that we
can meaningfully interpret the fit by confirming that the model
is appropriate and the reduced x2 value is approximately one.
If the model is appropriate then S(N) will be the same as
R(N) at the data points to within statistical accuracy, and so
S(N) = R(N)+ AR(N) where AR(N) is of the same order
as the statistical accuracy of our estimate.

The truncation will result in somewhat distorted values for
the amplitudes and exponents in the truncated model. We
denote these errors as Ac; for the amplitudes and Ax; for
the exponents:

M
S(N) =) (@ + Aay)NU 4,

i=1

(A3)

But we have

S(N) = R(N)+ AR(N), (A4)

M M
D (@i + Ao )N A =3 " N¥ + O(N™*') + AR(N).
i=1 i=1

(AS)

We restrict attention only to rather large values of N, where the
truncated model accurately fits the data, and so |A«;| < o]
and |Ax;| < |x;|. In addition, we can expect that the neglected
terms represented by O (N*¥+') are small and dominated by the
first neglected correction to scaling corresponding to exponent
Xpr+1- In this limit, we may linearize Eq. (AS) around ¢; and
Xis

M
Y (AiN +a; Ax;N* log N) = O(N*+) + AR(N).
i=1

(A6)

We now perform fits according to Eq. (A3) in an interval
N > Nnin, Where Ny, is systematically varied but where it
must be sufficiently large that the truncated model is accurate.
The errors in estimates depend on this choice Np;,, and so
Ac; and Ax; should be understood to be implicit functions of
Npin- Equation (A6) is valid for any value of N in the fitting
range, and therefore is valid for Np,:

M
Z (AO[,‘ Nr);iin =+ «; AxiNIf{in 10g Nmin)
i=1

= O(N+) + AR(Nin)

(AT)
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Neglecting logarithmic corrections, and assuming that all
error terms on the left-hand side of Eq. (A7) are of the same
order as the right-hand side, we thus find for the error in the
exponents that

Ax; o¢ Nyl 4 N8 A R(Npyin) (AB)
and similarly for the amplitudes
Aa; X NI;i(gi_xM“) + Nn_uxnl AR(Nmin)- (A9)

How are we to interpret these expressions, and use them to
obtain the most accurate estimates of «; and x; possible? First,
note that AR(Np,) is the statistical error and is a known
quantity. The corresponding statistical error in the estimates
for o; and x; are of order N_;/ A R(Nmin). Typically, we expect
that the statistical errors will increase as Ny, increases, but
the rate of increase will be smallest for the leading term with
i = 1. In contrast, the systematic errors, of order Nr;i(,f’_xM“)
(neglecting logarithmic factors) are unknown, and decay with
increasing Npyi,. This decay is most rapid for the leading
term. By definition, the systematic error from truncation is
not fitted, and so the only way which it can be accounted
for in the analysis is to extrapolate to Ny, — 00, where this
error vanishes. Now, we expect that for sufficiently large Ny;n,

a plot of o; and x; against N,;i(lf"fx”“‘) would be linear. If
we have an idea of the value of xj/,;—even if we do not
know it exactly—plotting our estimates in this way can greatly
facilitate extrapolation. These observations are the motivation
for the various power laws appearing in plots in the main
text. Then, to interpret these fits requires judgment to decide
when Ny, is sufficiently large that a reliable extrapolation can
be made, but as small as possible so as to reduce statistical
error.

Interpretation of the fits is a balancing act between
systematic error and statistical error. Acquiring more data
at large values of N may reduce systematic error at the
expense of increasing statistical error. One of us (N.C.) is
perennially surprised at how subtle the interpretation of such
fits is: In principle, being able to perform accurate computer
experiments for extremely large systems should make it
possible to reduce the influence of corrections to scaling until
they are negligible, but what happens in practice is that the
extremely accurate values make it necessary to incorporate the
leading-order correction to scaling even for N of the order of
tens of millions, and in order to get a good handle on this
term it is necessary to perform computer experiments for N
of the order of tens of thousands, where poorly controlled
next-to-leading corrections make things extremely difficult.
One circumstance where this trap has been avoided is the
calculation of the growth constant i for SAWs in Ref. [27],
but this relies on the fact that the asymptotic corrections for ©
are smaller than for critical exponents.

APPENDIX B: MONTE CARLO DATA

The global observables R%, RZ, and R;;' are correlated;
therefore calculating ratios may be viewed as form of variance
reduction. Hence we report the ratios as well. All raw data are
listed in Tables II-IV.
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TABLE II. Raw data on the end-to-end distance and the gyration

radius.

N (R2) (R3)

512 1.8336722(58)x10° 2.9152213(82)x 10?
724 2.7631843(94)x 10° 4.396899(14) % 10?
1024 4.1626998(41)x 10° 6.6290075(60) x 10?
1448 6.2667402(69)x 103 9.986311(10)x 10?
2048 9.433354(11)x 10° 1.5040985(16)x 10°
2896 1.4192522(18) x 10* 2.2640087(26)x 10°
4096 2.1353085(28) x 10* 3.4076501(41)x 10°
5792 3.2112468(46) x 10* 5.1264340(69)x 10°
8192 4.8297971(73)x 10* 7.712466(11)x 10°
11584 7.261391(12)x 10* 1.1598097(18)x 10*
16 384 1.0918781(19)x 10° 1.7443237(29)x 10*
23168 1.6412837(31)x 10° 2.6224555(48) x 10*
32768 2.4675807(49)x 10° 3.9432498(75)x 10*
46 336 3.7087199(80)x 10° 5.927288(12) x 10*
65 536 5.575269(13)x 10° 8.911266(20) % 10*
92 672 8.378786(18)x 10° 1.3393305(27)x 10°
131 072 1.2594736(32) x 10° 2.0133731(50)x 10°
185 344 1.8926972(46) x 10° 3.0258005(71)x 10°
262 144 2.8449071(51)x 10° 4.5482716(79)x 10°
524 288 6.425547(21)x 10° 1.0273486(32) x 10°
1048 576 1.4512152(53)x 107 2.3203899(83) x 10°
2097 152 3.277454(13)x 107 5.240600(21)x 10°
4194 304 7.401657(33)x 107 1.1835309(52) x 107
8 388 608 1.6715288(79)x 108 2.672847(13)x 107
16 777 216 3.774819(19)x 108 6.036144(31)x 107
33554 432 8.524591(30)x 108 1.3631415(48)x 108

TABLE III. Raw data on the hydrodynamic radius.

N

(Ry')

(Ry?)

512

724

1024
1448
2048
2896
4096
5792
8192
11584
16 384
23168
32768
46 336
65 536
92 672
131 072
185 344
262 144
524 288

1 048 576
2097 152
4194 304
8 388 608
16 777 216
33554432

8.400655(10)x 102
6.9369818(95)x 102
5.7174946(23)x 102
4.7059008(21)x 102
3.8678939(19)x 102
3.1760618(17)x 102
2.6052526(15)x 1072
2.1356062(14)x 102
1.7492303(12)x 102
1.4321075(11)x 102
1.17175446(93)x 102
9.5844326(85)x 1073
7.8358154(73)x 1073
6.4050264(66)x 1073
5.2334061(57)x 1073
4.2756617(44)x 1073
3.4920527(44)x 1073
2.8519139(34)x 1073
2.3284895(21)x 103
1.5518439(26)x 1073
1.0338339(19)x 1073
6.885461(14)x 10~
4.584827(11)x 10~
3.0523993(78)x 10~
2.0319314(57)x 10~
1.3525101(26)x 10~

7.124977(20)x 103
4.858005(16)x 1073
3.2998280(32)x 1073
2.2352724(25)x 1073
1.5099458(18)x 103
1.0180323(14)x 1073
6.849483(10)x 10~*
4.6023215(78)x 10~
3.0875098(56)x 10~
2.0694197(42)x 10~
1.3853382(31)x 10~*
9.268299(23)x 103
6.194747(17)x 1073
4.138895(13)x 105
2.7631557(94)x 105
1.8443015(61)x 103
1.2302115(50)x 10~
8.205089(33)x 10~
5.469584(17)x 10~°
2.429360(14)x 10
1.0781790(76)x 106
4.782487(40)x 107
2.120460(20)x 10”7
9.39847(10)x 108
4.164729(53)x 103
1.845312(22)x 108
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TABLE IV. Raw data on amplitude ratios.

v (RaV (R (R (53
512 6.289993(10) 1.4343295(15)
724 6.284393(11) 1.4546008(17)
1024 6.2795219(32) 1.47207524(52)
1448 6.2753307(35) 1.48711752(57)
2048 6.2717661(37) 1.50007398(61)
2896 6.2687579(39) 1.51122100(68)
4096 6.2662199(42) 1.52081824(73)
5792 6.2640947(45) 1.52907518(80)
8192 6.2623255(48) 1.53618530(86)
11584 6.2608471(51) 1.54230033(94)
16 384 6.2596072(54) 1.5475694(10)
23168 6.2585759(59) 1.5521027(11)
32768 6.2577340(62) 1.5560062(12)
46 336 6.2570265(68) 1.5593691(13)
65 536 6.2564277(71) 1.5622629(14)
92 672 6.2559513(66) 1.5647580(13)
131072 6.2555401(80) 1.5669058(16)
185 344 6.2551952(75) 1.5687600(15)
262 144 6.2549194(55) 1.5703535(11)
524288 6.254495(10) 1.5729210(21)
1048 576 6.254187(11) 1.5748209(23)
2097 152 6.253967(12) 1.5762441(26)
4194 304 6.253877(13) 1.5772942(29)
8 388 608 6.253739(15) 1.5780775(32)
16 777 216 6.253693(16) 1.5786606(35)
33554432 6.253636(10) 1.5791045(24)

052102-11



NATHAN CLISBY AND BURKHARD DUNWEG

[1] N. Clisby, Phys. Rev. Lett. 104, 055702 (2010).
[2] N. Clisby, J. Stat. Phys. 140, 349 (2010).
[3] N. Madras and G. Slade, The Self-Avoiding Walk (Springer
Science & Business Media, Berlin/Heidelberg, 2013).
[4] M. Lal, Mol. Phys. 17, 57 (1969).
[5] N. Madras and A. D. Sokal, J. Stat. Phys. 50, 109 (1988).
[6] B. Li, N. Madras, and A. D. Sokal, J. Stat. Phys. 80, 661
(1995).
[7] T. Kennedy, J. Stat. Phys. 106, 407 (2002).
[8] M. Doi and S. F. Edwards, The Theory of Polymer Dynamics
(Oxford University Press, Oxford, UK, 1988).
[9] B. Diinweg, D. Reith, M. Steinhauser, and K. Kremer, J. Chem.
Phys. 117, 914 (2002).
[10] S. Caracciolo, B. M. Mognetti, and A. Pelissetto, J. Chem. Phys.
125, 094904 (2006).
[11] L. Schafer and A. Baumgartner, J. Phys. (Paris) 47, 1431 (1986).
[12] M. L. Mansfield and J. F. Douglas, Phys. Rev. E 81, 021803
(2010).
[13] B. Liu and B. Diinweg, J. Chem. Phys. 118, 8061 (2003).
[14] P. Sunthar and J. R. Prakash, Europhys. Lett. 75, 77 (2006).
[15] L. Greengard and V. Rokhlin, J. Comput. Phys. 73, 325 (1987).

PHYSICAL REVIEW E 94, 052102 (2016)

[16] M. Hasenbusch, F. P. Toldin, A. Pelissetto, and E. Vicari, J. Stat.
Mech.: Theor. Exp. (2007) P02016.

[17] M. Hasenbusch, Phys. Rev. B 82, 174433 (2010).

[18] K. Kremer, A. Baumgartner, and K. Binder, Z. Phys. B 40, 331
(1981).

[19] H. Shimada and S. Hikami, arXiv:1509.04039 (unpublished).

[20] F. Kos, D. Poland, D. Simmons-Duffin, and A. Vichi, J. High
Energy Phys. 08 (2016) 036.

[21] R. D. Schram, G. T. Barkema, and R. H. Bisseling, J. Stat.
Mech.: Theor. Exp. (2011) P06019.

[22] N. Clisby, R. Liang, and G. Slade, J. Phys. A: Math. Theor. 40,
10973 (2007).

[23] T. Prellberg, J. Phys. A: Math. Gen. 34, L599 (2001).

[24] D. MacDonald, S. Joseph, D. L. Hunter, L. L. Moseley, N.
Jan, and A. J. Guttmann, J. Phys. A: Math. Gen. 33, 5973
(2000).

[25] R. Guida and J. Zinn-Justin, J. Phys. A: Math. Gen. 31, 8103
(1998).

[26] P. Belohorec, Ph.D. thesis, University of Guelph, Guelph,
Canada, 1997 (unpublished).

[27] N. Clisby, J. Phys. A: Math. Theor. 46, 245001 (2013).

052102-12


https://doi.org/10.1103/PhysRevLett.104.055702
https://doi.org/10.1103/PhysRevLett.104.055702
https://doi.org/10.1103/PhysRevLett.104.055702
https://doi.org/10.1103/PhysRevLett.104.055702
https://doi.org/10.1007/s10955-010-9994-8
https://doi.org/10.1007/s10955-010-9994-8
https://doi.org/10.1007/s10955-010-9994-8
https://doi.org/10.1007/s10955-010-9994-8
https://doi.org/10.1080/00268976900100781
https://doi.org/10.1080/00268976900100781
https://doi.org/10.1080/00268976900100781
https://doi.org/10.1080/00268976900100781
https://doi.org/10.1007/BF01022990
https://doi.org/10.1007/BF01022990
https://doi.org/10.1007/BF01022990
https://doi.org/10.1007/BF01022990
https://doi.org/10.1007/BF02178552
https://doi.org/10.1007/BF02178552
https://doi.org/10.1007/BF02178552
https://doi.org/10.1007/BF02178552
https://doi.org/10.1023/A:1013750203191
https://doi.org/10.1023/A:1013750203191
https://doi.org/10.1023/A:1013750203191
https://doi.org/10.1023/A:1013750203191
https://doi.org/10.1063/1.1483296
https://doi.org/10.1063/1.1483296
https://doi.org/10.1063/1.1483296
https://doi.org/10.1063/1.1483296
https://doi.org/10.1063/1.2339015
https://doi.org/10.1063/1.2339015
https://doi.org/10.1063/1.2339015
https://doi.org/10.1063/1.2339015
https://doi.org/10.1051/jphys:019860047090143100
https://doi.org/10.1051/jphys:019860047090143100
https://doi.org/10.1051/jphys:019860047090143100
https://doi.org/10.1051/jphys:019860047090143100
https://doi.org/10.1103/PhysRevE.81.021803
https://doi.org/10.1103/PhysRevE.81.021803
https://doi.org/10.1103/PhysRevE.81.021803
https://doi.org/10.1103/PhysRevE.81.021803
https://doi.org/10.1063/1.1564047
https://doi.org/10.1063/1.1564047
https://doi.org/10.1063/1.1564047
https://doi.org/10.1063/1.1564047
https://doi.org/10.1209/epl/i2006-10067-y
https://doi.org/10.1209/epl/i2006-10067-y
https://doi.org/10.1209/epl/i2006-10067-y
https://doi.org/10.1209/epl/i2006-10067-y
https://doi.org/10.1016/0021-9991(87)90140-9
https://doi.org/10.1016/0021-9991(87)90140-9
https://doi.org/10.1016/0021-9991(87)90140-9
https://doi.org/10.1016/0021-9991(87)90140-9
https://doi.org/10.1088/1742-5468/2007/02/P02016
https://doi.org/10.1088/1742-5468/2007/02/P02016
https://doi.org/10.1088/1742-5468/2007/02/P02016
https://doi.org/10.1103/PhysRevB.82.174433
https://doi.org/10.1103/PhysRevB.82.174433
https://doi.org/10.1103/PhysRevB.82.174433
https://doi.org/10.1103/PhysRevB.82.174433
https://doi.org/10.1007/BF01292850
https://doi.org/10.1007/BF01292850
https://doi.org/10.1007/BF01292850
https://doi.org/10.1007/BF01292850
http://arxiv.org/abs/arXiv:1509.04039
https://doi.org/10.1007/JHEP08(2016)036
https://doi.org/10.1007/JHEP08(2016)036
https://doi.org/10.1007/JHEP08(2016)036
https://doi.org/10.1007/JHEP08(2016)036
https://doi.org/10.1088/1742-5468/2011/06/P06019
https://doi.org/10.1088/1742-5468/2011/06/P06019
https://doi.org/10.1088/1742-5468/2011/06/P06019
https://doi.org/10.1088/1751-8113/40/36/003
https://doi.org/10.1088/1751-8113/40/36/003
https://doi.org/10.1088/1751-8113/40/36/003
https://doi.org/10.1088/1751-8113/40/36/003
https://doi.org/10.1088/0305-4470/34/43/102
https://doi.org/10.1088/0305-4470/34/43/102
https://doi.org/10.1088/0305-4470/34/43/102
https://doi.org/10.1088/0305-4470/34/43/102
https://doi.org/10.1088/0305-4470/33/34/303
https://doi.org/10.1088/0305-4470/33/34/303
https://doi.org/10.1088/0305-4470/33/34/303
https://doi.org/10.1088/0305-4470/33/34/303
https://doi.org/10.1088/0305-4470/31/40/006
https://doi.org/10.1088/0305-4470/31/40/006
https://doi.org/10.1088/0305-4470/31/40/006
https://doi.org/10.1088/0305-4470/31/40/006
https://doi.org/10.1088/1751-8113/46/24/245001
https://doi.org/10.1088/1751-8113/46/24/245001
https://doi.org/10.1088/1751-8113/46/24/245001
https://doi.org/10.1088/1751-8113/46/24/245001



