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LATTICE BOLTZMANN SIMULATION OFPOLYMER-SOLVENT SYSTEMSPATRICK AHLRICHS and BURKHARD D�UNWEGMax Planck Institute for Polymer ResearchAckermannweg 10, D-55128 Mainz, GermanyE-mail: fahlrichs,duenwegg@mpip-mainz.mpg.deReceived (received date)Revised (revised date)We investigate a new method for simulating polymer-solvent systems which combines alattice Boltzmann approach for the uid with a continuum molecular dynamics (MD)model for the polymer chain. The two parts are coupled by a friction force which isproportional to the di�erence of the monomer velocity and the uid velocity at themonomer's position. The strength of the coupling can be tuned by a friction coe�cient.Using this approach we examine the dynamics of one monomer immersed in the uid, andby adding uctuations to the uid and the monomer, also the velocity autocorrelationfunction of one monomer. This results in the de�nition of an e�ective friction coe�cientfor the dynamics of the monomer. Furthermore we analyze the mapping of the modelto an MD simulation, allowing to compare results obtained using the new method withMD.Keywords: Lattice Boltzmann Simulation, Molecular Dynamics, Hydrodynamics, Poly-mer Solutions1. IntroductionThis paper is intended to describe a new method for simulating polymer-solventsystems by coupling a discrete simulation of the uid to a continuous description ofthe polymer system. In using this model, the problem of hydrodynamic interactionin the dynamics of dilute and semi-dilute polymer solutions can be treated. Thebehavior of a single chain in a solvent, for example, has continuously attractedthe attention of MD researchers,1�3 mainly because the analytical theory relies onassumptions4�6 which can be tested using simulations. Furthermore, the problemof hydrodynamic screening in semi-dilute solutions still is a challenge for theory.7�9Several algorithmic methods are in use for these kinds of problems, includingBrownian Dynamics simulations,10�13 Molecular Dynamics,1�3 and Dissipative Par-ticle Dynamics.14 All of them have inherent strengths, but also some disadvantages:The �rst technique must face the problem that the algorithm scales as the cube ofthe number of particles, and the latter two simulate the solvent particles explicitly,leading to CPU intensive simulations of several thousand particles even for a singlechain of, say, 30 monomers.In this paper, we want to focus on the really necessary parts only, i.e. the hydro-1



2 Patrick Ahlrichs & Burkhard D�unwegdynamics of the solvent and the (Brownian) motion of the polymer chains, therebytrying to keep the computational costs at a minimum. Therefore we simulate thepolymer by using a well-established bead-spring continuum MD model,2; 15 and theuid by using the lattice Boltzmann method.16�19 In the bead-spring model, the un-derlying chemistry of the polymer is coarse-grained, leading to an e�cient methodto simulate the scaling behavior of polymers. Especially for the dynamics it is themethod of choice. On the other hand the lattice Boltzmann method o�ers the pos-sibility of an easy and fast simulation of hydrodynamics, competitive with spectralor �nite-di�erence methods.18; 19 Besides, it has the desirable property that uctu-ations may be incorporated, which is fundamental for the simulation of Brownianmotion.19 The coupling of the MD part for the polymer and the lattice Boltzmannmethod for the solvent is done via a friction ansatz, where we assume that the forceexerted by the uid on one monomer is proportional to the di�erence between themonomer velocity and the uid velocity at the monomer's position. We are awarethat this ansatz is not consistent with the no-slip boundary condition normally usedfor example in simulations of suspensions,19; 20 but on large length and time scaleswhere the shape of the particle is not important, the correct beha/-vior is repro-duced. In fact, for the class of problems we are interested in, the relevant lengthand time scale are the radius of gyration and the Zimm time of the chain, respec-tively, which are long compared to monomer length and time scales.7 This ansatzshould thus be su�cient to simulate the scaling behavior of the polymer. Actually,in the over-damped limit for the monomer motion, and the continuum limit for theuid, our approach is identical to the Oono-Freed equations of motion,21 which arecommonly used in polymer solution theory.The remainder of the paper is organized as follows: In Sec. 2 we briey describethe simulation technique, i.e. the lattice Boltzmann method, the polymer modeland the coupling of both. In Sec. 3 we present preliminary tests by applying themethod to the case of one monomer in a uid, both with and without uctuations. Inparticular, the method satis�es the uctuation-dissipation theorem. Furthermore,we can de�ne an e�ective friction coe�cient, which is valuable for the mapping ofMD simulations to the new method. We give a short conclusion and an outlook inSec. 4.2. Simulation Technique2.1. The lattice Boltzmann methodThe lattice Boltzmann method is a discrete method to solve the Boltzmann equationon the computer, leading to the Navier-Stokes equations in the incompressible limitby means of a Chapman-Enskog expansion.22 The central quantity is ni(r; t), thenumber of particles in a volume a3 at the grid point r at time t, which have thevelocity ci a� (i = 1; ::; b), where a is the lattice spacing, � the time step and ci avector leading to the ith neighbor on a grid with unit lattice constant. The evolution



Lattice Boltzmann Simulation of Polymer-Solvent Systems 3equation for ni(r; t) is the lattice Boltzmann equation16ni(r+ cia; t+ �) = ni(r; t) + bXj=1Lij �nj(r; t)� neqj (�;u)� : (1)The matrix Lij expresses the scattering between particle population i and j. Itseigenvalues can be determined from physical and numerical arguments, such thatits explicit form is not necessary for the simulation algorithm.19 The local pseudo-equilibrium distribution neqi (�;u) depends on the density �(r; t) = Pi ni(r; t)�=a3and uid current j(r; t) � �u =Pi ni(r; t)ci�=(�a2) only. Here, � is the mass of auid particle. The usual functional form for neqi (�;u) is assumed:23neqi (�;u) = ��Aq +Bq (ci � u) + Cqu2 +Dq (ci � u)2� : (2)The coe�cients Aq ,Bq ,Cq and Dq (which depend on the sub-lattice q, i.e. the mag-nitude of ci) are determined to reproduce the correct macroscopic hydrodynamicbehavior. Explicit values are known for di�erent lattices.23Here, we implement the 18-velocity model of Ref. 19, which corresponds to theD3Q18 model in the nomenclature of Ref. 23. The set of ci consists of the 6 nearestand 12 next-nearest neighbors on a simple cubic lattice. Via a Chapman-Enskogexpansion one can show that this model leads to the Navier-Stokes equations inthe limit of small Knudsen and low Mach numbers17, and derive a relation betweenthe kinematic viscosity � and the non-zero eigenvalue � of Lij belonging to theeigenvector ci�ci� ; (�; � = x; y; z; � 6= �),� = �16 � 2� + 1� a2� : (3)Fluctuations can be incorporated into the lattice Boltzmann method19 in thespirit of uctuating hydrodynamics.24 In order to conserve mass and momentum,one adds the uctuations to uxes of the conserved variables, i.e. the stress tensor.The lattice Boltzmann equation is therefore extended toni(r+ cia; t+ �) = ni(r; t) + bXj=1 Lij �nj(r; t) � neqj (�;u)�+ n0i(r; t) (4)with the stochastic term n0i(r; t) = �Dq�0��ci�ci� : (5)The random stress uctuations �0 are assumed to have white noise behaviorh�0��(r; t)�0�(r0; t0)i = A�rr 0�tt0 ������ + ����� � 23������ : (6)By solving a resulting discrete Langevin equation one can establish the followinguctuation-dissipation relation:19 A = 2�kBT�2a3� : (7)



4 Patrick Ahlrichs & Burkhard D�unweg2.2. The continuum model for the polymerThe polymer is assumed to be formed of monomers which interact through somepotential V . For example, one can use a truncated Lennard-Jones potential forun-bonded and an additional FENE potential for bonded monomers.15The equations of motiondPidt = � @V@Ri ; dRidt = Pim (8)can then be integrated numerically. We have chosen the velocity-Verlet algorithmfor this purpose.25 Additionally, the force on the monomer by the surrounding uidmust be taken into account, which is subject of the next section.2.3. Coupling of monomer and solventThe simplest approach for coupling the described models for the polymer and thesolvent is to treat one monomer as a point particle. In analogy to the Stokes formulafor a sphere in a viscous uid, we assume the force on the monomer exerted by theuid to be proportional to the di�erence of the velocity of the monomer V and theuid velocity u at the monomer's position,Ffl = �� [V � u(R; t)] : (9)Here, � is a proportionality coe�cient which we will refer to as the \bare" frictioncoe�cient. This ansatz has also been used in the simulation of sedimentation.26 Inour simulation, we determine u(R; t) by linear interpolation of the u values fromthe nearest neighbor grid points. The opposite force is exerted on the uid, i.e. theuid in the cube a3 \feels" a force density of �Ffl=a3, resulting in a momentumdensity exchange per time step of�Ffl=a3 = �j� = Xi;r2nn�ni(r; t)ci �a2�2 : (10)The last equation has to be satis�ed for the change in the number of particles �ni ofthe nearest neighbor grid points (nn) in order to exchange the momentum density�j. Besides, one must also ensure mass conservation in the uid. Still there isadditional freedom for choosing the �ni.We choose a rather simple procedure which involves, at each nearest-neighborgrid point, only the change of one of the ni per spatial dimension. As an example,consider a particle sitting at (x; y; z) with 0 � x; y; z � a. To exchange a certainamount �jx, the grid points a(0; 0; 0) and a(1; 0; 0) are updated according to�n(0;0;0)x = ��n(1;0;0)�x = 12�jx �a2� �1� ya��1� za� ; (11)where the index x in �nx corresponds to the velocity in (1,0,0) direction, and �xin the opposite direction. The last two factors assign the fraction (1�y=a)(1�z=a)



Lattice Boltzmann Simulation of Polymer-Solvent Systems 5of �jx to the pair of grid points (linear interpolation). The other pairs and otherspatial directions are treated analogously.As mentioned before, the main drawback of this ansatz is that on small timeand length scales it is not consistent with the no-slip boundary condition of rigidobjects normally used in hydrodynamic theory. But on larger scales like the radiusof gyration and the Zimm time of the polymer, the relaxation between uid andmonomer is established leading to the correct hydrodynamic scaling behavior, aswill be seen in the following section. Therefore, by using this simple ansatz it shouldbe possible to simulate the dynamic scaling behavior for polymers in a solvent.3. Validation of the MethodIn what follows we will present simulations of a single monomer coupled to the uid.The MD part was done, for simplicity, with a time step �t = � . The monomer masswas chosen m = �.3.1. Deterministic experimentsA simple test case for the method is the relaxation of a single particle having aninitial velocity V (0), say in x-direction, in the uid, without any uctuations. Thecorresponding velocity V (t) of the particle as a function of time is shown in Figure 1.
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Figure 1: Velocity relaxation of an initially kicked particle in the uid, simulatedat � = �1:75, and � = 0:85�=a3. No uctuations are added in this case. Theexpected asymptotic behavior is also shown in the plot.For � = 0:01m=� one sees an exponential initial slope, as expected becausethe inuence of the uid at short times is negligible. After approx. 1000 time



6 Patrick Ahlrichs & Burkhard D�unwegsteps the t�3=2 behavior shows up, as predicted by hydrodynamic theory to be thelong time behavior of such a system (\long time tail").27; 28 Eventually, the �nitesize of the simulation box leads to attening of the curve. Additionally, we alsoplotted the resulting curve for the higher friction coe�cient � = 0:1m=� , showingthe much earlier onset of hydrodynamic behavior. But the problem with higherfriction coe�cients is a larger discretization error for the propagation of the particle,which is apparent in the jittering of the curve.3.2. Stochastic experimentsTo test the stochastic method we have measured the velocity autocorrelation func-tion for a single particle in the uctuating uid. By the uctuation-dissipationtheorem (FDT) the curve should be identical to the deterministic curve of Figure 1for the same bare friction coe�cient. This is not the case, indicating that the simplecoupling violates the FDT. This is seen more dramatically in Figure 2, where weplot the temperature of the particle kBT = mhv2i=3 for various �. The temperaturedepends on the bare friction coe�cient, which shows that the temperature is notwell-de�ned in this case.
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Figure 2: Measured temperature kBT = mhv2i=3 of a particle in the uctuatinguid, simulated at � = �1:75, and � = 0:85�=a3. The uid had a temperaturekBT = 10�5�a2=�2 based on the stochastic lattice Boltzmann approach, Eq. (7).The plot manifests that the temperature is not well-de�ned using the simple cou-pling.The coupling (9), (10) must therefore be re�ned for stochastic dynamics. Wewill show by analytical considerations an extension of the coupling that satis-



Lattice Boltzmann Simulation of Polymer-Solvent Systems 7�es uctuation-dissipation. In analogy with Ref. 21 we start with the followingLangevin-type equations for one particle and the uid:dRdt = Pm (12)dPdt = F� �m [P�mu(R)] + f (13)@@t ~u�(k) = ��k2~u�(k) + �(k) (14)+ 1M � �m [P�mu(R)]� f� � e�(k) exp (ikR) :The �rst two equations are the Langevin equations for a Brownian particle of massm, the last is the Fourier-transformed uctuating incompressible Navier-Stokesequation, both coupled via a friction term analogous to (9). However, in this con-tinuum framework, the particle acts as a point source on the uid, which via Fouriertransformation yields the last term of Eq. (14). Note that also the stochastic forcef acting on the particle enters this term. M = �V is the total mass of the uid.The index � = 1; 2 corresponds to the two transversal modes (the longitudinal iszero due to the assumption of incompressibility), e�(k) is a unit vector orthogonalto k.Explicitly, the Fourier transformations are written asu(r) = Xr X� exp (�ikr) e�(k)~u�(k) (15)~u�(k) = 1V ZV d3r exp (ikr) e�(k)u(r); (16)where k = 2�L n (n 2 Z3) only assumes discrete values due to the �nite linearextension L of the simulation cell.For f and , the usual continuum uctuation-dissipation relations for the un-coupled system are assumed:hf�(t)f�(t0)i = 2kBT��(t� t0)��� (17)h��(k; t)�(q; t0)i = 2kBTM �k2 �kq ����(t� t0): (18)The Fokker-Planck equation for the system (12){(14) of stochastic equations canbe determined and it can be shown that the equilibrium distributionP / exp0@� P 22mkBT � M2kBT Xk;� j~u�(k)j21A (19)is a stationary solution of the Fokker-Planck equation. Therefore the FDT holdsfor (12){(14).Concerning the simulation method, these analytical considerations indicate that,for stochastic dynamics, the equations of motion (8), (9) for the monomers should
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Figure 3: Velocity autocorrelation function compared to velocity relaxation of akicked particle, simulated at � = �1:75, and � = 0:85�=a3. In the stochastic casekBT = 10�5�a2=�2. The plot shows that the uctuation-dissipation theorem holdsfor our simulation.be extended by the stochastic term f , and the momentum density exchange in theuid should include this term also, i.e.�j� = � (Ffl + f) =a3: (20)Note that this implies overall momentum conservation of uid and particle.Using the modi�ed stochastic equations, the velocity autocorrelation function isidentical to the velocity relaxation of the kicked particle (Figure 3), therefore theFDT now holds.3.3. Mapping to an MD simulationIn order to compare results of the new method with MD simulations using explicitsolvent particles, it is desirable to determine the physical input values for the newmethod from results of MD simulations, i.e. the kinematic viscosity �, the density �,the temperature T and the \bare" friction coe�cient � must be mapped. �, � and Tare readily extracted from an MD simulation, the mapping of � is more complicated.We suggest the following method: In the MD simulation the di�usion coe�cientD can be measured, either via the mean square displacement or the Green-Kuborelation, respectively,D = limt!1 h(�r)2i6t = 13 Z 10 hv(t) � v(0)i dt: (21)



Lattice Boltzmann Simulation of Polymer-Solvent Systems 9The \e�ective" friction coe�cient is then calculated by the Einstein relation � =kBT=D.25For this purpose, one has to vary � over a wide range. Since the discretizationerror of the MD part is governed by the product �bare� , see Eq. (9), large frictioncoe�cients require small time steps. In order to facilitate this, we introduce an\absolute" unit system and measure the time step � in units of the absolute timeunit �0. Inspired by Lennard-Jones MD simulations, where the typical time step isroughly 10�2�LJ (�LJ being the natural time scale for these simulations), we choose� = 10�2�0 for small frictions, and � = 10�3�0 for larger ones, while keeping �constant, � = 2:4a2=�0.
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Figure 4: Relation between the bare friction coe�cient and the e�ective frictioncoe�cient. The dashed line corresponds to �e�ective = �bare:We determine the \e�ective" friction coe�cient via the Green-Kubo relation,Eq. (21). As we know that the velocity autocorrelation function is identical to theresponse velocity function of an initially kicked particle, we can use the deterministicfunctions of Figure 1 instead of the velocity autocorrelation function, which wouldneed a much larger numerical e�ort. Performing the integral for several � yields arelation between the \bare" and the \e�ective" � which allows to obtain the former(which is the input value we seek) from the latter. The relation between �e�ectiveand �bare is shown in Figure 4. To summarize, we can determine the physical inputvalues for the new method from results of MD simulations.4. Conclusion and OutlookWe have presented a simple simulation method for polymer-solvent systems which
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