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Abstract

By use of the standard Liouville operator formalism, we derive a new symplectic multi-
ple time step integrator for Hamiltonian systems with disparate masses, which, in contrast
to previous algorithms, conserves the total momentum exactly, and is only moderately
slower. The new scheme is tested numerically by application to Molecular Dynamics simu-
lations of a polymer melt whose monomers have different masses, and compared to earlier

algorithms.
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1 Introduction

Classical Molecular Dynamics (MD) simulations of molecular systems [1-5] are frequently con-
fronted with numerical difficulties related to the existence of a variety of physical time scales.
For polymer systems, for instance, there is a hierarchy of frequencies: bond stretching, bond
angle vibrations, librations in the minima of the torsion potential, and “Einstein frequencies”
in the cage formed by the non—bonded interaction with the neighboring molecules. For a mix-
ture of different molecules one may also have a large separation of time scales due to different
masses. The numerical difficulty arises from the fact that the largest possible time step of a
simple integrator like the standard Verlet algorithm [1] is governed by the highest frequency
in the system, or the fastest degrees of freedom. This can be quite inefficient if the number
of these degrees of freedom is small compared to the overall number of degrees of freedom. In
order to cope with this problem, several authors have suggested to introduce a hierarchy of time
steps just corresponding to the hierarchy of frequencies in the system [6-14]. The idea is to
update the slow degrees of freedom less frequently than the fast ones, and thus save computer
time.

A more recent development is the combination of this idea with the notion of symplectic
and time-reversible integrators. These integrators [15] exhibit extraordinarily good stability,
which is directly related to their mathematical properties: Except for roundoff errors, they
exactly conserve the phase-space volume for each pair of coordinate and momentum sepa-
rately (symplecticity), and bring the system back into the initial phase space configuration
after turning the particles’ velocities around (time-reversal symmetry). The stability can be
simply explained from the fact that a global drift in, say, the total energy would mark the two
directions of time as non—equivalent (which is possible as a result of roundoff errors, but not of
discretization errors). While it had been known for quite a long time that the Verlet algorithm
is actually the lowest—possible order symplectic time-reversible integrator, and more compli-
cated higher-order algorithms had been developed [16, 17], symplecticity and time reversibility
had not been combined with the multiple time step idea until recently, when Tuckerman et
al. [12] suggested the so—called “r-RESPA” scheme. The most straightforward way to derive
symplectic time-reversible integrators is based on the Liouville operator formalism, which has

also been used in Ref. [12].



The usefulness of the “r—RESPA” algorithm has been demonstrated in many applications
[18-22], and speed—ups by an order of magnitude are possible in favorable cases [20]. Hence,
these new methods allow the study of complex systems which were previously inaccessible to
MD. Moreover, the method has been extended to Car—Parrinello type simulations [23-25], and
combined with both the Nose-Hoover thermostat [26] and the Parrinello-Rahman constant
pressure algorithm [27].

In this paper, we are concerned with the simple special case of different time scales being
introduced just by disparate masses. This case has been treated in Ref. [12], but the scheme
considered there does not conserve the total momentum of the system. Since however total
momentum conservation is directly related to the correct simulation of the long-wavelength,
long-time hydrodynamic properties of the system [28], we consider an algorithm which is ca-
pable of momentum conservation rather important. It is the purpose of the present paper to
show that a suitably modified multiple time step algorithm does conserve the total momen-
tum exactly in each integration step, and is not much more time—consuming than the original
scheme.

The paper is organized as follows: In Sec. 2, we use the Liouville operator formalism to
derive the integrators, which in Sec. 3 are examined with respect to their stability and their

performance, while Sec. 4 summarizes our conclusions.

2 Reversible Integrators

2.1 Liouville Operator Formalism

Denoting the position of the jth particle by 7, its mass and momentum by m; and p;, respec-

tively, and the total force acting on it by F}, the Liouville operator is written as
. p; 0 S 0
z’L:Z[p—]—q—l—F—q]. (1)
i / J

The time development of an arbitrary observable A ({r;},{p;}) is then given by the differential
equation
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or its formal solution

A(t) = exp (iLt) A(0), (3)

where for simplicity we use the notation A(t) for A ({7;(¢)},{p:(t)}). The conservation of the

phase-space volume follows directly from the Hermiticity of [2,

[dardi p(lg) = [drdy (LY. (4)

A

which implies that the time—evolution operator exp (iLt) is unitary. Similarly, the time-

inversion symmetry is directly read off from

N

exp (zf/t) exp (—iLt) = 1. (5)

2.2 Verlet Algorithm

Since L is the sum of non—commuting operators, a numerical implementation requires that
exp (zf/t) is factorized in an appropriate way. For a small time step At, the following approxi-
mation is correct up to quadratic order in At:
exp (iﬁAt) - V (exp (@ﬁAt))
= exp (iﬁpAt/Z) exp (if/rAt) exp (if/pAt/Z) , (6)

where the abbreviations

ol

d
i (7)
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iL, = Z% (8)
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(i. e. the decomposition of L in position part and momentum part) have been introduced, and
V' stands for the Verlet—type factorization of the time development operator. This factorization
manifestly induces a time-reversal symmetric and symplectic algorithm, which is the velocity

Verlet updating scheme:

Fi(t+ AL = (1) + At SR (9)

Bilt+ At = Fi)+ = [F (R0 + F (R + A (10)



Since in the production phase the algorithm is nothing but an alternating application of
exp (iﬁrAt) and exp (if/pAt), it is equivalent to the other possible construction, where L,
and f/p are exchanged.

In order to discuss momentum conservation in the Verlet algorithm, we note that from the

above equations one finds for the updating of the total momentum

V (exp (iLAt)) S (1) = 3R+ At)

= YR+ S [F URWD + B ([ + A (1)

J

Hence, the total momentum is exactly conserved if the forces always add up to zero, as they

do if the system is not coupled to an external field (Newton’s third law).

2.3 Multiple Time Step Integrators

For the construction of multiple time step algorithms we consider for simplicity only two types
of degrees of freedom, the “slow” ones (s), and the “fast” ones (f). Assuming that L can be

decomposed as

L=1L;+L,, (12)

where f/f is associated with the high frequencies in the system (the “fast” degrees of freedom),
and L, with the low ones, two possible symplectic and time-reversible multiple time step

integrators based on the Verlet algorithm are
o FastSlowFast:
exp (iﬁAt) — (13)
{V (exp (i[A/f(St))}n/z V (exp (iﬁsAt)) {V (exp (i[A/f(St))}n/z )
o SlowFastSlow:
exp (iﬁAt) — (14)
Vv (exp (iﬁSAt/Z)) {V (exp (i[A/f(St))}n Vv (exp (iﬁSAt/Z)) :

Here we have assumed that the “fast” frequencies are roughly a factor of n higher than the

“slow” ones, such that numerical stability requires to update the “fast” degrees of freedom with
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a time step which is n times smaller than that of the slow variables, §t = At/n. In terms of

explicit programming, the FastSlowFast algorithm involves

e n/2 time steps 6t with the propagator for the fast degrees of freedom

e one time step At with the propagator for the slow degrees of freedom

e n/2 time steps 6t with the propagator for the fast degrees of freedom.
Conversely, the SlowFastSlow scheme means explicitly

e one time step At/2 with the propagator for the slow degrees of freedom

e n time steps 6t with the propagator for the fast degrees of freedom

e one time step At/2 with the propagator for the slow degrees of freedom.

Note that the details of the decomposition of L have been left open so far, and that the
two schemes are really different from each other: While in both schemes the updating of the
“fast” degrees of freedom is just a sequence of n Verlet integrations with f/f and time step 4t,
the slow degrees of freedom are treated differently in the two schemes. SlowFastSlow involves
two consecutive integrations with L, and time step At/2, while FastSlowFast is just a single
integration with time step At. It is obvious that the latter scheme is hence less accurate and
also less stable. The price to be paid for the additional accuracy of SlowFastSlow is of course one
more CPU time expensive force calculation (assuming a majority of slow degrees of freedom).
For the detailed discussion of this point we refer to the next section.

We now specialize to a system with two masses, i. e. m; = my for 7 = 1,..., M, and

mj; =mg; >mysfor g =M +1,...,N. The decomposition of L suggested by Tuckerman et al.

[12] is
M —
o P00
= ; [mf or; +Fjaﬁj] (15)
N —
N )
e s ]—%-I—l [m o, H 1 9@] ' 16)

It is quite obvious that this scheme does not conserve the total momentum of the sys-

tem. As discussed in the previous subsection, the total momentum is changed by an amount



(6t/2) Zj]\il {F}(t) + F}(t + 5t)} in a “fast” updating step, and this does not vanish, since the
slow particles produce an effective external field which acts upon the fast particles. Since after
these updates the fast particles have changed their position, the forces which they later on
(during a “slow” update) exert on the slow particles do not cancel these contributions. Since
the total momentum displacements produced by this effect in a liquid should, for sufficiently
long times, behave randomly, one should expect diffusive behavior of the total momentum.
This is indeed observed, as demonstrated in the next section.

Conversely, if one succeeds in finding a decomposition of the Liouville operator such that
both iﬁf Zé\f:l p; = 0 and il Zé\f:l p; = 0, then it is immediately obvious that such a decom-
position would yield an algorithm which does conserve the total momentum. A decomposition

which satisfies this condition, and which we propose in the present paper, is

N =z M N

-7 Pj 0 =~ 0 o fast d

L, = S S F Fest 2 (17)
]Z:; jOT oo j_%ﬂ 7 0p;

A i\f: =l a

iL, = o (18)
j=M+1 Top;

where the forces on the slow particles (j = M + 1,..., N) have been split up into a first part
F;faSt, which is induced by the fast particles, and a second part F)flow, induced by other slow
particles. The idea behind this decomposition is the observation that a multiple time step
integrator will only yield a substantial speed—up if the slow particles are a large fraction of the
overall system. Under these circumstances, however, most of the CPU time goes into calculating
the forces between these slow particles. If it is possible to do this operation only every nth
step, i. e. if ﬁs contains all of the forces between the slow particles, most of the possible gain
is achieved. That both I, and f/f indeed conserve the total momentum separately is very
easily seen from the fact that il >;P; = 0 as a result of Newton III within the subsystem
of slow particles, while iﬁf >°; P; = 0 must hold since also iL >;P; =0 and f/f =L—1L, It
should be noted that for this special decomposition V' (exp (iﬁsAt)) = exp (if/SAt), such that
FastSlowFast and SlowFastSlow algorithms coincide (this is not so for the decomposition by

Tuckerman et al.). The proposed algorithm then amounts to an alternation between

e n Verlet integration steps with time step d¢, where all particles are propagated and all

forces are taken into account, except those which act between the slow particles, and



e one propagation of the velocities of the slow particles, where the big time step At is used,

and only the forces between these slow particles are taken into account.

3 Numerical Tests

3.1 Model System and Simulation Details

The model system for our simulation is a melt of bead-spring polymer chains [29]. One chain

consists of N monomers, held together by the FENE potential

U (r) = —0.5k B3 In [1 — (r/ Ro)’| . (19)
Furthermore, a shifted purely repulsive Lennard—Jones potential

U0) = e (o = o+ 5. 20

truncated at r = 260, acts between all monomers in order to model the excluded—volume
interaction. The parameters Ry = 1.50 and k = 30¢/o® were chosen to ensure that bond-
crossing is practically impossible [29]. We use Lennard-Jones units where ¢ = ¢ = 1, and
the mass of the fast monomers is also set equal to unity. Within a chain, all monomers have
the same mass. Runs were performed at monomer number density p = 0.85, temperature
kgT = 1.0, and chain length N = 20. In order to have a large fraction of slow degrees of
freedom, 24 chains were assigned monomer mass m,, while the remaining 6 chains consisted
of light monomers (m = m; = 1). Apart from the different masses, the chains are identical.
We studied the cases m, = 16 as well as m, = 100, and always used a time step for the fast
integration of 4t = 0.003, which ensures stability for runs with several million time steps. For
our numerical tests, we however confined ourselves to 2 x 10* steps per run, where we define
one step as one integration with d¢. The results were then averaged over 10 independent runs.
Since the typical oscillation time is proportional to the square root of the involved mass, we
used at most n,,,, = \/W fast integrations per slow integration, but also studied cases

n < Nypap-



3.2 Violation of Momentum Conservation for the Tuckerman et al.

Decomposition

Figure 1 shows the x—and y—component of the total momentum of the system using Tuckerman’s
algorithm in its FastSlowFast variant for a mass ratio of m,/m; = 100, and n = 10. Only the
first 1000 steps are shown. Qualitatively, this looks much like the expected random—walk—like
motion. More quantitatively, we also calculated the mean squared displacement of the total
momentum, which is plotted vs. time (in MD steps) in Fig. 2. Indeed, for long times the
displacement is proportional to time. i. e. behaves diffusively. For short times (see inset of
Figure 2) we observe some memory effects of the walk, resulting in a peak at short times.
Apparently, the second and third cycle tend to “correct” the error introduced by the first one,
but not fully, such that a net diffusion remains. It is evident from our data (the corresponding
plot is not shown here) and in agreement with physical intuition that the violation of momentum

conservation is the larger the higher the number of small steps n per big step is.

3.3 Stability

Before looking in detail at energy conservation for different multiple time step integration
schemes, we first discuss these properties in a qualitative way. It is useful to look at the

normalized deviation from the initial energy, i. e.

AE(t)  E(t)— E(0)
E(0) — E@0) (21)

Figure 3 compares this energy deviation for the two propagators proposed by Tuckerman et al.
with the one discussed in this work. All of these runs were actually done with exactly the same
initial configuration leading to the same structure in the energy fluctuations. This indicates
that the integrators produce at the beginning very similar trajectories in phase space. The
small deviations stemming from different integrators will grow exponentially with time, and at
some point all correlations between the trajectories will vanish [15]. We now proceed with a
more quantitative discussion of energy conservation.

The numerical fluctuations of the different integrators can be characterized by the following

two quantities [26]

AE17,‘o7,‘al
AEleL 7

AE™ (22)
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Here AFE;y, and AFEy,, are the root mean square fluctuations of the total energy and the
kinetic energy, respectively. So AE"? is the ratio of the numerical fluctuations of the total
energy due to the finite order of the integrator (which should of course be as small as possible)
to the fluctuations of the kinetic energy, which are inherent in a microcanonical simulation and
related to the specific heat. AFE is simply the time average of the absolute value of the deviation
AFE(t)/E(0) as defined above. The data which we obtained are listed in Tables 1 and 2.

First it is noticeable that the order of magnitude of energy fluctuations is the same for all
integration schemes. As one expects, the Verlet algorithm leads to the smallest fluctuations.
Common to all multiple time step algorithms discussed here is a decreasing stability with
higher n. With respect to stability our algorithm is worse than the SlowFastSlow variant but
better than the FastSlowFast variant of the Tuckerman et al. decomposition. The reason
for SlowFastSlow showing better stability than the others has already been discussed in the

previous section.

3.4 Performance

In order to obtain a good improvement in CPU time by multiple time step methods, it is
necessary to have a clear separation of time scales. The other factor which determines the
speed—up is the ratio of the number of fast to slow degrees of freedom. Since the multiple
time step approach rests on saving the operations related to the slow degrees of freedom (in
particular, the force calculation within the subsystem of slow particles), it is useless to employ
it for systems with only a few slow degrees of freedom. Considerable net gains can only be
expected if the fraction of light particles is of the order of 10% or less. This is demonstrated in
Table 3, where we list the CPU time needed for 10° steps for the various algorithms, confining
ourselves to the case mg/m; = 100, n = 10, but varying the fraction of light chains. The runs
were done on one processor of a Convex/HP SPP1200 machine. The data clearly show that
the speed—up is only moderate even in the case of only a single light chain.

Of course, 1t is not possible to give a general quantitative statement about the performance
gains of multiple time step methods, since these depend in a non—trivial way on the model

(i. e. the range of interaction, the form of the potential, the system size, the density, etc.), the
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details of the computer architecture (e. g. scalar, vector or parallel machine, cache size, etc.),
the quality of the compiler, and the details of the implementation. We used a scalar version of
a link—cell algorithm combined with a Verlet table [30], and optimized the “skin” parameter (cf.
Ref. [30]) for each algorithm separately. A program using different techniques will definitely
yield other speed—up factors. Moreover, we expect much better improvements if the interaction
is more complicated (i. e. computationally more expensive) than our simple potentials. The
fact that the CPU time increases with the fraction of light particles is easily understandable:
The simple Verlet algorithm needs more frequent updates of the neighbor table for a lighter,
i. e. faster system, and the multiple time step methods spend more time in the integration
steps for the fast degrees of freedom.

Quite generally, it is clear that SlowFastSlow is slower than FastSlowFast, due to the ad-
ditional force calculation for the slow degrees of freedom which are the majority. Moreover,
the new algorithm discussed in the present paper is usually also somewhat slower than Fast-
SlowFast, since one has to integrate the positions and velocities of all particles in the inner
(“fast”) loop, in contrast to updating only the fast degrees of freedom. Hence the loss com-
pared to FastSlowFast is determined by the CPU time needed to do these updates, which is
usually moderate in comparison with the force calculation. The measurements confirm that
the algorithm proposed in this paper is somewhere between the two others, and the difference

in performance between all three variants is not very big.

4 Conclusions

We have shown in this work how to construct a reversible multiple time step integrator that
exactly conserves the total momentum in each integration step. This was done by taking into
account Newton’s third law in the decomposition of the Liouville operator into a fast and a
slow part, such that each part satisfies the conservation law separately. The resulting algorithm
has stability and performance properties comparable to those of multiple time step algorithms
described in the literature. For all algorithms, the speed—up factor depends crucially on the
fraction of CPU time which is spent in the force routine for the slow degrees of freedom.
We found that under reasonable conditions it can be much smaller than the optimistic values

reported in the literature [10]; nevertheless we feel that with the development of these algorithms
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a significant progress in MD methodology has been achieved.
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Figure 1: x— and y—components of the total momentum in LJ units for the first 1000 MD steps

with Tuckerman’s FastSlowFast algorithm, for mass ratio m,/m; = 100, and n = 10.
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Figure 2: Mean squared displacement of the total momentum as a function of time (measured

in number of small integration steps) with Tuckerman’s FastSlowFast algorithm for n = 10

small steps per big integration step.
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Figure 3: AFE(t)/E(0) as a function of time (in MD steps) for different multiple time step

algorithms starting from the same initial configuration.
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Tables

Table 1: AE™* and AL, characterizing the integrators’ stability, for a mass ratio of m,/m; =

16 and various numbers of small steps per big step, n. For this mass ratio, n = 4 corresponds

to the natural time scaling.

m =16 Verlet this work Tuckerman Tuckerman

FastSlowFast SlowFastSlow

n = n = n=2|n=4 | n=21|n=4

AE™* %100 || 0.1868 | 0.1995 | 0.3900 | 0.2152 | 0.5000 | 0.1879 | 0.2162

AE % 10° 0.2736 | 0.3100 | 0.6032 | 0.3471 | 0.8609 | 0.3145 | 0.3473

Table 2: AE™*® and AFE for a system with a mass ratio of m,;/m; = 100, i. e. a maximum

number of small time steps of n = 10.

m = 100 Verlet this work Tuckerman Tuckerman
FastSlowFast SlowFastSlow
n= n= n=10| n=4 n=8 |n=10| n=4 n=8 | n=10

AE™?® % 100 || 0.1849 | 0.1938 | 0.2896 | 0.3971 | 0.1928 | 0.3041

0.4423 | 0.1834 | 0.1971 | 0.2072
AE x 10° 0.3647 | 0.4380 | 0.5470 | 0.6723 | 0.4206 | 0.5768

0.8350 | 0.4134 | 0.4370 | 0.4606

Table 3: CPU time in seconds needed by all discussed algorithms for 10° steps for different
mixing ratios r, i. e. the ratio of the number of light chains to the total number of chains.

Times for multiple time step algorithms are relative to the Verlet algorithm.

m = 100, n = 10 || Verlet | this work | FastSlowFast | SlowFastSlow
r=3.3% 400 0.60 0.57 0.64
r=10.0% 413 0.67 0.64 0.76
r=20.0% 432 0.72 0.73 0.84
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