
Multiple Time Step Integrators and MomentumConservationA. Kopf� and W. PaulInstitut f�ur Physik, Johannes{Gutenberg{Universit�at,D{55099 Mainz, GermanyB. D�unwegMax{Planck{Institut f�ur Polymerforschung,Ackermannweg 10, D{55128 Mainz, GermanyAbstractBy use of the standard Liouville operator formalism, we derive a new symplectic multi-ple time step integrator for Hamiltonian systems with disparate masses, which, in contrastto previous algorithms, conserves the total momentum exactly, and is only moderatelyslower. The new scheme is tested numerically by application to Molecular Dynamics simu-lations of a polymer melt whose monomers have di�erent masses, and compared to earlieralgorithms.PACS: 02.70.Ns, 61.25.HqKeywords: Molecular Dynamics, Multiple Time Step MethodsLiouville Operator Formalism, Symplectic IntegratorsVerlet Algorithm, Momentum ConservationPolymer Melts�to whom correspondence should be addressed (phone: +49{6131{39{3645, fax: +49{6131{39{5441, e{mail:kopf@leonow.physik.uni-mainz.de). 1



1 IntroductionClassical Molecular Dynamics (MD) simulations of molecular systems [1{5] are frequently con-fronted with numerical di�culties related to the existence of a variety of physical time scales.For polymer systems, for instance, there is a hierarchy of frequencies: bond stretching, bondangle vibrations, librations in the minima of the torsion potential, and \Einstein frequencies"in the cage formed by the non{bonded interaction with the neighboring molecules. For a mix-ture of di�erent molecules one may also have a large separation of time scales due to di�erentmasses. The numerical di�culty arises from the fact that the largest possible time step of asimple integrator like the standard Verlet algorithm [1] is governed by the highest frequencyin the system, or the fastest degrees of freedom. This can be quite ine�cient if the numberof these degrees of freedom is small compared to the overall number of degrees of freedom. Inorder to cope with this problem, several authors have suggested to introduce a hierarchy of timesteps just corresponding to the hierarchy of frequencies in the system [6{14]. The idea is toupdate the slow degrees of freedom less frequently than the fast ones, and thus save computertime.A more recent development is the combination of this idea with the notion of symplecticand time{reversible integrators. These integrators [15] exhibit extraordinarily good stability,which is directly related to their mathematical properties: Except for roundo� errors, theyexactly conserve the phase{space volume for each pair of coordinate and momentum sepa-rately (symplecticity), and bring the system back into the initial phase space con�gurationafter turning the particles' velocities around (time{reversal symmetry). The stability can besimply explained from the fact that a global drift in, say, the total energy would mark the twodirections of time as non{equivalent (which is possible as a result of roundo� errors, but not ofdiscretization errors). While it had been known for quite a long time that the Verlet algorithmis actually the lowest{possible order symplectic time{reversible integrator, and more compli-cated higher{order algorithms had been developed [16, 17], symplecticity and time reversibilityhad not been combined with the multiple time step idea until recently, when Tuckerman etal. [12] suggested the so{called \r{RESPA" scheme. The most straightforward way to derivesymplectic time{reversible integrators is based on the Liouville operator formalism, which hasalso been used in Ref. [12]. 2



The usefulness of the \r{RESPA" algorithm has been demonstrated in many applications[18{22], and speed{ups by an order of magnitude are possible in favorable cases [20]. Hence,these new methods allow the study of complex systems which were previously inaccessible toMD. Moreover, the method has been extended to Car{Parrinello type simulations [23{25], andcombined with both the Nose{Hoover thermostat [26] and the Parrinello{Rahman constantpressure algorithm [27].In this paper, we are concerned with the simple special case of di�erent time scales beingintroduced just by disparate masses. This case has been treated in Ref. [12], but the schemeconsidered there does not conserve the total momentum of the system. Since however totalmomentum conservation is directly related to the correct simulation of the long{wavelength,long{time hydrodynamic properties of the system [28], we consider an algorithm which is ca-pable of momentum conservation rather important. It is the purpose of the present paper toshow that a suitably modi�ed multiple time step algorithm does conserve the total momen-tum exactly in each integration step, and is not much more time{consuming than the originalscheme.The paper is organized as follows: In Sec. 2, we use the Liouville operator formalism toderive the integrators, which in Sec. 3 are examined with respect to their stability and theirperformance, while Sec. 4 summarizes our conclusions.2 Reversible Integrators2.1 Liouville Operator FormalismDenoting the position of the jth particle by ~rj , its mass and momentum by mj and ~pj , respec-tively, and the total force acting on it by ~Fj, the Liouville operator is written asiL̂ =Xj " ~pjmj @@~rj + ~Fj @@~pj # : (1)The time development of an arbitrary observable A (f~rig ; f~pig) is then given by the di�erentialequation ddtA = iL̂A (2)3



or its formal solution A(t) = exp �iL̂t�A(0); (3)where for simplicity we use the notation A(t) for A (f~ri(t)g ; f~pi(t)g). The conservation of thephase{space volume follows directly from the Hermiticity of L̂,Z d~rd~p f?(L̂g) = Z d~rd~p (L̂f)?g; (4)which implies that the time{evolution operator exp �iL̂t� is unitary. Similarly, the time{inversion symmetry is directly read o� fromexp�iL̂t� exp��iL̂t� = 1: (5)2.2 Verlet AlgorithmSince L̂ is the sum of non{commuting operators, a numerical implementation requires thatexp �iL̂t� is factorized in an appropriate way. For a small time step �t, the following approxi-mation is correct up to quadratic order in �t:exp �iL̂�t� ! V �exp�iL̂�t��= exp �iL̂p�t=2� exp�iL̂r�t� exp �iL̂p�t=2� ; (6)where the abbreviations iL̂p = Xj ~Fj @@~pj (7)iL̂r = Xj ~pjmj @@~rj (8)(i. e. the decomposition of L̂ in position part and momentum part) have been introduced, andV stands for the Verlet{type factorization of the time development operator. This factorizationmanifestly induces a time{reversal symmetric and symplectic algorithm, which is the velocityVerlet updating scheme:~rj(t+�t) = ~rj(t) +�t~pj(t)mj + (�t)22mj ~Fj (f~ri(t)g) (9)~pj(t+�t) = ~pj(t) + �t2 h~Fj (f~ri(t)g) + ~Fj (f~ri(t+�t)g)i : (10)4



Since in the production phase the algorithm is nothing but an alternating application ofexp �iL̂r�t� and exp�iL̂p�t�, it is equivalent to the other possible construction, where L̂rand L̂p are exchanged.In order to discuss momentum conservation in the Verlet algorithm, we note that from theabove equations one �nds for the updating of the total momentumV �exp �iL̂�t��Xj ~pj(t) =Xj ~pj(t+�t)= Xj ~pj(t) + �t2 Xj h~Fj (f~ri(t)g) + ~Fj (f~ri(t+�t)g)i : (11)Hence, the total momentum is exactly conserved if the forces always add up to zero, as theydo if the system is not coupled to an external �eld (Newton's third law).2.3 Multiple Time Step IntegratorsFor the construction of multiple time step algorithms we consider for simplicity only two typesof degrees of freedom, the \slow" ones (s), and the \fast" ones (f). Assuming that L̂ can bedecomposed as L̂ = L̂f + L̂s; (12)where L̂f is associated with the high frequencies in the system (the \fast" degrees of freedom),and L̂s with the low ones, two possible symplectic and time{reversible multiple time stepintegrators based on the Verlet algorithm are� FastSlowFast: exp�iL̂�t�! (13)hV �exp�iL̂f�t��in=2 V �exp �iL̂s�t�� hV �exp �iL̂f�t��in=2 ;� SlowFastSlow: exp �iL̂�t�! (14)V �exp �iL̂s�t=2�� hV �exp�iL̂f�t��in V �exp�iL̂s�t=2�� :Here we have assumed that the \fast" frequencies are roughly a factor of n higher than the\slow" ones, such that numerical stability requires to update the \fast" degrees of freedom with5



a time step which is n times smaller than that of the slow variables, �t = �t=n. In terms ofexplicit programming, the FastSlowFast algorithm involves� n=2 time steps �t with the propagator for the fast degrees of freedom� one time step �t with the propagator for the slow degrees of freedom� n=2 time steps �t with the propagator for the fast degrees of freedom.Conversely, the SlowFastSlow scheme means explicitly� one time step �t=2 with the propagator for the slow degrees of freedom� n time steps �t with the propagator for the fast degrees of freedom� one time step �t=2 with the propagator for the slow degrees of freedom.Note that the details of the decomposition of L̂ have been left open so far, and that thetwo schemes are really di�erent from each other: While in both schemes the updating of the\fast" degrees of freedom is just a sequence of n Verlet integrations with L̂f and time step �t,the slow degrees of freedom are treated di�erently in the two schemes. SlowFastSlow involvestwo consecutive integrations with L̂s and time step �t=2, while FastSlowFast is just a singleintegration with time step �t. It is obvious that the latter scheme is hence less accurate andalso less stable. The price to be paid for the additional accuracy of SlowFastSlow is of course onemore CPU time expensive force calculation (assuming a majority of slow degrees of freedom).For the detailed discussion of this point we refer to the next section.We now specialize to a system with two masses, i. e. mj = mf for j = 1; : : : ;M , andmj = ms > mf for j = M + 1; : : : ; N . The decomposition of L̂ suggested by Tuckerman et al.[12] is iL̂f = MXj=1 " ~pjmf @@~rj + ~Fj @@~pj # (15)iL̂s = NXj=M+1 " ~pjms @@~rj + ~Fj @@~pj # : (16)It is quite obvious that this scheme does not conserve the total momentum of the sys-tem. As discussed in the previous subsection, the total momentum is changed by an amount6



(�t=2)PMj=1 h~Fj(t) + ~Fj(t+ �t)i in a \fast" updating step, and this does not vanish, since theslow particles produce an e�ective external �eld which acts upon the fast particles. Since afterthese updates the fast particles have changed their position, the forces which they later on(during a \slow" update) exert on the slow particles do not cancel these contributions. Sincethe total momentum displacements produced by this e�ect in a liquid should, for su�cientlylong times, behave randomly, one should expect di�usive behavior of the total momentum.This is indeed observed, as demonstrated in the next section.Conversely, if one succeeds in �nding a decomposition of the Liouville operator such thatboth iL̂f PNj=1 ~pj = 0 and iL̂sPNj=1 ~pj = 0, then it is immediately obvious that such a decom-position would yield an algorithm which does conserve the total momentum. A decompositionwhich satis�es this condition, and which we propose in the present paper, isiL̂f = NXj=1 ~pjmj @@~rj + MXj=1 ~Fj @@~pj + NXj=M+1 ~F fastj @@~pj (17)iL̂s = NXj=M+1 ~F slowj @@~pj ; (18)where the forces on the slow particles (j = M + 1; : : : ; N) have been split up into a �rst part~F fastj , which is induced by the fast particles, and a second part ~F slowj , induced by other slowparticles. The idea behind this decomposition is the observation that a multiple time stepintegrator will only yield a substantial speed{up if the slow particles are a large fraction of theoverall system. Under these circumstances, however, most of the CPU time goes into calculatingthe forces between these slow particles. If it is possible to do this operation only every nthstep, i. e. if L̂s contains all of the forces between the slow particles, most of the possible gainis achieved. That both L̂s and L̂f indeed conserve the total momentum separately is veryeasily seen from the fact that iL̂sPj ~pj = 0 as a result of Newton III within the subsystemof slow particles, while iL̂f Pj ~pj = 0 must hold since also iL̂Pj ~pj = 0 and L̂f = L̂ � L̂s. Itshould be noted that for this special decomposition V �exp�iL̂s�t�� = exp �iL̂s�t�, such thatFastSlowFast and SlowFastSlow algorithms coincide (this is not so for the decomposition byTuckerman et al.). The proposed algorithm then amounts to an alternation between� n Verlet integration steps with time step �t, where all particles are propagated and allforces are taken into account, except those which act between the slow particles, and7



� one propagation of the velocities of the slow particles, where the big time step �t is used,and only the forces between these slow particles are taken into account.3 Numerical Tests3.1 Model System and Simulation DetailsThe model system for our simulation is a melt of bead{spring polymer chains [29]. One chainconsists of N monomers, held together by the FENE potentialU ch(r) = �0:5kR20 ln h1� (r=R0)2i : (19)Furthermore, a shifted purely repulsive Lennard{Jones potentialULJ (r) = 4� "(�=r)12 � (�=r)6 + 14# ; (20)truncated at r = 21=6�, acts between all monomers in order to model the excluded{volumeinteraction. The parameters R0 = 1:5� and k = 30�=�2 were chosen to ensure that bond{crossing is practically impossible [29]. We use Lennard{Jones units where � = � = 1, andthe mass of the fast monomers is also set equal to unity. Within a chain, all monomers havethe same mass. Runs were performed at monomer number density � = 0:85, temperaturekBT = 1:0, and chain length N = 20. In order to have a large fraction of slow degrees offreedom, 24 chains were assigned monomer mass ms, while the remaining 6 chains consistedof light monomers (m = mf = 1). Apart from the di�erent masses, the chains are identical.We studied the cases ms = 16 as well as ms = 100, and always used a time step for the fastintegration of �t = 0:003, which ensures stability for runs with several million time steps. Forour numerical tests, we however con�ned ourselves to 2 � 104 steps per run, where we de�neone step as one integration with �t. The results were then averaged over 10 independent runs.Since the typical oscillation time is proportional to the square root of the involved mass, weused at most nmax = qms=mf fast integrations per slow integration, but also studied casesn < nmax. 8



3.2 Violation of Momentum Conservation for the Tuckerman et al.DecompositionFigure 1 shows the x{ and y{component of the total momentumof the system using Tuckerman'salgorithm in its FastSlowFast variant for a mass ratio of ms=mf = 100, and n = 10. Only the�rst 1000 steps are shown. Qualitatively, this looks much like the expected random{walk{likemotion. More quantitatively, we also calculated the mean squared displacement of the totalmomentum, which is plotted vs. time (in MD steps) in Fig. 2. Indeed, for long times thedisplacement is proportional to time. i. e. behaves di�usively. For short times (see inset ofFigure 2) we observe some memory e�ects of the walk, resulting in a peak at short times.Apparently, the second and third cycle tend to \correct" the error introduced by the �rst one,but not fully, such that a net di�usion remains. It is evident from our data (the correspondingplot is not shown here) and in agreement with physical intuition that the violation of momentumconservation is the larger the higher the number of small steps n per big step is.3.3 StabilityBefore looking in detail at energy conservation for di�erent multiple time step integrationschemes, we �rst discuss these properties in a qualitative way. It is useful to look at thenormalized deviation from the initial energy, i. e.�E(t)E(0) = E(t)� E(0)E(0) : (21)Figure 3 compares this energy deviation for the two propagators proposed by Tuckerman et al.with the one discussed in this work. All of these runs were actually done with exactly the sameinitial con�guration leading to the same structure in the energy uctuations. This indicatesthat the integrators produce at the beginning very similar trajectories in phase space. Thesmall deviations stemming from di�erent integrators will grow exponentially with time, and atsome point all correlations between the trajectories will vanish [15]. We now proceed with amore quantitative discussion of energy conservation.The numerical uctuations of the di�erent integrators can be characterized by the followingtwo quantities [26] �Erms = �Etotal�Ekin ; (22)9



�E = 1T TXt=1 �����E(t)� E(0)E(0) ����� : (23)Here �Etotal and �Ekin are the root mean square uctuations of the total energy and thekinetic energy, respectively. So �Erms is the ratio of the numerical uctuations of the totalenergy due to the �nite order of the integrator (which should of course be as small as possible)to the uctuations of the kinetic energy, which are inherent in a microcanonical simulation andrelated to the speci�c heat. �E is simply the time average of the absolute value of the deviation�E(t)=E(0) as de�ned above. The data which we obtained are listed in Tables 1 and 2.First it is noticeable that the order of magnitude of energy uctuations is the same for allintegration schemes. As one expects, the Verlet algorithm leads to the smallest uctuations.Common to all multiple time step algorithms discussed here is a decreasing stability withhigher n. With respect to stability our algorithm is worse than the SlowFastSlow variant butbetter than the FastSlowFast variant of the Tuckerman et al. decomposition. The reasonfor SlowFastSlow showing better stability than the others has already been discussed in theprevious section.3.4 PerformanceIn order to obtain a good improvement in CPU time by multiple time step methods, it isnecessary to have a clear separation of time scales. The other factor which determines thespeed{up is the ratio of the number of fast to slow degrees of freedom. Since the multipletime step approach rests on saving the operations related to the slow degrees of freedom (inparticular, the force calculation within the subsystem of slow particles), it is useless to employit for systems with only a few slow degrees of freedom. Considerable net gains can only beexpected if the fraction of light particles is of the order of 10% or less. This is demonstrated inTable 3, where we list the CPU time needed for 105 steps for the various algorithms, con�ningourselves to the case ms=mf = 100, n = 10, but varying the fraction of light chains. The runswere done on one processor of a Convex/HP SPP1200 machine. The data clearly show thatthe speed{up is only moderate even in the case of only a single light chain.Of course, it is not possible to give a general quantitative statement about the performancegains of multiple time step methods, since these depend in a non{trivial way on the model(i. e. the range of interaction, the form of the potential, the system size, the density, etc.), the10



details of the computer architecture (e. g. scalar, vector or parallel machine, cache size, etc.),the quality of the compiler, and the details of the implementation. We used a scalar version ofa link{cell algorithm combined with a Verlet table [30], and optimized the \skin" parameter (cf.Ref. [30]) for each algorithm separately. A program using di�erent techniques will de�nitelyyield other speed{up factors. Moreover, we expect much better improvements if the interactionis more complicated (i. e. computationally more expensive) than our simple potentials. Thefact that the CPU time increases with the fraction of light particles is easily understandable:The simple Verlet algorithm needs more frequent updates of the neighbor table for a lighter,i. e. faster system, and the multiple time step methods spend more time in the integrationsteps for the fast degrees of freedom.Quite generally, it is clear that SlowFastSlow is slower than FastSlowFast, due to the ad-ditional force calculation for the slow degrees of freedom which are the majority. Moreover,the new algorithm discussed in the present paper is usually also somewhat slower than Fast-SlowFast, since one has to integrate the positions and velocities of all particles in the inner(\fast") loop, in contrast to updating only the fast degrees of freedom. Hence the loss com-pared to FastSlowFast is determined by the CPU time needed to do these updates, which isusually moderate in comparison with the force calculation. The measurements con�rm thatthe algorithm proposed in this paper is somewhere between the two others, and the di�erencein performance between all three variants is not very big.4 ConclusionsWe have shown in this work how to construct a reversible multiple time step integrator thatexactly conserves the total momentum in each integration step. This was done by taking intoaccount Newton's third law in the decomposition of the Liouville operator into a fast and aslow part, such that each part satis�es the conservation law separately. The resulting algorithmhas stability and performance properties comparable to those of multiple time step algorithmsdescribed in the literature. For all algorithms, the speed{up factor depends crucially on thefraction of CPU time which is spent in the force routine for the slow degrees of freedom.We found that under reasonable conditions it can be much smaller than the optimistic valuesreported in the literature [10]; nevertheless we feel that with the development of these algorithms11



a signi�cant progress in MD methodology has been achieved.5 AcknowledgementA. K. acknowledges support by the German federal department for education and research(BMBF) under Grant No. 03{BI4MAI{7.References[1] Allen, M. P. and Tildesley, D. J., Computer Simulation of Liquids, Clarendon, Oxford,1987.[2] Rapaport, D. C., The Art of Molecular Dynamics Simulation, Cambridge University Press,New York, 1995.[3] Ciccotti, G. and Hoover, W. G., editors, Molecular{Dynamics Simulation of Statistical{Mechanical Systems, North{Holland, Amsterdam, 1986.[4] Allen, M. P. and Tildesley, D. J., editors, Computer Simulation in Chemical Physics,Kluwer Academic Publishers, Dordrecht, 1993.[5] Binder, K. and Ciccotti, G., editors, Monte Carlo and Molecular Dynamics of CondensedMatter Systems, Italian Physical Society, Bologna, 1996.[6] Streett, W. B., Tildesley, D. J., and Saville, G., Mol. Phys. 35 (1978) 639.[7] Swindoll, R. D. and Haile, J. M., J. Comp. Phys. 53 (1984) 289.[8] Teleman, O. and J�onsson, B., J. Comp. Chem. 7 (1986) 58.[9] Tuckermann, M. E., Martyna, G. J., and Berne, B. J., J. Chem. Phys. 93 (1990) 1287.[10] Tuckermann, M. E., Berne, B. J., and Rossi, A., J. Chem. Phys. 94 (1991) 1465.[11] Tuckerman, M. E. and Berne, B. J., J. Chem. Phys. 95 (1991) 4389.[12] Tuckerman, M. E., Berne, B. J., and Martyna, G. J., J. Chem. Phys. 97 (1992) 1990.12



[13] Scully, J. L. and Hermans, J., Molecular Simulation 11 (1993) 67.[14] Forester, T. and Smith, W., Molecular Simulation 13 (1994) 195.[15] M. Sprik, in Ref. [5].[16] Yoshida, H., Physics Letters A 150 (1990) 262.[17] Gray, S. K., Noid, D. W., and Sumpter, B. G., J. Chem. Phys. 101 (1994) 4062.[18] Tuckerman, M. E. and Berne, B. J., J. Chem. Phys. 98 (1993) 7301.[19] Tuckerman, M. E. and Langel, W., J. Chem. Phys. 100 (1994) 6368.[20] Procacci, P. and Berne, B. J., J. Chem. Phys. 101 (1994) 2421.[21] Mizan, T. I., Savage, P. E., and Zi�, R. M., J. Phys. Chem. 98 (1994) 13067.[22] Humphrey, D. D., Friesner, R. A., and Berne, B. J., J. Phys. Chem. 98 (1994) 6885.[23] Tuckerman, M. E. and Parrinello, M., J. Chem. Phys. 101 (1994) 1302.[24] Tuckerman, M. E. and Parrinello, M., J. Chem. Phys. 101 (1994) 1316.[25] Gibson, D. A. and Carter, E. A., J. Phys. Chem. 97 (1993) 13429.[26] Watanabe, M. and Karplus, M., J. Chem. Phys. 99 (1993) 8063.[27] Procacci, P. and Berne, B. J., Mol. Phys. 83 (1994) 255.[28] D�unweg, B., J. Chem. Phys. 99 (1993) 6977.[29] Kremer, K. and Grest, G. S., J. Chem. Phys. 92 (1990) 5057.[30] Grest, G. S., D�unweg, B., and Kremer, K., Comp. Phys. Comm. 55 (1989) 269.
13



Figures
−0.4 −0.2 0.0 0.2 0.4

X−Component

−0.4

−0.2

0.0

0.2

0.4

Y
−C

om
po

ne
nt

Figure 1: x{ and y{components of the total momentum in LJ units for the �rst 1000 MD stepswith Tuckerman's FastSlowFast algorithm, for mass ratio ms=mf = 100, and n = 10.
0 2000 4000 6000 8000 10000

t [Steps]

0.0

0.5

1.0

1.5

D
is

pl
ac

em
en

t o
f t

ot
al

 m
om

en
tu

m

0 100 200 300
0.00

0.05

0.10

Figure 2: Mean squared displacement of the total momentum as a function of time (measuredin number of small integration steps) with Tuckerman's FastSlowFast algorithm for n = 10small steps per big integration step. 14



0 100 200 300 400
Time

−1.3e−05

−3.0e−06

7.0e−06

1.7e−05

∆E
(t

)/
E

(0
)

FastSlowFast
SlowFastSlow
this work

Figure 3: �E(t)=E(0) as a function of time (in MD steps) for di�erent multiple time stepalgorithms starting from the same initial con�guration.
15



TablesTable 1: �Erms and �E, characterizing the integrators' stability, for a mass ratio of ms=mf =16 and various numbers of small steps per big step, n. For this mass ratio, n = 4 correspondsto the natural time scaling.m = 16 Verlet this work Tuckerman TuckermanFastSlowFast SlowFastSlown = 2 n = 4 n = 2 n = 4 n = 2 n = 4�Erms � 100 0.1868 0.1995 0.3900 0.2152 0.5000 0.1879 0.2162�E � 105 0.2736 0.3100 0.6032 0.3471 0.8609 0.3145 0.3473Table 2: �Erms and �E for a system with a mass ratio of ms=mf = 100, i. e. a maximumnumber of small time steps of n = 10.m = 100 Verlet this work Tuckerman TuckermanFastSlowFast SlowFastSlown = 4 n = 8 n = 10 n = 4 n = 8 n = 10 n = 4 n = 8 n = 10�Erms � 100 0.1849 0.1938 0.2896 0.3971 0.1928 0.3041 0.4423 0.1834 0.1971 0.2072�E � 105 0.3647 0.4380 0.5470 0.6723 0.4206 0.5768 0.8350 0.4134 0.4370 0.4606Table 3: CPU time in seconds needed by all discussed algorithms for 105 steps for di�erentmixing ratios r, i. e. the ratio of the number of light chains to the total number of chains.Times for multiple time step algorithms are relative to the Verlet algorithm.m = 100, n = 10 Verlet this work FastSlowFast SlowFastSlowr = 3:3% 400 0.60 0.57 0.64r = 10:0% 413 0.67 0.64 0.76r = 20:0% 432 0.72 0.73 0.8416


