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I. INTRODUCTIONThe phase behavior of adsorbed monolayers on a substrate has found longstanding in-terest [1], both experimental [2{4] as well as theoretical [5{14]. Usually the theoreticaldescription is done in the framework of lattice{gas models, where the substrate is a �xedlattice with �xed adsorption sites which can either be occupied or empty. Such a model isequivalent to an Ising model, where an occupied site corresponds to an \up" pseudospin,while empty sites are modeled as \down" pseudospins. The rich phase behavior (gas{liquidtransition as well as the formation of various superstructures with second{order phase transi-tions belonging to a variety of two{dimensional universality classes [5,6]) is then investigatedusing interaction parameters like nearest neighbor, next{nearest neighbor, . . . , attractionor repulsion. However, it is well{known, and obvious from the transformation to the Isingmodel (see also Sec. II), that pair interactions will always produce a phase diagram in thetemperature{coverage (T{�) plane which is symmetric around � = 1=2. This is a direct con-sequence of the inherent particle{hole symmetry of the model. The most common approachto breaking this symmetry is the introduction of three{body interactions [11{13]. Withoutthese terms, it is in many cases impossible to obtain a reasonable �t to experimental phasediagrams, which quite often exhibit a marked asymmetry.On the other hand, the gas{liquid transition phase diagram in a simple 
uid usuallyexhibits a substantial asymmetry, too. This is however not due to three{body interactionsbetween the particles, but rather to the simple fact that they can freely move in space, suchthat there is no notion of free sites, and consequently no particle{hole symmetry. Basedon this observation, one should expect that one can also break the symmetry by allowingfor additional translational degrees of freedom of the adsorbate atoms, while still strictlysticking to two{body interactions. Persson [15] has argued quite convincingly along theselines.Of course, such a system can be studied by straightforward Molecular Dynamics (MD)simulation [16] of a number of particles subject to an external potential which models thee�ect of the substrate. Similarly, the system could also be studied by using a standardMonte Carlo (MC) algorithm in the canonical ensemble [17]. However, these approacheshave a number of disadvantages when it comes to the accurate quantitative analysis ofphase transitions and critical phenomena. The conserved particle number will, in case ofa �rst{order phase transition, generate two coexisting phases separated by an interface.This requires, on the one hand, su�ciently large systems such that the structure of theinterface, and the competition of the interfacial free energy with the bulk free energy, issimulated correctly. On the other hand, long runs are also required in order to equilibratethe interfacial structure | the conservation law induces a slow decay of density 
uctuations(\hydrodynamic slowing down") [18]. Therefore, one would prefer a simulation methodwhich suppresses the occurrence of the interface, i. e. a grand{canonical algorithm [19{23](note that both constant{pressure schemes [24] as well as the Gibbs ensemble method [25]are not feasible due to the rigid structure of the substrate).While it has been demonstrated that grand{canonical simulations of atomic models areable to study phase equilibria and critical phenomena with high accuracy [22,23], such amethod (or model) is nevertheless computationally rather demanding, at least when com-pared to simulations of simple lattice{gas/Ising models. We therefore seek a simpli�edmodel, which still includes the translational degrees of freedom, and works in the grand{canonical ensemble, but nevertheless resembles more closely a simple lattice{gas model, thusretaining some aspects which allow \cheaper" simulations. The main simpli�cations of our2



model are (i) reduction of the translational degrees of freedom to two dimensions, and (ii)keeping the lattice{gas notion of an adsorption site which can be either occupied or empty,such that the simulation allows only for a maximum number of adsorbed atoms. Althoughthe (occupied or empty) sites can move in space, the neighbor relations between the sitesare kept �xed, such that the same neighbor table can be used throughout a run. Moreover,occupied and empty sites are treated in precisely the same fashion, such that the MonteCarlo updates are just site moves and pseudospin 
ips. The resulting algorithm is quitesimple, compact, and e�cient, permitting full vectorization based on the standard checker-board method. Such an approach is quite analogous to semi{grand canonical simulationsof binary alloys on a distortable lattice [26,27]; however, the decisive di�erence is that wenow assign an arti�cial translational degree of freedom to a \ghost particle" (empty site)which, in reality, simply does not exist. This requires some care in the construction andoptimization of the MC algorithm, which is done in a similar spirit as in previous \ghostparticle" method simulations of adsorbates [20,21], which however did not impose any �xedneighbor structure. This �xed lattice structure is also the main di�erence to a recent studyof two{dimensional phase transitions of systems with coupled internal and translational de-grees of freedom [28], which however used a random lattice with 
uctuating neighbor shells.It should be mentioned that an additional advantage of such a pre{de�ned lattice structureis a simpli�cation of the data analysis; the de�nition of sublattices and order parametersetc. remains trivial.The remainder of this paper is organized as follows: Sec. II contains most of the theo-retical development. Starting from a physical Hamiltonian, we perform the transformationto the grand{canonical ensemble, and derive the Monte Carlo algorithm. The e�ectiveHamiltonian, which governs the simulation procedure, no longer exhibits any particle{holesymmetry. Moreover, the Ising model notion of a magnetic �eld (which, in the simplelattice{gas case, would describe the symmetry of the phase diagram in the grand{canonicalensemble), no longer makes sense, due to an arbitrary choice of the zero of the chemicalpotential (see Sec. II). Sec. III then describes how the algorithm is applied to a speci�cmodel on the square lattice with nearest and next{nearest neighbor interactions; the resultsfor the phase diagram and the critical behavior are presented in Sec. IV. The model is astraightforward generalization of a simple lattice gas which has been studied by one of thepresent authors long ago [9] in order to describe the behavior of H/Pd (100), which formsan ordered c(2� 2) phase around � = 1=2. In the limit of vanishing elastic interactions, ourmodel reduces to the case of Ref. [9]. Finally, Sec. V concludes with a brief summary.II. GRAND{CANONICAL SIMULATIONS OF ELASTIC LATTICE GASESOur starting point is a distortable lattice of N sites in d{dimensional space. These sitesare allowed to move freely in a simulation box, with periodic boundary conditions, whosesize de�nes the system volume V . The position of the ith site is denoted by ~ri. To determinethe distances between sites we impose the standard minimum image convention [29]. If thelattice is perfectly ordered, the movable sites are located at their ideal positions, ~ri = ~r0i ;these are the ideal adsorption sites. From the topology of that ordered lattice (e. g. squarelattice) one derives the neighborhood relations between the sites (nearest neighbors hiji,next{nearest neighbors hhijii, etc.), which are viewed as a property of the lattice as such,independently of any interactions, and independently of the con�guration in position space.Now M sites out of the N possible ones are selected and occupied with particles. We3



denote these sites with i1; i2; : : : ; iM , while the empty sites are iM+1; iM+2; : : : ; iN . By re-quiring both i1 < i2 < : : : < iM and iM+1 < iM+2 < : : : < iN , each occupation con�gurationcorresponds uniquely to one index assignment. Alternatively, an occupation con�gurationis described by the standard lattice gas variables ci, where ci1 = ci2 = : : : = ciM = 1 andciM+1 = ciM+2 = : : : = ciN = 0, or the pseudospin variables Si = 2ci � 1 = �1.An interaction between particles can only occur if they are nearest or next{nearest neigh-bors on the lattice. If two particles are rather close to each other in real space, but third{nearest (or further) neighbors with respect to the imposed lattice topology, they will notinteract. The restriction to nearest and next{nearest neighbors is only done for simplicityof notation; inclusion of additional neighbor shells, triplet interactions etc. is trivial. Thedecisive simpli�cation is that the interaction cuto� is not determined via the con�gurationin real space, but rather via the lattice. We now introduce a characteristic function fornearest neighbors, !nn(i; j) = ( 1 (i; j) nearest neighbors0 otherwise, (2.1)and similarly !nnn for next{nearest neighbors. Then the Hamiltonian can be written asH = MXk=1 v0 �~rik � ~r0ik� (2.2)+ M�1Xk=1 MXl=k+1!nn(ik; il)vnn (~rik � ~ril)+ M�1Xk=1 MXl=k+1!nnn(ik; il)vnnn (~rik � ~ril) ;using nearest and next{nearest neighbor potentials vnn and vnnn as well as a substratepotential v0, which binds each particle to its ideal site. The canonical partition function ofthat M{particle system is thenZcan(M) = XfcigjM V �M0 Z d~ri1 Z d~ri2 : : : Z d~riM exp (��H (f~rikg)) : (2.3)Here, we sum over all possibilities to distribute M particles onto the N{site lattice. V0is an arbitrary normalization volume which is necessary to render the partition functiondimensionless. Within the quasi{classical approximation, V0 is usually associated with thethermal de Broglie wave length; however, within the framework of strictly classical statisticalphysics it is just a normalization constant whose value does not matter for the physics.Usually we will choose V0 = ad, where a is the lattice constant of the perfect lattice. Theintegrations extend over the volume of the simulation box; note that only the coordinatesof the occupied sites are integrated over | only these are the physical degrees of freedom.As usual, � = (kBT )�1. The grand{canonical partition function then isZgc = NXM=0 exp (��M)Zcan(M); (2.4)where � denotes the chemical potential. It should be noted that the lattice induces a uniquelabeling of the particles (which has explicitly been given above), such that they must beviewed as distinguishable. For this reason, a permutation factor (M !)�1 does not appear.4



Now let us assume that a Monte Carlo simulation is run, where a simple Metropolisalgorithm is applied to the e�ective HamiltonianHeff = NXi=1 ci �v0 �~ri � ~r0i �� �� �kBT�+ NXi=1 (1� ci)U0 �~ri � ~r0i �+Xhiji cicjvnn (~ri � ~rj) (2.5)+ Xhhijii cicjvnnn (~ri � ~rj) ;where ci and ~ri are treated as completely independent degrees of freedom of an N{particlesystem. The parameter � and the potential U0 will be speci�ed below.This algorithm will be correct, i. e. produce con�gurations satisfying the correct proba-bility distribution, if the corresponding partition functionZeff = V �N0 Xfcig Z d~r1 : : : Z d~rN exp (��Heff) (2.6)is (up to a constant prefactor) identical to the grand{canonical partition function Zgc ac-cording to Eqn. 2.4. The physical motivation for Eqn. 2.5 is as follows: The factors ci makesure that potential contributions occur only from real particles. Hence, the potential part ofHeff is identical to H. The term proportional to � describes the e�ect of the external chem-ical potential. The remaining two terms are counter{terms against the intrinsic tendency to\evaporate" at higher temperatures: Without the con�ning potential U0, which binds the\ghosts" close to the ideal adsorption sites, they would move around freely. Therefore, the\ghost" state would be strongly entropically favored, by a translational entropy of ln(V=V0)per \ghost" particle. Even worse, this entropic driving force would diverge in the thermo-dynamic limit. While this pathology could be remedied by the term �kBT alone, using aproper, system{size dependent choice of �, U0 is also very important for dynamical reasons:We wish to model the potentials vnn, vnnn, v0 via springs with in�nite range of interaction.Suppose a site has escaped its proper local environment in the \ghost" state. It will then bevery hard for this site to be turned back into the \real particle" state, because this changewould introduce extremely strongly stretched springs into the system, i. e. a very high ex-citation energy. Therefore the site will di�use freely in the \ghost" state, until it happensto come back close enough to its proper environment, such that it can re{materialize again.We therefore expect, from random{walk arguments, that the algorithm without the con-�ning potential U0 would exhibit a correlation time � / L2, where L is the system lineardimension. In other words, the method would be hampered by an arti�cial \critical slowingdown" everywhere in the phase diagram! We therefore view the introduction of U0 as anindispensable feature of the method.In order to �nd the proper choices for U0 and �, we have to compare Zeff with Zgc. Tothis end, we �rst introduce the partition function of a single particle in the potential U0,� = V �10 Z d~r exp (��U0 (~r)) : (2.7)Using the trivial identities Pfcig = PM PfcigjM , Pi ci =M and Pi(1� ci) = N �M , we canintegrate out the \ghost" degrees of freedom to obtain5



Zeff = NXM=0 exp (��M) exp (�M) �N�MZcan(M): (2.8)In order to weight every term Zcan(M) correctly, we have to choose� = ln �; (2.9)resulting in Zeff = �NZgc: (2.10)The systems are thermodynamically equivalent if the prefactor �N can be viewed as a con-stant. In order to avoid temperature dependence of �, we choose a square{well potentialU0(r) = ( 0 r < R1 r > R; (2.11)where the cuto� radius R is of the same order of magnitude as the typical particle displace-ment from the ideal site. For j~ri � ~r0i j > R, de{materialization is forbidden. Therefore, intwo dimensions we have � = �R2V0 ; (2.12)� = ln �R2V0 ! : (2.13)These choices ensure a correct simulation of the grand{canonical ensemble. In practice, onehas to use an e�ective chemical potential�eff = �+ kBT ln �: (2.14)Note that the arbitrary normalization volume V0, although explicitly appearing in theabove formulae, does not enter the e�ective HamiltonianHeff , as it should be | the physicalproperties of the system should not depend on V0. The reason for this independence is simplythe fact that the chemical potential � can only be de�ned after V0 has been speci�ed, suchthat � depends on V0, too. Indeed, from statistical thermodynamics it follows that� = �kBT @@M lnZcan(M) (2.15)= kBT lnV0 + @@M XfcigjM Z d~ri1 Z d~ri2 : : : Z d~riM exp (��H (f~rikg)) ;such that the dependence on V0 in �eff exactly cancels out. From these considerations, onesees that a particularly convenient normalization of the partition functions and the chemicalpotential is given by the choice V0 = �R2, i. e. the normalization volume equals the cuto�volume of the algorithm. In this case, � = 1, and �eff = �. In the present study, this hashowever not been done; we rather chose V0 = a2 and R = a, where a is the lattice constantof the undistorted lattice.In order to make the asymmetry induced by the translational degrees of freedom moretransparent, we transform Heff to pseudospin variables via ci = (Si + 1)=2. Without writ-ing down the resulting formulae in full detail, we would just like to point out that theHamiltonian assumes the form 6



Heff = H0 (f~rig)�Xhiji Jij (f~rig)SiSj � Xhhijii Jij (f~rig)SiSj �Xi Hi (f~rig)Si: (2.16)The decisive point is that each pseudospin is subject to its own local magnetic �eld, whichdepends on the con�guration of the sites in space. In the simple lattice gas, the �eld is aglobal quantity, Hi � H, such that the transformation Si ! �Si accompanied withH ! �Hleaves the Hamiltonian invariant. Such a transformation is impossible in the present case,and hence the particle{hole symmetry is no longer present.III. MODEL, AND MONTE CARLO SIMULATION METHODWe have studied L � L square lattices, with L = 10; 20; 30; 100, whose lattice constant(in the ideally ordered state f~r0i g) is denoted by a. Every length is measured in units ofa. Similarly, we choose an energy scale J > 0 and measure energies in units of J andtemperatures in units of J=kB. The Hamiltonian of Eqn. 2.2 is then speci�ed viav0(r) = k02 r2 (3.1)vnn(r) = 'nn + knn2 (r � lnn)2vnnn(r) = 'nnn + knnn2 (r � lnnn)2 :For simplicity, we chose the following parameters: 'nn = +4, 'nnn = �4, k0 = knn =knnn = 1, lnn = 1, lnnn = p2. The choice of lnn and lnnn ensures that for ~ri = ~r0i theelastic contributions to the Hamiltonian vanish. Since these terms are also positive, one seesthat the ground state is obtained for the perfectly ordered lattice ~ri = ~r0i . Of course, thisis just the simplest case; for choices of lnn and lnnn which introduce a mismatch betweenthe substrate and the adsorbate system one should expect substantially more complicatedbehavior. The harmonic potentials were chosen as rather soft. This is probably somewhatunrealistic in comparison with experimental systems, but was introduced for reasons ofsimplicity, and also because we expected the strongest in
uence of the translational degreesof freedom for a rather soft lattice. The constant o�set in v0 was set to zero, because it canbe absorbed in the de�nition of the chemical potential �. Finally, for 'nn and 'nnn we notethat for ~ri = ~r0i the model reduces to an Ising model with nearest and next{nearest neighborcouplings, Jnn = �1 (antiferromagnetic) and Jnnn = +1 (ferromagnetic), respectively.This latter model (with exactly this set of nn{ and nnn{coupling) has already beenstudied in quite some detail in Ref. [9], whose data serve as a valuable reference state forthe present study. The ground state in the grand{canonical ensemble is simply given by acompletely �lled lattice (1� 1)+ for � > 8, a completely empty lattice (1� 1)� for � < �8,and an ordered c(2 � 2) structure for �8 < � < 8. This latter structure corresponds to adecomposition into two sublattices a and b, each connected via next{nearest neighbor bonds,of whom one is occupied and the other one empty (� = 1=2). A physical realization of thisstructure is the superstructure of hydrogen on a palladium (100) surface.We therefore sampled moments of the distribution of the order parameter correspondingto the c(2� 2) structure, i. e. the staggered magnetizationmst = N�1 0@Xi2a Si �Xi2b Si1A : (3.2)7



It should be noted that the distribution of mst is strictly symmetric around zero. Thissymmetry is not related to any particle{hole symmetry (which is of course lacking in ourmodel), but rather to the strict equivalence of the two sublattices a and b, which is a purelygeometric property. Hence we studied hjmstji, the staggered susceptibility�st = NT �Dm2stE� hjmstji2� ; (3.3)and the fourth{order cumulant [30]UL = 1� hm4sti3 hm2sti2 : (3.4)Further quantities of interest are the coverage� = N�1Xi hcii (3.5)and the moment ratio WL = hm2stihjmstji2 : (3.6)The chemical potential normalization at nonzero temperature was �xed by setting V0 = 1.Furthermore, the cuto� radius R for the con�ning potential U0 (cf. Eqn. 2.11) was alsochosen as R = 1. Tests showed that this is a reasonable choice for ensuring su�cientlyfast equilibration, while very large or very small values will both substantially slow thesimulation down. We used \compound moves", where for a single site we generated a newtrial con�guration for all degrees of freedom simultaneously, i. e.x0i = xi + f(u1 � 1=2)y0i = yi + f(u2 � 1=2) (3.7)c0i = [2u3] ;where uk stands for a random number uniformly distributed in the unit interval 0 < uk < 1,and [: : :] denotes the integer part. This trial move was then accepted or rejected via thestandard Metropolis criterion, using Heff . We chose f = 0:8, ensuring an acceptance rateof roughly 1=2 in the relevant temperature regime. The algorithm was fully vectorizedbased on a four{sublattice checkerboard method and attained 0:48 � 106 particle updatesper second on a single Cray Y{MP processor. Typical production runs near second{orderphase transitions used between 5�105 and 1�106 Monte Carlo steps (MCS, sweeps throughthe lattice). IV. RESULTSA. Phase DiagramThe phase diagram in the grand{canonical ensemble, i. e. the (�; T ){plane, is shown inFig. 1. At high temperatures, the transition line between the ordered and the disorderedphase is of second order, while below the two tricritical points it is of �rst order. Thereis a rather strong asymmetry present in the phase diagram; however, to a large extent8



this is simply due to our normalization of the chemical potential, coming from the choice�R2=V0 = � 6= 1 (see discussion at the end of Sec. II). Indeed, when choosing the morenatural normalization V0 = �R2, i. e. plotting the phase diagram in the (�eff ; T ){plane, theasymmetry is much weaker, but still present, as seen in Fig. 2. Since there are in�nitelymany possible normalizations for �, all resulting in di�erent phase diagrams with di�eringdegree of asymmetry, we do not consider it useful to discuss the phase diagram's symmetryin the grand{canonical ensemble. This should rather be done in the (�; T ){plane, wherethe phase diagram is free of such trivial ambiguities.In Fig. 3 we show this phase diagram, and compare it to the data obtained in Ref. [9]for (i) the same model as ours, but the elastic interactions turned o�, and (ii) the samemodel as (i) in the Ising language, but a (ferromagnetic) three{body interaction added (formore details, see Ref. [9]). Clearly, the pure lattice{gas model with only pair interactionshas a symmetric phase diagram. The inclusion of the three{body term induces a verystrong asymmetry, such that the second tricritical point at higher coverages vanishes (or wasundetectable within the resolution of Ref. [9]). Nevertheless, the shape of the second{orderline c(2� 2)$ disordered at high temperatures is remarkably insensitive to the three{bodyterm (for further discussion, see also Ref. [13]). Conversely, the phase diagram of our model,which shows the e�ect of elastic interactions, is rather close to that of the \unperturbed"model in the whole plane. The highest critical temperature is reduced by a few percent,and the tricritical points' temperatures also seem to be somewhat reduced (note that we didnot attempt to locate the tricritical points very accurately; the phase transitions at T = 2:5still seem to be of second order). Altogether, we �nd a surprisingly small in
uence of thetranslational degrees of freedom. In fact, the asymmetry in our model's phase diagram isso weak that it can hardly be detected at all by just looking at Fig. 3. Therefore, Fig. 4compares the data for 0 � � � 1=2 with the mirror image of the phase diagram in the range1=2 � � � 1, with symbols larger than the error bars.B. Details of CalculationAt low temperatures, where the phase transitions are of �rst order, we studied an L = 100system for 104 MCS per state point. This system size was large enough to make hysteresiswell observable in sweeps of � back and forth through the transition. For example, Fig.5 studies the transition (1 � 1)� $ c(2 � 2) at T = 2, where a clear hysteresis is visiblein the staggered magnetization. The transition occurs somewhere within the loop, and thecorresponding ranges are indicated in Fig. 1 and Fig. 2. A more accurate determination ofthe transition chemical potential �tr would require thermodynamic integration procedures.For example, one could use the method outlined in Ref. [26], or the Frenkel{Ladd procedure[31]. This was however not attempted, since it turned out that a reasonably accuratedetermination of the (�; T ) phase diagram was possible without accurate knowledge of �tr,simply because the hysteresis loops of � (data not shown) are all rather 
at.For the second{order phase transitions at higher temperatures we used �nite{size scaling(FSS) [32,33] procedures. We chose linear paths in the (�; T ){plane (not necessarily parallelto the axes) and studied the fourth{order cumulant UL along them for the system sizesL = 10; 20; 30. For example, Fig. 6 shows the data for a rather high temperature. Onesees that the intersection point, which serves as estimate for the critical point, is quite wellde�ned. Therefore the method allowed a rather accurate determination of the second{ordertransition line. The intersection properties deteriorate somewhat when approaching the9



tricritical points, which we did not attempt to localize very accurately. We also tried WLintersection plots; however, we found that this method would not provide more accurateestimates from our data than the analysis of UL.C. Critical BehaviorThe cumulant intersection value in Fig. 6 is around 0:62, a value which is typicallyobtained in simulations of the two{dimensional Ising universality class [34]. Of course, thisis just the universality class which is expected for a one{dimensional order parameter asours [5,6]. However, the translational degrees of freedom gave us a reason to neverthelesscheck the critical behavior: In related three{dimensional models of binary alloys [26,27]Mean{Field like critical behavior had been found, due to an e�ective long{range interactionmediated by the elastic distortions. In the present model, however, Mean Field behavior canbe clearly ruled out, since in this case one expects [26,32,35] a cumulant value of roughly 0.3.This is further corroborated by the data collapsing plots for the staggered magnetizationshown in Fig. 7 (Ising) and Fig. 8 (Mean Field). There we check the standard FSS relations[32] (t = T=Tc � 1 denoting the normalized distance to the critical point)hjmstji = L��=� ~mst �L1=�t� ; (4.1)for Ising universality (� = 1=8, � = 1), andhjmstji = N�1=4 ~mst �N1=2t� ; (4.2)for the Mean Field case, where N = L2 is the total number of sites. Note that in this specialcase the arguments of the scaling functions coincide, while the prefactors di�er strongly.A comparison of Fig. 7 with Fig. 8 clearly shows that our data are better described byIsing{like behavior than Mean Field. A similar conclusion can be drawn from susceptibilitydata (not shown), where the relation�st = L
=� ~�st �L1=�t� (4.3)for Ising{like behavior with 
 = 1:75 is checked against the Mean Field relation�st = N1=2 ~�st �N1=2t� : (4.4)For the present model the translational degrees of freedom obviously have no in
uence onthe universality class. V. SUMMARY AND DISCUSSIONThe present work proposes a new modeling approach for Monte Carlo simulation studiesof adsorbed monolayers. The elastic lattice gas is a hybrid between a lattice model and acontinuum model, allowing us to include the translational degrees of freedom of the latter,while retaining the tight data structure of the former, which permits an algorithm whichis conceptually simple and computationally e�cient. The presented treatment shows howto deal with the statistical mechanics of the vacancies or \ghost particles" in a consistentand e�cient way; the introduction of the con�ning square{well potential U0 is a crucial10



feature. Nevertheless, starting from the derived e�ective Hamiltonian, one could try toimprove the e�ciency even further. For example, by decoupling the pseudospin 
ips fromthe translational motion, one could use force{biased MC [29] for the latter, and perhaps alsodevelop a cluster 
ip method [36] for the former. Both the theoretical treatment as well as thesimulation data show that the inclusion of the elastic degrees of freedom destroys the inherentparticle{hole symmetry present in simple lattice gases with pair interactions. Moreover, thetheoretical analysis shows that the chemical potential at nonzero temperatures is only de�nedup to an additive constant, which is �xed by prescribing a value for the partition functionnormalization volume V0. Therefore, one should view the phase diagram in the grand{canonical ensemble only as an auxiliary diagram with no direct physical meaning. As far asthe phase diagram in the canonical ensemble is concerned, we observed a surprisingly smallin
uence of the elastic degrees of freedom, both with respect to the induced asymmetry, aswell as with respect to the location of the phase boundaries. This is even more astonishingwhen one considers the fact that the elastic lattice was chosen as very soft (probably evenbeyond what is physically reasonable), such that large 
uctuations in the positions of theadatoms occur. These 
uctuations also have no in
uence on the critical behavior; thetwo{dimensional Ising universality class remains unchanged. While we expect that thislatter result should also be true for more realistic elastic lattice gases, it is not clear howstrongly the phase diagram's insensitivity to the elastic degrees of freedom depends on theadditional simplifying features which we introduced, i. e. mainly the restriction to harmonicpotentials, and the disregard of any mismatch between the adsorbate{adsorbate and theadsorbate{substrate interaction. It is certainly worthwhile to study these questions furtherby systematically lifting these restrictions, and introducing more realistic models.ACKNOWLEDGMENTSWe thank the computer center at the University of Kaiserslautern (RHRK) for generousallocation of Cray time. This research was supported in part by NSF grant No. DMR{9405354, and NATO grant No. CRG 921202.
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FIG. 2. Same as Fig. 1, but using a di�erent normalization for the chemical potential, suchthat instead of � there appears the e�ective chemical potential �eff = �+ kBT ln � (see text).
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