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Abstract

Standard lattice—gas models for the description of the phase behavior of ad-
sorbed monolayers are generalized to “elastic lattice gases” which allow for
translational degrees of freedom of the adsorbate atoms but have the sub-
strate lattice structure built into the adsorbate—adsorbate interaction. For
such models, we derive a simple and efficient grand—canonical Monte Carlo
algorithm, which treats the occupied and empty sites in precisely the same
way. Using this method, we calculate the phase diagram of a simple model
for the adsorption of hydrogen on palladium (100); this model includes only
pairwise interactions and exhibits an ordered ¢(2 x 2) structure. For our
choice of parameters, we find only a rather small influence of the transla-
tional degrees of freedom on the phase diagram. In particular, the observed
asymmetry, albeit clearly present, is quite weak. Finite-size scaling reveals
that the second—order phase transition between ¢(2 x 2) and the disordered
phase is Ising—like, i. e. the elastic degrees of freedom do not change the
universality class.
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I. INTRODUCTION

The phase behavior of adsorbed monolayers on a substrate has found longstanding in-
terest [1], both experimental [2-4] as well as theoretical [5-14]. Usually the theoretical
description is done in the framework of lattice-gas models, where the substrate is a fixed
lattice with fixed adsorption sites which can either be occupied or empty. Such a model is
equivalent to an Ising model, where an occupied site corresponds to an “up” pseudospin,
while empty sites are modeled as “down” pseudospins. The rich phase behavior (gas-liquid
transition as well as the formation of various superstructures with second-order phase transi-
tions belonging to a variety of two—dimensional universality classes [5,6]) is then investigated
using interaction parameters like nearest neighbor, next—nearest neighbor, ..., attraction
or repulsion. However, it is well-known, and obvious from the transformation to the Ising
model (see also Sec. II), that pair interactions will always produce a phase diagram in the
temperature—coverage (7-0) plane which is symmetric around © = 1/2. This is a direct con-
sequence of the inherent particle-hole symmetry of the model. The most common approach
to breaking this symmetry is the introduction of three-body interactions [11-13]. Without
these terms, it is in many cases impossible to obtain a reasonable fit to experimental phase
diagrams, which quite often exhibit a marked asymmetry.

On the other hand, the gas-liquid transition phase diagram in a simple fluid usually
exhibits a substantial asymmetry, too. This is however not due to three-body interactions
between the particles, but rather to the simple fact that they can freely move in space, such
that there is no notion of free sites, and consequently no particle-hole symmetry. Based
on this observation, one should expect that one can also break the symmetry by allowing
for additional translational degrees of freedom of the adsorbate atoms, while still strictly
sticking to two-body interactions. Persson [15] has argued quite convincingly along these
lines.

Of course, such a system can be studied by straightforward Molecular Dynamics (MD)
simulation [16] of a number of particles subject to an external potential which models the
effect of the substrate. Similarly, the system could also be studied by using a standard
Monte Carlo (MC) algorithm in the canonical ensemble [17]. However, these approaches
have a number of disadvantages when it comes to the accurate quantitative analysis of
phase transitions and critical phenomena. The conserved particle number will, in case of
a first—order phase transition, generate two coexisting phases separated by an interface.
This requires, on the one hand, sufficiently large systems such that the structure of the
interface, and the competition of the interfacial free energy with the bulk free energy, is
simulated correctly. On the other hand, long runs are also required in order to equilibrate
the interfacial structure — the conservation law induces a slow decay of density fluctuations
(“hydrodynamic slowing down”) [18]. Therefore, one would prefer a simulation method
which suppresses the occurrence of the interface, i. e. a grand—canonical algorithm [19-23]
(note that both constant—pressure schemes [24] as well as the Gibbs ensemble method [25]
are not feasible due to the rigid structure of the substrate).

While it has been demonstrated that grand—canonical simulations of atomic models are
able to study phase equilibria and critical phenomena with high accuracy [22,23], such a
method (or model) is nevertheless computationally rather demanding, at least when com-
pared to simulations of simple lattice-gas/Ising models. We therefore seek a simplified
model, which still includes the translational degrees of freedom, and works in the grand—
canonical ensemble, but nevertheless resembles more closely a simple lattice-gas model, thus
retaining some aspects which allow “cheaper” simulations. The main simplifications of our



model are (i) reduction of the translational degrees of freedom to two dimensions, and (ii)
keeping the lattice—gas notion of an adsorption site which can be either occupied or empty,
such that the simulation allows only for a maximum number of adsorbed atoms. Although
the (occupied or empty) sites can move in space, the neighbor relations between the sites
are kept fixed, such that the same neighbor table can be used throughout a run. Moreover,
occupied and empty sites are treated in precisely the same fashion, such that the Monte
Carlo updates are just site moves and pseudospin flips. The resulting algorithm is quite
simple, compact, and efficient, permitting full vectorization based on the standard checker-
board method. Such an approach is quite analogous to semi-grand canonical simulations
of binary alloys on a distortable lattice [26,27]; however, the decisive difference is that we
now assign an artificial translational degree of freedom to a “ghost particle” (empty site)
which, in reality, simply does not exist. This requires some care in the construction and
optimization of the MC algorithm, which is done in a similar spirit as in previous “ghost
particle” method simulations of adsorbates [20,21], which however did not impose any fixed
neighbor structure. This fixed lattice structure is also the main difference to a recent study
of two—dimensional phase transitions of systems with coupled internal and translational de-
grees of freedom [28], which however used a random lattice with fluctuating neighbor shells.
It should be mentioned that an additional advantage of such a pre-defined lattice structure
is a simplification of the data analysis; the definition of sublattices and order parameters
etc. remains trivial.

The remainder of this paper is organized as follows: Sec. II contains most of the theo-
retical development. Starting from a physical Hamiltonian, we perform the transformation
to the grand-canonical ensemble, and derive the Monte Carlo algorithm. The effective
Hamiltonian, which governs the simulation procedure, no longer exhibits any particle-hole
symmetry. Moreover, the Ising model notion of a magnetic field (which, in the simple
lattice—gas case, would describe the symmetry of the phase diagram in the grand—canonical
ensemble), no longer makes sense, due to an arbitrary choice of the zero of the chemical
potential (see Sec. II). Sec. III then describes how the algorithm is applied to a specific
model on the square lattice with nearest and next—nearest neighbor interactions; the results
for the phase diagram and the critical behavior are presented in Sec. IV. The model is a
straightforward generalization of a simple lattice gas which has been studied by one of the
present authors long ago [9] in order to describe the behavior of H/Pd (100), which forms
an ordered ¢(2 x 2) phase around © = 1/2. In the limit of vanishing elastic interactions, our
model reduces to the case of Ref. [9]. Finally, Sec. V concludes with a brief summary.

II. GRAND-CANONICAL SIMULATIONS OF ELASTIC LATTICE GASES

Our starting point is a distortable lattice of N sites in d—dimensional space. These sites
are allowed to move freely in a simulation box, with periodic boundary conditions, whose
size defines the system volume V. The position of the ith site is denoted by ;. To determine
the distances between sites we impose the standard minimum image convention [29]. If the
lattice is perfectly ordered, the movable sites are located at their ideal positions, 7; = 77;
these are the ideal adsorption sites. From the topology of that ordered lattice (e. g. square
lattice) one derives the neighborhood relations between the sites (nearest neighbors (ij),
next-nearest neighbors ((ij)), etc.), which are viewed as a property of the lattice as such,
independently of any interactions, and independently of the configuration in position space.

Now M sites out of the N possible ones are selected and occupied with particles. We



denote these sites with iy,79,...,737, While the empty sites are ip711,20719,...,2n. By re-
quiring both 7; <19 < ... <'ipr and ipryy < iprpe < ... <1y, each occupation configuration
corresponds uniquely to one index assignment. Alternatively, an occupation configuration
is described by the standard lattice gas variables ¢;, where ¢;, = ¢;,, = ... =¢;,, = 1 and
Cirgsr = Cirgyo = - - = Ciy = 0, or the pseudospin variables S; = 2¢; — 1 = %1.

An interaction between particles can only occur if they are nearest or next—nearest neigh-
bors on the lattice. If two particles are rather close to each other in real space, but third—
nearest (or further) neighbors with respect to the imposed lattice topology, they will not
interact. The restriction to nearest and next-nearest neighbors is only done for simplicity
of notation; inclusion of additional neighbor shells, triplet interactions etc. is trivial. The
decisive simplification is that the interaction cutoff is not determined via the configuration
in real space, but rather via the lattice. We now introduce a characteristic function for
nearest neighbors,

.+ _J1 (4j) nearest neighbors
wnn (i, 7) = { 0 otherwise, (2.1)

and similarly wy,,, for next-nearest neighbors. Then the Hamiltonian can be written as
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using nearest and next—nearest neighbor potentials v,, and v,,, as well as a substrate
potential vy, which binds each particle to its ideal site. The canonical partition function of
that M —particle system is then

Zean(M) = > Vi M/dnl/drw. /an exp (—0H ({7, })) - (2.3)

feitim

Here, we sum over all possibilities to distribute M particles onto the N-site lattice. Vj
is an arbitrary normalization volume which is necessary to render the partition function
dimensionless. Within the quasi—classical approximation, Vj is usually associated with the
thermal de Broglie wave length; however, within the framework of strictly classical statistical
physics it is just a normalization constant whose value does not matter for the physics.
Usually we will choose Vj = a?, where a is the lattice constant of the perfect lattice. The
integrations extend over the volume of the simulation box; note that only the coordinates
of the occupied sites are integrated over — only these are the physical degrees of freedom.
As usual, 3 = (kpT)!. The grand—canonical partition function then is

Z ﬁﬂM can(M)a (2'4)

M=0

where p denotes the chemical potential. It should be noted that the lattice induces a unique
labeling of the particles (which has explicitly been given above), such that they must be
viewed as distinguishable. For this reason, a permutation factor (M!)~! does not appear.
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Now let us assume that a Monte Carlo simulation is run, where a simple Metropolis
algorithm is applied to the effective Hamiltonian

Herp = ici (vg (Fl — f?) — - akBT)

=1
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+ Y cicjvn, (75 — 75) (2.5)
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where ¢; and 7; are treated as completely independent degrees of freedom of an N—particle
system. The parameter o and the potential Uy will be specified below.
This algorithm will be correct, i. e. produce configurations satisfying the correct proba-
bility distribution, if the corresponding partition function

{eil

is (up to a constant prefactor) identical to the grand-canonical partition function Z,. ac-
cording to Eqn. 2.4. The physical motivation for Eqn. 2.5 is as follows: The factors ¢; make
sure that potential contributions occur only from real particles. Hence, the potential part of
H.pr is identical to H. The term proportional to p describes the effect of the external chem-
ical potential. The remaining two terms are counter—terms against the intrinsic tendency to
“evaporate” at higher temperatures: Without the confining potential Uy, which binds the
“ghosts” close to the ideal adsorption sites, they would move around freely. Therefore, the
“shost” state would be strongly entropically favored, by a translational entropy of In(V/V})
per “ghost” particle. Even worse, this entropic driving force would diverge in the thermo-
dynamic limit. While this pathology could be remedied by the term akgT alone, using a
proper, system—size dependent choice of «, Uy is also very important for dynamical reasons:
We wish to model the potentials v,,, Vnnn, vo Via springs with infinite range of interaction.
Suppose a site has escaped its proper local environment in the “ghost” state. It will then be
very hard for this site to be turned back into the “real particle” state, because this change
would introduce extremely strongly stretched springs into the system, i. e. a very high ex-
citation energy. Therefore the site will diffuse freely in the “ghost” state, until it happens
to come back close enough to its proper environment, such that it can re-materialize again.
We therefore expect, from random—walk arguments, that the algorithm without the con-
fining potential Uy would exhibit a correlation time 7 oc L?, where L is the system linear
dimension. In other words, the method would be hampered by an artificial “critical slowing
down” everywhere in the phase diagram! We therefore view the introduction of U, as an
indispensable feature of the method.

In order to find the proper choices for Uy and o, we have to compare Z,¢; with Z,.. To
this end, we first introduce the partition function of a single particle in the potential Uy,

C=Vy [ ditexp (=8Uy (7). (27)

Using the trivial identities Y ¢y = Y0 Xieippo 206 = M and 3;(1 —¢;) = N — M, we can
integrate out the “ghost” degrees of freedom to obtain



Zess = Y exp (Bud) exp (aM) (VM Z,0 (M). (2.8)

M=0
In order to weight every term Z.,,(M) correctly, we have to choose
a=In(, (2.9)
resulting in
Zegs = CN Zye. (2.10)

The systems are thermodynamically equivalent if the prefactor ¢V can be viewed as a con-
stant. In order to avoid temperature dependence of (, we choose a square—well potential

0 r<R
UO(T):{OO r>R

where the cutoff radius R is of the same order of magnitude as the typical particle displace-
ment from the ideal site. For |7; — 79| > R, de-materialization is forbidden. Therefore, in
two dimensions we have

(2.11)

TR?
=" (2.12)
2
a=In <%> . (2.13)

These choices ensure a correct simulation of the grand—canonical ensemble. In practice, one
has to use an effective chemical potential

feff = o+ kpT'In(. (2.14)

Note that the arbitrary normalization volume Vj, although explicitly appearing in the
above formulae, does not enter the effective Hamiltonian #,s¢, as it should be — the physical
properties of the system should not depend on V;. The reason for this independence is simply
the fact that the chemical potential i can only be defined after V has been specified, such
that p depends on Vj, too. Indeed, from statistical thermodynamics it follows that

kTalZ (M) (2.15)
= - s M Lecan .
K i
0
= kpT Vot Y [ ari, [drs, ... [ dfiy exp (~pH ({71)
{eitlm

such that the dependence on Vj in p.sr exactly cancels out. From these considerations, one
sees that a particularly convenient normalization of the partition functions and the chemical
potential is given by the choice Vj = 7R2, i. e. the normalization volume equals the cutoff
volume of the algorithm. In this case, ( = 1, and p.sr = p. In the present study, this has
however not been done; we rather chose Vy = a? and R = a, where a is the lattice constant
of the undistorted lattice.

In order to make the asymmetry induced by the translational degrees of freedom more
transparent, we transform #.;; to pseudospin variables via ¢; = (S; + 1)/2. Without writ-
ing down the resulting formulae in full detail, we would just like to point out that the
Hamiltonian assumes the form



Hepr = Ho ({7i}) — % Jij ({T3}) SiSj — <§> Jij ({Ti}) SiSj — ZHz' ({73}) Si. (2.16)

The decisive point is that each pseudospin is subject to its own local magnetic field, which
depends on the configuration of the sites in space. In the simple lattice gas, the field is a
global quantity, H; = H, such that the transformation S; — —S; accompanied with H — —H
leaves the Hamiltonian invariant. Such a transformation is impossible in the present case,
and hence the particle-hole symmetry is no longer present.

III. MODEL, AND MONTE CARLO SIMULATION METHOD

We have studied L x L square lattices, with L = 10, 20, 30, 100, whose lattice constant
(in the ideally ordered state {r°}) is denoted by a. Every length is measured in units of
a. Similarly, we choose an energy scale J > 0 and measure energies in units of J and
temperatures in units of J/kp. The Hamiltonian of Eqn. 2.2 is then specified via

ko o

vo(r) = 57 (3.1)
knn 2
Unn(T) = @ + —— (1 = lnn)
knnn
Vnnn(T) = Prnn + 9 (r— lmm)2 .
For simplicity, we chose the following parameters: ¢,, = +4, Opnn = —4, ko = kupn =

kpnn = 1, lon = 1, lynn = V2. The choice of I, and l,,, ensures that for 7 = 7 the
elastic contributions to the Hamiltonian vanish. Since these terms are also positive, one sees
that the ground state is obtained for the perfectly ordered lattice 7; = 7. Of course, this
is just the simplest case; for choices of [, and [,,, which introduce a mismatch between
the substrate and the adsorbate system one should expect substantially more complicated
behavior. The harmonic potentials were chosen as rather soft. This is probably somewhat
unrealistic in comparison with experimental systems, but was introduced for reasons of
simplicity, and also because we expected the strongest influence of the translational degrees
of freedom for a rather soft lattice. The constant offset in vy was set to zero, because it can
be absorbed in the definition of the chemical potential . Finally, for ¢,, and ¢,,, we note
that for 7; = 7¥ the model reduces to an Ising model with nearest and next-nearest neighbor
couplings, .J,,, = —1 (antiferromagnetic) and .J,,, = +1 (ferromagnetic), respectively.

This latter model (with exactly this set of nn— and nnn—coupling) has already been
studied in quite some detail in Ref. [9], whose data serve as a valuable reference state for
the present study. The ground state in the grand—canonical ensemble is simply given by a
completely filled lattice (1 x 1) for p > 8, a completely empty lattice (1 x 1)_ for u < —8,
and an ordered ¢(2 x 2) structure for —8 < p < 8. This latter structure corresponds to a
decomposition into two sublattices a and b, each connected via next—nearest neighbor bonds,
of whom one is occupied and the other one empty (© = 1/2). A physical realization of this
structure is the superstructure of hydrogen on a palladium (100) surface.

We therefore sampled moments of the distribution of the order parameter corresponding
to the ¢(2 x 2) structure, i. e. the staggered magnetization

Mg = Nil (Z SZ — ZSZ> . (32)
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It should be noted that the distribution of my, is strictly symmetric around zero. This
symmetry is not related to any particle-hole symmetry (which is of course lacking in our
model), but rather to the strict equivalence of the two sublattices a and b, which is a purely
geometric property. Hence we studied (|mg/), the staggered susceptibility

N 9 2
Xst = 7 (<mst> = (Ima) ) ; (3.3)
and the fourth-order cumulant [30]

4
m
ULzl_ < 82t>2.

3 (2, 84)

Further quantities of interest are the coverage
O=N"> () (3.5)

and the moment ratio

WL — <mst>

(msel)”

The chemical potential normalization at nonzero temperature was fixed by setting V5 = 1.
Furthermore, the cutoff radius R for the confining potential U, (cf. Eqn. 2.11) was also
chosen as R = 1. Tests showed that this is a reasonable choice for ensuring sufficiently
fast equilibration, while very large or very small values will both substantially slow the
simulation down. We used “compound moves”, where for a single site we generated a new
trial configuration for all degrees of freedom simultaneously, i. e.

(3.6)

z,=x; + f(u; — 1/2)
yi=yi + fluz —1/2) (3.7)
C; = [2U3] )

where uy stands for a random number uniformly distributed in the unit interval 0 < u, < 1,
and [...] denotes the integer part. This trial move was then accepted or rejected via the
standard Metropolis criterion, using H.rr. We chose f = 0.8, ensuring an acceptance rate
of roughly 1/2 in the relevant temperature regime. The algorithm was fully vectorized
based on a four-sublattice checkerboard method and attained 0.48 x 10° particle updates
per second on a single Cray Y-MP processor. Typical production runs near second—order
phase transitions used between 5 x 10° and 1 x 105 Monte Carlo steps (MCS, sweeps through
the lattice).

IV. RESULTS
A. Phase Diagram

The phase diagram in the grand—canonical ensemble, i. e. the (u, T)-plane, is shown in
Fig. 1. At high temperatures, the transition line between the ordered and the disordered
phase is of second order, while below the two tricritical points it is of first order. There
is a rather strong asymmetry present in the phase diagram; however, to a large extent



this is simply due to our normalization of the chemical potential, coming from the choice
TR?/Vy = m # 1 (see discussion at the end of Sec. II). Indeed, when choosing the more
natural normalization Vj = 7R?, i. e. plotting the phase diagram in the (u.ss, T')-plane, the
asymmetry is much weaker, but still present, as seen in Fig. 2. Since there are infinitely
many possible normalizations for p, all resulting in different phase diagrams with differing
degree of asymmetry, we do not consider it useful to discuss the phase diagram’s symmetry
in the grand—canonical ensemble. This should rather be done in the (©,T)-plane, where
the phase diagram is free of such trivial ambiguities.

In Fig. 3 we show this phase diagram, and compare it to the data obtained in Ref. [9]
for (i) the same model as ours, but the elastic interactions turned off, and (ii) the same
model as (i) in the Ising language, but a (ferromagnetic) three-body interaction added (for
more details, see Ref. [9]). Clearly, the pure lattice—gas model with only pair interactions
has a symmetric phase diagram. The inclusion of the three-body term induces a very
strong asymmetry, such that the second tricritical point at higher coverages vanishes (or was
undetectable within the resolution of Ref. [9]). Nevertheless, the shape of the second-order
line ¢(2 x 2) «» disordered at high temperatures is remarkably insensitive to the three—body
term (for further discussion, see also Ref. [13]). Conversely, the phase diagram of our model,
which shows the effect of elastic interactions, is rather close to that of the “unperturbed”
model in the whole plane. The highest critical temperature is reduced by a few percent,
and the tricritical points’ temperatures also seem to be somewhat reduced (note that we did
not attempt to locate the tricritical points very accurately; the phase transitions at 7' = 2.5
still seem to be of second order). Altogether, we find a surprisingly small influence of the
translational degrees of freedom. In fact, the asymmetry in our model’s phase diagram is
so weak that it can hardly be detected at all by just looking at Fig. 3. Therefore, Fig. 4
compares the data for 0 < © < 1/2 with the mirror image of the phase diagram in the range
1/2 < © < 1, with symbols larger than the error bars.

B. Details of Calculation

At low temperatures, where the phase transitions are of first order, we studied an L = 100
system for 10* MCS per state point. This system size was large enough to make hysteresis
well observable in sweeps of i back and forth through the transition. For example, Fig.
5 studies the transition (1 x 1) <> ¢(2 x 2) at T = 2, where a clear hysteresis is visible
in the staggered magnetization. The transition occurs somewhere within the loop, and the
corresponding ranges are indicated in Fig. 1 and Fig. 2. A more accurate determination of
the transition chemical potential j;,. would require thermodynamic integration procedures.
For example, one could use the method outlined in Ref. [26], or the Frenkel-Ladd procedure
[31]. This was however not attempted, since it turned out that a reasonably accurate
determination of the (0, 7T) phase diagram was possible without accurate knowledge of 1.,
simply because the hysteresis loops of © (data not shown) are all rather flat.

For the second—order phase transitions at higher temperatures we used finite—size scaling
(FSS) [32,33] procedures. We chose linear paths in the (u, T')—plane (not necessarily parallel
to the axes) and studied the fourth-order cumulant U;, along them for the system sizes
L = 10,20,30. For example, Fig. 6 shows the data for a rather high temperature. One
sees that the intersection point, which serves as estimate for the critical point, is quite well
defined. Therefore the method allowed a rather accurate determination of the second-order
transition line. The intersection properties deteriorate somewhat when approaching the



tricritical points, which we did not attempt to localize very accurately. We also tried W7,
intersection plots; however, we found that this method would not provide more accurate
estimates from our data than the analysis of Uy,.

C. Critical Behavior

The cumulant intersection value in Fig. 6 is around 0.62, a value which is typically
obtained in simulations of the two-dimensional Ising universality class [34]. Of course, this
is just the universality class which is expected for a one-dimensional order parameter as
ours [5,6]. However, the translational degrees of freedom gave us a reason to nevertheless
check the critical behavior: In related three-dimensional models of binary alloys [26,27]
Mean-Field like critical behavior had been found, due to an effective long-range interaction
mediated by the elastic distortions. In the present model, however, Mean Field behavior can
be clearly ruled out, since in this case one expects [26,32,35] a cumulant value of roughly 0.3.
This is further corroborated by the data collapsing plots for the staggered magnetization
shown in Fig. 7 (Ising) and Fig. 8 (Mean Field). There we check the standard FSS relations
[32] (t =T/T. — 1 denoting the normalized distance to the critical point)

(Imal) = L1y (L171) (4.1)
for Ising universality (5 =1/8, v = 1), and
([mal) = N~y (N'2t) (4.2)

for the Mean Field case, where N = L? is the total number of sites. Note that in this special
case the arguments of the scaling functions coincide, while the prefactors differ strongly.
A comparison of Fig. 7 with Fig. 8 clearly shows that our data are better described by
Ising-like behavior than Mean Field. A similar conclusion can be drawn from susceptibility
data (not shown), where the relation

Xst = L’Y/Uist (Ll/yt> (43)
for Ising-like behavior with v = 1.75 is checked against the Mean Field relation
Yo = NY2%,, (Nl/Qt) . (4.4)

For the present model the translational degrees of freedom obviously have no influence on
the universality class.

V. SUMMARY AND DISCUSSION

The present work proposes a new modeling approach for Monte Carlo simulation studies
of adsorbed monolayers. The elastic lattice gas is a hybrid between a lattice model and a
continuum model, allowing us to include the translational degrees of freedom of the latter,
while retaining the tight data structure of the former, which permits an algorithm which
is conceptually simple and computationally efficient. The presented treatment shows how
to deal with the statistical mechanics of the vacancies or “ghost particles” in a consistent
and efficient way; the introduction of the confining square-well potential U, is a crucial
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feature. Nevertheless, starting from the derived effective Hamiltonian, one could try to
improve the efficiency even further. For example, by decoupling the pseudospin flips from
the translational motion, one could use force-biased MC [29] for the latter, and perhaps also
develop a cluster flip method [36] for the former. Both the theoretical treatment as well as the
simulation data show that the inclusion of the elastic degrees of freedom destroys the inherent
particle—hole symmetry present in simple lattice gases with pair interactions. Moreover, the
theoretical analysis shows that the chemical potential at nonzero temperatures is only defined
up to an additive constant, which is fixed by prescribing a value for the partition function
normalization volume Vj. Therefore, one should view the phase diagram in the grand-—
canonical ensemble only as an auxiliary diagram with no direct physical meaning. As far as
the phase diagram in the canonical ensemble is concerned, we observed a surprisingly small
influence of the elastic degrees of freedom, both with respect to the induced asymmetry, as
well as with respect to the location of the phase boundaries. This is even more astonishing
when one considers the fact that the elastic lattice was chosen as very soft (probably even
beyond what is physically reasonable), such that large fluctuations in the positions of the
adatoms occur. These fluctuations also have no influence on the critical behavior; the
two—-dimensional Ising universality class remains unchanged. While we expect that this
latter result should also be true for more realistic elastic lattice gases, it is not clear how
strongly the phase diagram’s insensitivity to the elastic degrees of freedom depends on the
additional simplifying features which we introduced, i. e. mainly the restriction to harmonic
potentials, and the disregard of any mismatch between the adsorbate—adsorbate and the
adsorbate—substrate interaction. It is certainly worthwhile to study these questions further
by systematically lifting these restrictions, and introducing more realistic models.
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FIG. 1. The phase diagram of the elastic model specified in Eqn. 2.2, and at the beginning
of Sec. III, in the grand-canonical ensemble ((u,T)-plane). Second-order phase transitions at
high temperatures are indicated by filled circles. The error in the location of these transitions is
smaller than the symbol size. The intervals bracketed by diamonds indicate the possible range for
the location of first—order transitions at lower temperatures.
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FIG. 2. Same as Fig. 1, but using a different normalization for the chemical potential, such
that instead of 4 there appears the effective chemical potential jiofr = p1 + kT In( (see text).
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FIG. 3. The phase diagram in the canonical ensemble ((©,T)-plane). (i) Filled circles: Lat-
tice—gas / Ising model with antiferromagnetic nearest—neighbor interaction, and ferromagnetic
next—nearest neighbor interaction (Ref. [9]). (ii) Asterisks: Same Ising model as (i), but a fer-
romagnetic three-body interaction added (Ref. [9]). (iii) Filled diamonds: Model of the present
study, which would reduce to (i) if the elastic interactions were turned off. The second—order phase
transition line at high temperatures ends in tricritical points below which two—phase regions open
up: ¢(2 x 2) and (1 x 1)4 at high coverages; ¢(2 x 2) and (1 x 1)_ at low coverages. In case (ii),
the two—phase region at high coverages is not present.
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FIG. 4. The phase diagram of the elastic model specified in Eqn. 2.2, and at the beginning of
Sec. III, in the canonical ensemble ((©,T)-plane). In order to demonstrate the weak asymmetry,
we have superimposed the data for O in the range 0 < © < 1/2 (filled circles) with those for 1 — ©
in the range 1/2 < © <1 (open circles). Error bars are always smaller than the symbol sizes.
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FIG. 5. Hysteresis loop of |mg/| as a function of y, for T' = 2.
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FIG. 6. Cumulant intersection plot for Ur, and three system sizes.

were varied along a linear path in the (u,T)-plane in the range (u,T) =

(u, T) = (—0.8375,4.2437). Characteristic error bars are shown.
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FIG. 7. Finite-size scaling plot for order parameter data near the second—order transition at
= pue = —0.930, T =T, = 4.231, using the critical exponents of the two—dimensional Ising
universality class, 5 = 1/8, v = 1. For Ising-like critical behavior, the data for the different system
sizes L = 10, 20, 30 should all lie on a single curve. Data are for the same path in the phase diagram

as those of Fig. 6.
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