
Langevin MethodsB. D�unwegMax Plan
k Institute for Polymer Resear
hA
kermannweg 10D{55128 MainzGermanyAbstra
t. The le
ture outlines the most important mathemati
al fa
ts aboutsto
hasti
 pro
esses whi
h are des
ribed by a Langevin equation (sto
hasti
 di�er-ential equation, SDE) or (equivalently) a Fokker{Plan
k equation (FPE) 
omprisingboth drift and di�usion terms. The importan
e of the short{time behavior of themoments (mean displa
ement, mean square displa
ement) is stressed, and the prob-lem of interpretation of SDEs (Ito vs. Stratonovi
h) is explained. The simplestintegration s
heme (Euler) is a straightforward 
onsequen
e of this theory. Forthe simulation of thermal systems, drift and di�usion must balan
e ea
h other ina well{de�ned way whi
h �xes the temperature (
u
tuation{dissipation theorem).The appli
ation of the general framework is then dis
ussed for various methods 
om-monly used in 
lassi
al statisti
al physi
s (Brownian dynami
s, sto
hasti
 dynami
s,dissipative parti
le dynami
s, for
e-biased Monte Carlo).1. Introdu
tionA Langevin equation is typi
ally written down when one wants todes
ribe the dynami
s of a system that (more or less naturally) 
anbe de
omposed into fast and slow degrees of freedom. The ar
hetypeof su
h a system (but by far not the only example) is slow Brownianparti
les immersed into fast solvent parti
les. The idea is that on suf-�
iently long time s
ales, the motion of the Brownian parti
les 
an bedes
ribed just as random hops | the a
tual and 
ompli
ated dynami
alpro
esses whi
h bring these hops about are deliberately dis
arded fromour attention, and the positions of the parti
les are only noti
ed atthe 
ashes of some imaginary \strobos
ope". On a somewhat shortertime s
ale, the in
uen
e of the solvent parti
les is repla
ed by fri
tionand noise whi
h \ki
ks" the Brownian parti
les randomly. The �rstpi
ture gives rise to the method of Brownian Dynami
s (BD), where onesimulates a sto
hasti
 pro
ess just in terms of the parti
le 
oordinates,while the latter pi
ture implies the method of sto
hasti
 dynami
s (SD), where one keeps both the positions and the momenta of the Brownianparti
les, and introdu
es fri
tion and noise as additional for
ing terms.Su
h des
riptions, whi
h are based on the redu
tion of the numberof degrees of freedom, and whi
h therefore are both 
on
eptually andte
hni
ally mu
h simpler than the original system, 
ertainly involve
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2 B. D�unwegapproximations. The purpose of this le
ture is not to dis
uss if andunder what 
ir
umstan
es this is a valid pro
edure, and how a

uratesu
h an approximation is. This is the topi
 of transport theory [8, 17℄and would be well beyond the s
ope of the present 
ontribution, whi
his rather intended as an elementary introdu
tion into the mathemati
alba
kground of sto
hasti
 pro
esses involving both a 
ontinuous statespa
e and 
ontinuous time [1, 11, 15, 9℄. This is needed in order tounderstand what is a
tually meant when a Langevin equation is writtendown, and to understand how this is implemented on the 
omputer witha �nite dis
retization time step. Langevin simulations thus 
an be seenas somehow in between Monte Carlo (MC) and Mole
ular Dynami
s(MD), sharing the element of randomness with the further, and of
ontinuous traje
tories in phase spa
e with the latter. It turns outthat the mathemati
al equivalen
e of the Langevin equation with theFokker{Plan
k equation (FPE), whi
h des
ribes the evolution of theprobability distribution in phase spa
e, is parti
ularly fruitful: Thisallows us to des
ribe the sto
hasti
 pro
ess in terms of well{known
on
epts of probability theory, and to a
tually de�ne what is meantby a Langevin equation. Furthermore, the 
on
ept of detailed balan
e,whi
h plays su
h a 
entral role in equilibrium MC (see 
ontributionby A. Mil
hev), is here repla
ed by the rather analogous 
on
ept ofthe 
u
tuation{dissipation theorem (FDT): A simulation whi
h runsin thermal equilibrium should have the Boltzmann distribution as(only) stationary distribution. This is also very easily 
he
ked in theFokker{Plan
k pi
ture, and we will see several examples below.At this point, it should be emphasized that Langevin methods arevery useful even when the underlying pi
ture of fast vs. slow degreesof freedom does not apply, i. e. even when it is impossible to identify
ertain \hidden" degrees of freedom, whi
h are supposed to be modeledby the random noise. Su
h a simulation should then not ne
essarilybeen viewed as a realisti
 des
ription of the dynami
s of the system, butit will produ
e the 
orre
t stati
s of the 
anoni
al ensemble if the FDTholds. It is thus just another MC pro
edure to generate the desireddistribution. This is extremely 
onvenient if one has a running MD
ode of the system available; a straightforward addition of just a few(typi
ally of order ten, plus maybe a few hundred for a sophisti
atedrandom number generator) lines of 
ode turns this into an SD simu-lation. This results in a 
hange of ensemble (from 
onstant energy to
onstant temperature), plus in a ni
e feature of numeri
al stabiliza-tion: As we will see below, the temperature is the ratio between noisestrength and fri
tion, and this may be viewed as a feedba
k 
ontrolpro
edure for every single degree of freedom: A parti
le that is \toohot" will be 
ooled down be
ause the fri
tion term dominates, while
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Langevin Methods 3a parti
le that is too 
old will be heated up by the noise. Su
h eventseasily o

ur as a result of the dis
retization errors of MD, but are\
orre
ted" by the thermostat, whi
h prevents su
h lo
al 
atastrophesfrom building up further, and, in parti
ular, from spreading throughoutthe system. Typi
ally, the simulation of a dense Lennard{Jones 
uid
an thus be run with a time step whi
h is two or even three times largerthan what is appropriate for the 
onstant{energy ensemble. Conversely,deterministi
 thermostats like the Nose{Hoover pro
edure rely on aglobal feedba
k for the whole system (see 
ontribution by D. Rapaport),and hen
e do not have that good stabilization properties.If one applies the Langevin equation with su
h a motivation, oneshould however be very 
areful when interpreting the results in termsof the dynami
s of the system. Not mu
h 
an be said beyond thisrather general warning, sin
e this depends very mu
h on the systemunder 
onsideration. One parti
ular 
ase shall however be dis
ussed insome detail: The SD algorithm is absolutely useless for the simulationof hydrodynami
 phenomena, even in the limit of rather weak noise.The reason is that it breaks Galilean invarian
e, as we will see below,and that it prevents the build{up of hydrodynami
 
orrelations, andof (physi
al!) hydrodynami
 instabilities, beyond a 
ertain length s
ale�, the hydrodynami
 s
reening length, whi
h we shall dis
uss below.The same property whi
h is a blessing for numeri
al stabilization thusturns out to be a 
urse for hydrodynami
s. This problem has led to themodi�
ation of the SD thermostat to the so{
alled \dissipative parti-
le dynami
s" (DPD) algorithm, whi
h 
ures it by restoring Galileaninvarian
e, while still having quite ni
e stabilization properties.The outline of this 
ontribution is as follows: The �rst part is de-voted to the dis
ussion of the mathemati
al theory of Fokker{Plan
kpro
esses and its lowest{order implementation, the Euler algorithm, atthe end of whi
h we will be able to formulate the FDT. We will thendis
uss various standard Langevin methods (BD, For
e Biased MC,SD, and DPD) and, in parti
ular, demonstrate the validity of the FDTfor ea
h of them. We will 
on
lude with some remarks on higher{orderalgorithms. 2. Theory of Fokker{Plan
k Pro
essesWe 
onsider a Markov pro
ess with 
ontinuous state spa
e, denotingthe state spa
e variable with x. Usually, the state spa
e is multi{dimensional; however, for the ease of notation and dis
ussion we willfo
us on the one{dimensional 
ase | the generalization to the multi{dimensional 
ase is straightforward. The time variable will be denoted
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4 B. D�unwegwith t. In 
ontrast to the standard MC method (see 
ontribution A.Mil
hev), where one 
onsiders a Markov 
hain with dis
rete time, weare here 
on
erned with the 
ase of 
ontinuous time. This means thatthe Markov property, whi
h states that the pro
ess has no memory (i. e.the future behavior depends only on the present state, but not on theprevious history), must hold for arbitrarily small time intervals. This isa very strong property, whi
h, together with the 
ontinuousness of x,allows us to derive an equation of motion for the so{
alled \propagator"P (x; tjx0; t0), i. e. the 
onditional probability density for the event thatthe pro
ess is in state x at time t if it was at x0 at some earlier timet0 < t. This equation of motion, the generalized FPE, is a partialdi�erential equation involving derivatives with respe
t to both x and t;the aim of what follows (the so{
alled Kramers{Moyal expansion [15℄)is to establish how its 
oeÆ
ients are related to the short{time behaviorof the pro
ess (or of P (x; tjx0; t0)).We begin by noting a few elementary properties of P (x; tjx0; t0),normalization, Z dxP (x; tjx0; t0) = 1; (1)the initial 
ondition, P (x; t0jx0; t0) = Æ(x� x0); (2)and the Chapman{Kolmogorov equationP (x; tjx0; t0) = Z dx1P (x; tjx1; t1)P (x1; t1jx0; t0) (3)for times t0 < t1 < t. This latter equation simply states that bysumming over all intermediate states x1, one gets the full probabilityto go from x0 to x. The fa
torization within the integral expresses theMarkov property, i. e. the statisti
al independen
e of the future fromthe past.It is obvious that P (x; tjx0; t0) at short times (� := t� t0 > 0 small)is very sharply peaked (see also Eq. 2). This means in turn that themoments �n(t;x0; t0) := h(x� x0)ni (t; t0)= Z dx (x� x0)n P (x; tjx0; t0) (4)(mean displa
ement, mean square displa
ement, et
.) will also be verysmall for small � (ex
ept, of 
ourse, for �0, whi
h is trivially identi
alto unity for all times). We therefore write for n � 1h(x� x0)ni (t0 + �; t0) = n!D(n)(x0; t0)� + o(�); (5)
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Langevin Methods 5where o(�) denotes terms of order higher than linear, while the D(n)are the so{
alled Kramers{Moyal 
oeÆ
ients. Here we have assumedthat all moments exist (the theory is only valid for su
h pro
esses).However, it is well{known that in this 
ase the probability density Pis uniquely determined by its moments. The standard proof of thisfa
t relies on the Fourier transform of P , whose Taylor 
oeÆ
ients arejust the moments. Formally, this one{to{one 
orresponden
e is dire
tlyexpressed viaP (x; tjx0; t0) = 1Xn=0�� ��x�n Æ(x � x0) 1n!�n(t;x0; t0); (6)as is easily veri�ed by taking the nth moment of both left{hand andright{hand side, using partial integration.We now 
onsider the Chapman{Kolmogorov equation, Eq. 3, for thespe
ial 
ase that the intermediate time t1 is very 
lose to the �nal timet, t1 = t � � . We then insert the expansion Eq. 6 for the propagator
orresponding to the short time interval � :P (x; tjx0; t0) = Z dx1 1Xn=0�� ��x�n Æ(x� x1) 1n!�n(t;x1; t� �)P (x1; t� � jx0; t0) (7)= 1Xn=0�� ��x�n 1n!�n(t;x; t� �)P (x; t� � jx0; t0)or (after subtra
tion of the n = 0 term)1� [P (x; tjx0; t0)� P (x; t� � jx0; t0)℄= 1� 1Xn=1�� ��x�n 1n!�n(t;x; t� �)P (x; t � � jx0; t0): (8)Within linear order in � we 
an write�n(t;x; t� �) = n!D(n)(x; t� �)� + o(�)= n!D(n)(x; t)� + o(�) (9)and P (x; t� � jx0; t0) � P (x; tjx0; t0): (10)Inserting these expressions into Eq. 8, we arrive in the limit � ! 0 atthe generalized FPE��tP (x; tjx0; t0) = 1Xn=1�� ��x�nD(n)(x; t)P (x; tjx0; t0); (11)
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6 B. D�unwegwhi
h is often written in the shorthand notation��tP (x; tjx0; t0) = LP (x; tjx0; t0); (12)where L is the Fokker{Plan
k operator.The pro
esses 
an further be 
lassi�ed by the order at whi
h theexpansion stops. The simplest 
ase is where all D(n) vanish. In this
ase there is obviously no dynami
s at all; the pro
ess just stays atx = x0. The next 
ase is where only D(1) is nonzero, while all otherD(n) vanish. This is the 
ase of deterministi
 dynami
s. Indeed, fordeterministi
 dynami
s we have a well{de�ned traje
tory x(t) startingat x = x0 at time t = t0, i. e. P = Æ(x� x(t)), and��tP = � ��x _x(t)Æ(x � x(t)): (13)In the 
ase of Hamiltonian deterministi
 dynami
s, the 
orrespondingFPE is just the Liouville equation. Usual Fokker{Plan
k (or di�usion)pro
esses 
orrespond to the 
ase where all D(n) are zero from n = 3 on,while D(2) is nonzero. In this 
ase D(2) is 
alled di�usion 
oeÆ
ient,while D(1) is 
alled the drift 
oeÆ
ient whi
h des
ribes the determin-isti
 part of the dynami
s. Finally, there is the 
ase that there areeven nonzero 
oeÆ
ients for n � 3. In this 
ase, the expansion a
tuallydoes not stop at any �nite order. This so{
alled Pawula theorem is aninteresting mathemati
al result whi
h 
an be proven rather straightfor-wardly using the positivity of P (for details, see Ref. [15℄). This meansthat a trun
ation of the expansion after, say, the n = 4 term wouldresult in solutions whi
h are negative for some times and some regionsof state spa
e, whi
h is of 
ourse 
ompletely unphysi
al. From now on,we will only 
onsider usual Fokker{Plan
k pro
esses.We 
an thus de�ne a Langevin simulation as a pro
edure whi
hgenerates sto
hasti
 traje
tories for su
h a pro
ess with a dis
retiza-tion time step � . The physi
s is then spe
i�ed by the details of D(1)and D(2). In the multi{variable 
ase, D(1) is a ve
tor, while D(2) isa se
ond{rank tensor; they are related to the short{time behavior ofthe (ve
torial) mean displa
ement, and the displa
ement 
ovarian
ematrix, respe
tively.The Euler algorithm is the simplest pro
edure, whi
h is deriveddire
tly from what we have already learned:h�xii = D(1)i (x; t)� + o(�)h�xi�xji = 2D(2)ij (x; t)� + o(�) (14)h(�x)ni = o(�) n � 3;
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Langevin Methods 7this is satis�ed by the updating rulexi(t+ �) = xi(t) +D(1)i � +p2� ri; (15)where the ri are random variables with hrii = 0 and hrirji = D(2)ij (allhigher moments existing).This latter requirement is usually rather easy to satisfy, sin
e inmany 
ases the di�usion tensor is either 
onstant or diagonal, or both.The most demanding 
ase is where D(2)ij has nonzero o�{diagonal ele-ments, whi
h moreover depend on the sto
hasti
 variables. This o

ursfor systems of Brownian parti
les with hydrodynami
 intera
tions,where the sto
hasti
 displa
ements are highly 
orrelated (see 
ontribu-tion by A. Ladd). In that 
ase, one has to 
al
ulate the \square root" ofa large matrix every single time step. This is 
onveniently done by thealgorithm �rst developed by Ermak and M
Cammon [4℄. For a re
entlarge{s
ale appli
ation to the dynami
s of a single polymer 
hain insolution, see Ref. [12℄. In this le
ture, we will not further dis
uss this
ase, and refer the interested reader to the original papers.It should be emphasized that on the level of the Euler algorithm itis not ne
essary to use random numbers with a Gaussian distribution,although this is sometimes stated in the literature. As a matter of fa
t,the derivation of the theory has so far not used Gaussian distributionsat all, but rather the properties written down in Eq. 14. From this,one dire
tly sees that the requirement is to just satisfy these, and auniform distribution, whi
h is 
omputationally more eÆ
ient, will bejust as good [3℄.Nevertheless, the Gaussian distribution does have a prominent role.The reason is that in the limit � ! 0 the sto
hasti
 term stronglydominates. Therefore, very many sto
hasti
 displa
ements have alreadytaken pla
e before the deterministi
 drift is felt. A sum of very manyindependent random variables with identi
al distribution is howeverGaussian (
entral limit theorem). For this reason, the sto
hasti
 termis often 
alled \Gaussian white noise" (the word \white" hints, roughlyspoken, to the fa
t that the pro
ess is supposed to be Markovian onarbitrarily short time s
ales, or, in other words, that it does not havean intrinsi
 time or frequen
y s
ale). However, from the standpointof implementation this means that \Gaussianity" is nothing the pro-grammer should worry about | the pro
edure will rather produ
e itautomati
ally.The very spe
ial role of the Gaussian distribution is also seen fromthe fa
t that it a
tually is the exa
t solution of the FPE for the 
asethat both D(1) and D(2) are 
onstants, as is easily veri�ed. In this 
ase
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8 B. D�unwegthe updating rule Eq. 15 is exa
t for arbitrarily large time steps (and,of 
ourse, there is no point in running su
h a simulation).We now pro
eed by rewriting Eq. 15 as1� (xi(t+ �)� xi(t)) = D(1)i +r2� ri: (16)Attempting to take the limit � ! 0 would generate an obje
t whi
hdoes not exist in the sense of 
onventional 
al
ulus. Indeed, the sto
has-ti
 traje
tories are only 
ontinuous, but not di�erentiable; this impliesthat the left hand side diverges (as is also seen from the ��1=2 term onthe right hand side). Therefore, one writes down the so{
alled Langevinequation ddtxi = D(1)i + fi(t); (17)with deterministi
 drift D(1)i and Gaussian white noise fi, based onthe understanding that this means nothing but a formal way of writingdown the Euler updating rule, Eq. 15. The requirements on the randomnumbers ri then translate into hfii = 0 (18)and 
fi(t)fj(t0)� = 2DijÆ(t� t0): (19)This spe
i�
ation is needed for 
onsisten
y; it makes sure that integrat-ing the Langevin equation over a small time interval � just re
overs theEuler rule (up to irrelevant terms of order o(�)), su
h that the funda-mental properties Eq. 14 are satis�ed. Similarly, one must spe
ify thehigher{order moments of fi su
h that R �0 dt fi(t) is a Gaussian randomvariable (for details, see Ref. [15℄).One subtlety remains. As the Langevin equation is not an obje
tof ordinary 
al
ulus, one obviously has to de�ne what is meant byit. Unfortunately, the de�nition given above (the so{
alled Ito inter-pretation) is not the only de�nition used in the literature. Another
ommon 
onvention is the so{
alled Stratonovi
h interpretation. WhileEqs. 17{19 are left un
hanged, the Stratonovi
h interpretation uses adi�erent pres
ription how to pro
eed from the Langevin equation to theupdating rule at �nite time step. This pres
ription is inspired by theidea that one should �rst interpret the Langevin equation in the senseof ordinary 
al
ulus, and take the limit of vanishing 
orrelation timeof the noise at the very end. One thus arrives at a di�erent updatingrule, whi
h a
tually means a di�erent sto
hasti
 pro
ess and a di�erentFPE. Fortunately, the di�eren
e only o

urs for the 
ase of so{
alledmultipli
ative noise, where the noise strength (or the di�usion tensor)
bduenweg1.tex; 27/01/2003; 22:33; p.8



Langevin Methods 9depends on the sto
hasti
 variable (the \usual" 
ase where the noisestrength is 
onstant is termed additive noise).To understand the di�eren
e, let us thus 
onsider the one{dimensional Langevin equation with multipli
ative noiseddtx = F (x) + �(x)f(t); (20)where F denotes the deterministi
 part, while hfi = 0 and hf(t)f(t0)i =2Æ(t � t0). Now, Ito and Stratonovi
h give di�erent answers to thequestion how one should evaluate the sto
hasti
 term(�x)st = Z �0 dt �(x(t))f(t): (21)While the Ito interpretation simply pres
ribes(�x)st ! �(x(0)) Z �0 dt f(t); (22)resulting in �Z �0 dt �(x(t))f(t)� = 0; (23)the Stratonovi
h interpretation rather Taylor expands �(x) within theintegral, Z �0 dt �(x(t))f(t) (24)! �(x(0)) Z �0 dt f(t) + d�dx Z �0 dt�x(t)f(t) + : : := �(x(0)) Z �0 dt f(t) + �d�dx Z �0 dt Z t0 dt0 f(t0)f(t) + : : : ;su
h that we now obtain an e�e
tive drift term (often 
alled \spuriousdrift") �Z �0 dt �(x(t))f(t)� = �d�dx� + o(�): (25)This means that the Ito interpretation leads to a FPE where only Fo

urs as drift term, while in the Stratonovi
h interpretation the driftterm is F + �(d�=dx).3. The Flu
tuation{Dissipation TheoremSo far, we have only studied the mathemati
s of Fokker{Plan
k pro-
esses. In statisti
al physi
s, these pro
esses are most 
ommonly used
bduenweg1.tex; 27/01/2003; 22:33; p.9



10 B. D�unwegto des
ribe the 
u
tuations of a system in thermal equilibrium, orthe relaxation from a non{equilibrium state into equilibrium. This hastwo important 
onsequen
es: (i) Drift and di�usion 
oeÆ
ients 
annotdepend expli
itly on time, sin
e otherwise the requirement of timetranslational invarian
e were violated. (ii) The Boltzmann distribution�(x) = Z�1 exp (��H(x)) ; (26)whereH(x) is the Hamiltonian of the system, � = 1=(kBT ), T the abso-lute temperature, kB Boltzmann's 
onstant, and Z = R dx exp (��H)the partition fun
tion, must be a stationary solution of the FPE,L exp (��H) = 0: (27)This results in a relation between drift and di�usion 
oeÆ
ient; in whatfollows we will derive these relations for BD, SD, and DPD.4. Common Simulation MethodsIn BD, we 
onsider a system of parti
les with 
oordinates ~ri, fri
tion
oeÆ
ients �i, and di�usion 
oeÆ
ients Di. We denote the (e�e
-tive) potential whi
h des
ribes the intera
tion between the Brownianparti
les with U . This is the system Hamiltonian whi
h governs theBoltzmann distribution. The for
es are then given by ~Fi = ��U=�~ri.The BD algorithm is to simulate the Langevin equationsddt~ri = 1�i ~Fi + ~Æi (28)D~ÆiE = 0 (29)D~Æi(t)
 ~Æj(t0)E = 2Di $1 ÆijÆ(t� t0); (30)we here have fo
used on the 
ase without hydrodynami
 intera
tion,where the sto
hasti
 displa
ements are un
orrelated. One thus 
an reado� L = �Xi ��~ri 1�i ~Fi +Xi Di � ��~ri�2 ; (31)and Eq. 27 results inXi ��~ri � 1�i �H�~ri � �Di�H�~ri � exp(��H) = 0: (32)This is satis�ed if the Einstein relationDi = kBT�i (33)
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Langevin Methods 11holds.This method 
an be easily 
ombined with the standard MC method.The idea is simply to use the BD step as a MC trial move, and toa

ept or reje
t it by the standard Metropolis 
riterion. In order todo this 
orre
tly, on must of 
ourse satisfy the 
ondition of detailedbalan
e (see 
ontribution by A. Mil
hev). This, in turn, requires totake into a

ount that the trial move is biased (\for
e biased MC"),i. e. that the a priori probability for the rea
tion ~r ! ~r0 di�ers fromthat for ~r0 ! ~r. These a priori probabilities are of 
ourse nothingbut the probabilities to generate the appropriate random numbers. Forthese, one should take a Gaussian distribution in order to avoid zerovalues. One thus arrives at a modi�ed Metropolis 
riterion where theBoltzmann fa
tor is multiplied by the ratio of the Gaussian fun
tionsfor the two rea
tions. In the limit of vanishing time step, the a

eptan
erate of this pro
edure tends to unity.Sto
hasti
 dynami
s is a simulation method where one starts from aHamiltonian dynami
al system, and augments the momentum equation(Newton's equation of motion) by a fri
tion and a noise term. Thedevelopment is most transparent, and most general, if we start fromHamilton's equations of motionddtqi = �H�pi (34)ddtpi = ��H�qi (35)where the qi denote the generalized 
oordinates, and the pi the gen-eralized 
anoni
ally 
onjugate momenta. We then add fri
tion andnoise, ddtqi = �H�pi (36)ddtpi = ��H�qi � �i�H�pi + �ifi; (37)here �i is again a fri
tion 
oeÆ
ient (note that �H=�pi, for usualCartesian 
oordinates, is nothing but the velo
ity), �i denotes the noisestrength, while hfii = 0 and hfi(t)fj(t0)i = 2ÆijÆ(t � t0). We 
an evenallow that the fri
tion 
onstants �i and the noise strengths �i dependon the 
oordinates qi (but not on the momenta pi!). For this system ofLangevin equations we 
an again read o� the Fokker{Plan
k operator,L = LH + LSD; (38)
bduenweg1.tex; 27/01/2003; 22:33; p.11



12 B. D�unwegwhere the �rst part refers to the Hamiltonian part of the dynami
s,LH = �Xi ��qi �H�pi +Xi ��pi �H�qi= �Xi �H�pi ��qi +Xi �H�qi ��pi ; (39)with LH exp (��H) = 0; (40)while the se
ond part is due to fri
tion and noise,LSD =Xi ��pi ��i�H�pi + �2i ��pi � ; (41)su
h that Eq. 27 results inXi ��pi ��i�H�pi � ��2i �H�pi � exp (��H) = 0: (42)Hen
e the relation �2i = kBT�i (43)must hold. The temperature is thus 
ontrolled as the ratio betweennoise strength and fri
tion.As already dis
ussed in the Introdu
tion, this is a useful and 
onve-nient way to stabilize a standard MD simulation. In the limit of weakfri
tion, �i ! 0, the dynami
s does not di�er very mu
h from the orig-inal Hamiltonian dynami
s. In that 
ase, the system 
an be simulatedby just taking a good integrator for Hamiltonian dynami
s (usually theVerlet or leapfrog algorithm, see 
ontribution by D. Rapaport), andadding fri
tion and random for
e just to the deterministi
 for
e when-ever the latter o

urs. It should however be noted that, stri
tly spoken,in this 
ase the use of uniform random numbers redu
es the order of thealgorithm from se
ond (Verlet) to �rst (Euler). The reason is that anoverall a

ura
y up to se
ond order would require to a

urately samplethe moments of the noise up to fourth order, while uniform randomnumbers only sample the �rst and se
ond moment 
orre
tly. On theother hand, this loss of a

ura
y is only minor for weak fri
tion, sin
ein this 
ase the behavior is dominated by the deterministi
 part. Theissue of higher{order integrators will be dis
ussed below.As also mentioned in the Introdu
tion, the SD algorithm is uselessfor studying hydrodynami
 phenomena. The reason is that Galilei in-varian
e and momentum 
onservation are among the most importantproperties of hydrodynami
s, and both are violated in SD. The overall
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Langevin Methods 13momentum is not 
onserved, and the algorithm dampens the absolutevelo
ities, thus labeling the \laboratory frame" as spe
ial, whi
h is of
ourse unphysi
al. In a real Galilei invariant 
uid, the internal fri
tion(vis
osity) rather dampens velo
ity gradients, i. e. relative velo
ities.More quantitatively, it is easy to see that the 
hange from MD to SD
orresponds, on the hydrodynami
 s
ale, to a 
hange from the usualin
ompressible Navier{Stokes equation to a modi�ed in
ompressibleNavier{Stokes equation: The usual term �r2~u (� vis
osity, ~u velo
ity
ow �eld), whi
h des
ribes the amount of internal fri
tion per unitvolume, is 
hanged to �r2~u � n�~u, where n is the parti
le density.From this, one dire
tly reads o� a typi
al length s
ale l = [�=(n�)℄1=2,whi
h is the s
reening length beyond whi
h hydrodynami
 
orrelationsare broken up. For more details, and a more formal derivation, see Ref.[2℄.Dissipative parti
le dynami
s (DPD) has been developed to 
urethis problem, and to simulate hydrodynami
 phenomena in 
uids ona mesos
opi
 s
ale. DPD, as it is usually des
ribed in the literature,
onsists of two parts: (i) Introdu
tion of very soft interparti
le poten-tials in order to fa
ilitate a large time step, and (ii) introdu
tion ofa Galilei invariant thermostat, whi
h is similar to SD, but dampensrelative velo
ities, and applies the sto
hasti
 ki
ks to pairs of parti
lessu
h that Newton's third law (i. e. momentum 
onservation) is satis�ed.As the pro
edure is also 
ompletely lo
al, it is therefore suitable for thedes
ription of (isothermal) hydrodynami
s. Unfortunately, it is oftennot made suÆ
iently 
lear that these two parts are 
ompletely unrelated,i. e. that one 
an use the DPD thermostat with \
onventional" hardpotentials, and that one 
an go from a working MD 
ode to DPD,just as one would go to SD. We will from now on ex
lusively fo
uson the thermostat aspe
t of DPD. As Espanol and Warren [5℄ haveshown, the stru
ture of the FDT for DPD is very similar to the SD
ase. A parti
ularly useful appli
ation of the DPD thermostat, whi
his just presently being appre
iated, is its use in nonequilibrium stud-ies like the simulation of steady{state Couette 
ow. Nonequilibriumsteady states are 
hara
terized by a 
onstant nonzero rate of entropyprodu
tion, usually showing up as vis
ous heat. This produ
ed entropymust be removed from the system, and therefore su
h simulations areusually 
oupled to a thermostat (an alternative approa
h, whi
h ratherremoves the entropy by a Maxwell demon, has re
ently been developedby M�uller{Plathe [13℄). Before the advent of DPD, it was a non{trivialproblem to introdu
e the thermostat in su
h a way that it would notprefer a 
ertain pro�le (so{
alled \pro�le{unbiased thermostats", seeRef. [6℄). The DPD thermostat solves this problem in a very naturaland straightforward way [16℄.
bduenweg1.tex; 27/01/2003; 22:33; p.13



14 B. D�unwegIn pra
ti
e, DPD simulations are done as follows: We �rst de�ne twofun
tions, �(r), the relative fri
tion 
oeÆ
ient for parti
le pairs withinterparti
le distan
e r, and �(r), the noise strength for a sto
hasti
ki
k applied to the same parti
le pair. We will show below that theFDT implies the relation �2(r) = kBT�(r); (44)in 
lose analogy to SD. The fun
tion has a �nite range, su
h that onlynear neighbors are taken into a

ount.De�ning ~rij = ~ri � ~rj = rij r̂ij , we then obtain the fri
tion for
e onparti
le i by proje
ting the relative velo
ities on the interparti
le axes:~F (fr)i = �Xj �(rij) [(~vi � ~vj) � r̂ij ℄ r̂ij ; (45)it is easy to see that the relation Pi ~F (fr)i = 0 holds. Similarly, we getthe sto
hasti
 for
es along the interparti
le axes:~F (st)i =Xj �(rij) �ij(t) r̂ij ; (46)where the noise �ij satis�es the relations �ij = �ji, h�iji = 0, andh�ij(t)�kl(t0)i = 2(ÆikÆjl + ÆilÆjk)Æ(t � t0), su
h that di�erent pairs arestatisti
ally independent. As before, one easily showsPi ~F (st)i = 0. Theequations of motion, ddt~ri = 1mi ~pi (47)ddt~pi = ~Fi + ~F (fr)i + ~F (st)i (48)therefore indeed 
onserve the total momentum, as the 
onservativefor
es ~Fi satisfy Newton's third law. The Fokker{Plan
k operator 
anthen be written as L = LH + LDPD; (49)where LH again des
ribes the Hamiltonian part with LH exp (��H) =0 (
f. Eq. 39), and LDPD is given byLDPD = Xij �(rij)r̂ij � ��~pi "r̂ij �  �H�~pi � �H�~pj!#� Xi 6=j �2(rij)�r̂ij � ��~pi� r̂ij � ��~pj!
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Langevin Methods 15+ Xi Xj(6=i) �2(rij)�r̂ij � ��~pi�2= Xi Xj(6=i) r̂ij � ��~pi"�(rij)r̂ij �  �H�~pi � �H�~pj!+ �2(rij)r̂ij �  ��~pi � ��~pj!#: (50)In the sto
hasti
 term, we have �rst taken into a

ount the o�{diagonalterms (
ross{
orrelations, whi
h are a
tually anti{
orrelations betweenthe neighbors). The prefa
tors for the diagonal terms are given by thesum of all the mean square noise strengths from all the neighbors.Applying this operator to exp (��H), we �nd that the FDT is satis�edif �2(r) = kBT�(r).5. Higher{Order AlgorithmsBeyond the simple Euler method, one 
an try to develop algorithmswhi
h are of higher order. For the 
ase of additive noise, this 
an be donein a rather systemati
 fashion via operator fa
torization. Assuming thatthe Fokker{Plan
k operator does not expli
itly depend on time, theformal solution of the FPE is P = exp (Lt) Æ(x�x0), where x(t = 0) =x0. Cal
ulating the exponential operator is nothing but a
tually solvingthe FPE. In the interesting 
ases where simulations are required, this isof 
ourse impossible. However, if we 
an de
ompose L as L = L1 + L2in su
h a way that both exp (L1t) and exp (L1t) are known, then wemay use the relationexp (Lt) = exp (L1t=2) exp (L1t) exp (L1t=2) +O(t3): (51)Ea
h of the three propagations 
orresponds to an exa
t solution and, assu
h, 
an be 
ast into an exa
t updating pro
edure. Su
h a method isthen a

urate up to se
ond order. As a matter of fa
t, ea
h of the threeupdates must only be a

urate up to se
ond order, too. For example,we 
an use the de
ompositionL = Ldet + Lsto
h (52)into deterministi
 and sto
hasti
 updates. Here exp(Lsto
ht) 
orre-sponds to the standard Gaussian propagator, while exp(Ldett) is just adeterministi
 update, whi
h 
an be handled by a 
onventional methodfor ordinary di�erential equations up to any desired order. It is even
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16 B. D�unwegpossible to go up to fourth order, whi
h is however somewhat 
umber-some, sin
e this involves the evaluation of higher-order derivatives ofthe intera
tion potential. For more details, see Ref. [7℄.In the 
ase of multipli
ative noise, things be
ome mu
h more in-volved, be
ause even for the pure sto
hasti
 update exp(Lsto
ht) thereis no general 
losed solution of the FPE. A se
ond{order algorithm hasbeen developed (see, e. g., Ref. [14℄); however, for the interesting 
aseof hydrodynami
 intera
tions the method be
omes so 
ompli
ated thatit is pra
ti
ally not useful. The present author therefore agrees withRef. [10℄, whi
h re
ommends to just use the Euler s
heme, perhaps
ombined with an extrapolation to zero time step.Referen
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