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Abstract. The lecture outlines the most important mathematical facts about
stochastic processes which are described by a Langevin equation (stochastic differ-
ential equation, SDE) or (equivalently) a Fokker—Planck equation (FPE) comprising
both drift and diffusion terms. The importance of the short—time behavior of the
moments (mean displacement, mean square displacement) is stressed, and the prob-
lem of interpretation of SDEs (Ito vs. Stratonovich) is explained. The simplest
integration scheme (Euler) is a straightforward consequence of this theory. For
the simulation of thermal systems, drift and diffusion must balance each other in
a well-defined way which fixes the temperature (fluctuation—dissipation theorem).
The application of the general framework is then discussed for various methods com-
monly used in classical statistical physics (Brownian dynamics, stochastic dynamics,
dissipative particle dynamics, force-biased Monte Carlo).

1. Introduction

A Langevin equation is typically written down when one wants to
describe the dynamics of a system that (more or less naturally) can
be decomposed into fast and slow degrees of freedom. The archetype
of such a system (but by far not the only example) is slow Brownian
particles immersed into fast solvent particles. The idea is that on suf-
ficiently long time scales, the motion of the Brownian particles can be
described just as random hops — the actual and complicated dynamical
processes which bring these hops about are deliberately discarded from
our attention, and the positions of the particles are only noticed at
the flashes of some imaginary “stroboscope”. On a somewhat shorter
time scale, the influence of the solvent particles is replaced by friction
and noise which “kicks” the Brownian particles randomly. The first
picture gives rise to the method of Brownian Dynamics (BD), where one
simulates a stochastic process just in terms of the particle coordinates,
while the latter picture implies the method of stochastic dynamics (SD)
, where one keeps both the positions and the momenta of the Brownian
particles, and introduces friction and noise as additional forcing terms.

Such descriptions, which are based on the reduction of the number
of degrees of freedom, and which therefore are both conceptually and
technically much simpler than the original system, certainly involve
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2 B. Diinweg

approximations. The purpose of this lecture is not to discuss if and
under what circumstances this is a valid procedure, and how accurate
such an approximation is. This is the topic of transport theory [8, 17]
and would be well beyond the scope of the present contribution, which
is rather intended as an elementary introduction into the mathematical
background of stochastic processes involving both a continuous state
space and continuous time [1, 11, 15, 9]. This is needed in order to
understand what is actually meant when a Langevin equation is written
down, and to understand how this is implemented on the computer with
a finite discretization time step. Langevin simulations thus can be seen
as somehow in between Monte Carlo (MC) and Molecular Dynamics
(MD), sharing the element of randomness with the further, and of
continuous trajectories in phase space with the latter. It turns out
that the mathematical equivalence of the Langevin equation with the
Fokker—Planck equation (FPE), which describes the evolution of the
probability distribution in phase space, is particularly fruitful: This
allows us to describe the stochastic process in terms of well-known
concepts of probability theory, and to actually define what is meant
by a Langevin equation. Furthermore, the concept of detailed balance,
which plays such a central role in equilibrium MC (see contribution
by A. Milchev), is here replaced by the rather analogous concept of
the fluctuation—dissipation theorem (FDT): A simulation which runs
in thermal equilibrium should have the Boltzmann distribution as
(only) stationary distribution. This is also very easily checked in the
Fokker—Planck picture, and we will see several examples below.

At this point, it should be emphasized that Langevin methods are
very useful even when the underlying picture of fast vs. slow degrees
of freedom does not apply, i. e. even when it is impossible to identify
certain “hidden” degrees of freedom, which are supposed to be modeled
by the random noise. Such a simulation should then not necessarily
been viewed as a realistic description of the dynamics of the system, but
it will produce the correct statics of the canonical ensemble if the FDT
holds. It is thus just another MC procedure to generate the desired
distribution. This is extremely convenient if one has a running MD
code of the system available; a straightforward addition of just a few
(typically of order ten, plus maybe a few hundred for a sophisticated
random number generator) lines of code turns this into an SD simu-
lation. This results in a change of ensemble (from constant energy to
constant temperature), plus in a nice feature of numerical stabiliza-
tion: As we will see below, the temperature is the ratio between noise
strength and friction, and this may be viewed as a feedback control
procedure for every single degree of freedom: A particle that is “too
hot” will be cooled down because the friction term dominates, while
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Langevin Methods 3

a particle that is too cold will be heated up by the noise. Such events
easily occur as a result of the discretization errors of MD, but are
“corrected” by the thermostat, which prevents such local catastrophes
from building up further, and, in particular, from spreading throughout
the system. Typically, the simulation of a dense Lennard—Jones fluid
can thus be run with a time step which is two or even three times larger
than what is appropriate for the constant—energy ensemble. Conversely,
deterministic thermostats like the Nose-Hoover procedure rely on a
global feedback for the whole system (see contribution by D. Rapaport),
and hence do not have that good stabilization properties.

If one applies the Langevin equation with such a motivation, one
should however be very careful when interpreting the results in terms
of the dynamics of the system. Not much can be said beyond this
rather general warning, since this depends very much on the system
under consideration. One particular case shall however be discussed in
some detail: The SD algorithm is absolutely useless for the simulation
of hydrodynamic phenomena, even in the limit of rather weak noise.
The reason is that it breaks Galilean invariance, as we will see below,
and that it prevents the build—up of hydrodynamic correlations, and
of (physicall) hydrodynamic instabilities, beyond a certain length scale
¢, the hydrodynamic screening length, which we shall discuss below.
The same property which is a blessing for numerical stabilization thus
turns out to be a curse for hydrodynamics. This problem has led to the
modification of the SD thermostat to the so—called “dissipative parti-
cle dynamics” (DPD) algorithm, which cures it by restoring Galilean
invariance, while still having quite nice stabilization properties.

The outline of this contribution is as follows: The first part is de-
voted to the discussion of the mathematical theory of Fokker—Planck
processes and its lowest—order implementation, the Euler algorithm, at
the end of which we will be able to formulate the FDT. We will then
discuss various standard Langevin methods (BD, Force Biased MC,
SD, and DPD) and, in particular, demonstrate the validity of the FDT
for each of them. We will conclude with some remarks on higher—order
algorithms.

2. Theory of Fokker—Planck Processes

We consider a Markov process with continuous state space, denoting
the state space variable with z. Usually, the state space is multi-
dimensional; however, for the ease of notation and discussion we will
focus on the one-dimensional case — the generalization to the multi-
dimensional case is straightforward. The time variable will be denoted
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4 B. Diinweg

with ¢. In contrast to the standard MC method (see contribution A.
Milchev), where one considers a Markov chain with discrete time, we
are here concerned with the case of continuous time. This means that
the Markov property, which states that the process has no memory (i. e.
the future behavior depends only on the present state, but not on the
previous history), must hold for arbitrarily small time intervals. This is
a very strong property, which, together with the continuousness of z,
allows us to derive an equation of motion for the so—called “propagator”
P(z,t|zo,10), i. e. the conditional probability density for the event that
the process is in state z at time ¢ if it was at zy at some earlier time
to < t. This equation of motion, the generalized FPE, is a partial
differential equation involving derivatives with respect to both z and ¢;
the aim of what follows (the so—called Kramers—Moyal expansion [15])
is to establish how its coefficients are related to the short—time behavior
of the process (or of P(z,t|zg,tp)).

We begin by noting a few elementary properties of P(z,t|zo, o),
normalization,

[ daP o tlzo,t0) = 1. (1)
the initial condition,
P(:E,t0|$0,t0) 25(1‘—1‘0), (2)

and the Chapman—Kolmogorov equation
P(z,t|zo,t0) = /d$1P($at|$1,t1)P($1,t1|$0,t0) (3)

for times tg < t; < t. This latter equation simply states that by
summing over all intermediate states x1, one gets the full probability
to go from zg to z. The factorization within the integral expresses the
Markov property, i. e. the statistical independence of the future from
the past.

It is obvious that P(z,t|zo,to) at short times (7 := ¢t —ty > 0 small)
is very sharply peaked (see also Eq. 2). This means in turn that the
moments

fin(t; 205 t0) = {(z —20)") (¢, 0)
/diE (x — x0)" P(x,t|z0,to) (4)

(mean displacement, mean square displacement, etc.) will also be very
small for small 7 (except, of course, for ug, which is trivially identical
to unity for all times). We therefore write for n > 1

((z — 20)™) (to + 7, t0) = n!D™ (29, to)T + o(7), (5)

bduenwegl.tex; 27/01/2003; 22:33; p.4



Langevin Methods )

where o(7) denotes terms of order higher than linear, while the D(™
are the so—called Kramers—Moyal coefficients. Here we have assumed
that all moments exist (the theory is only valid for such processes).
However, it is well-known that in this case the probability density P
is uniquely determined by its moments. The standard proof of this
fact relies on the Fourier transform of P, whose Taylor coefficients are
just the moments. Formally, this one-to—one correspondence is directly
expressed via,

P(z,t|lzo, to) = Y <—(%>n5($ - xo)%ﬂn(t;xo,to), (6)

n=0

as is easily verified by taking the nth moment of both left—-hand and
right—hand side, using partial integration.

We now consider the Chapman—Kolmogorov equation, Eq. 3, for the
special case that the intermediate time #; is very close to the final time
t, ty =t — 7. We then insert the expansion Eq. 6 for the propagator
corresponding to the short time interval 7:

= a\" 1
P(z,t|zg, ty) = /dxlz (——) 6(x—x1)ﬁ,un(t;x1,t—7')

— oz
P(z1,t — T|zo, o) (7)
= i (_;)” lWn(lt; z,t = 7)P(2,¢ = T|z0, o)
n=0 z -

or (after subtraction of the n = 0 term)

1
; [P(x,t|x0,t0) — P(:E,t — 7'|:E0,t0)]
1 & o\" 1
= ;n;l<_%> aun(t;w,t—T)P(x,t—T|x0,t0). (8)

Within linear order in 7 we can write
pn(t;z,t —7) = nID™ (z,t — 7)1 + o(7)
= n!D™ (5, )7 + o(7) (9)

and
P($,t—T|.’L‘0,t0) %P(:E,t|$0,t0). (10)

Inserting these expressions into Eq. 8, we arrive in the limit 7 — 0 at
the generalized FPE

) N AN
Ep(xaﬂxoato) = n;l <_£> D( )(xat)P(l"aﬂantU)a (11)
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which is often written in the shorthand notation

%P(%,ﬂfl?o,to) = EP(J?,t|ZEO,t0), (12)
where L is the Fokker—Planck operator.

The processes can further be classified by the order at which the
expansion stops. The simplest case is where all D™ vanish. In this
case there is obviously no dynamics at all; the process just stays at
& = z. The next case is where only D) is nonzero, while all other
D) vanish. This is the case of deterministic dynamics. Indeed, for
deterministic dynamics we have a well-defined trajectory z(¢) starting
at © = xo at time t = tg, i. e. P = §(z — z(¢)), and

0 0

EP = —%i(t)é(x —z(t)). (13)
In the case of Hamiltonian deterministic dynamics, the corresponding
FPE is just the Liouville equation. Usual Fokker-Planck (or diffusion)
processes correspond to the case where all D(™ are zero from n = 3 on,
while D® is nonzero. In this case D® is called diffusion coefficient,
while DU is called the drift coefficient which describes the determin-
istic part of the dynamics. Finally, there is the case that there are
even nonzero coefficients for n > 3. In this case, the expansion actually
does not stop at any finite order. This so—called Pawula theorem is an
interesting mathematical result which can be proven rather straightfor-
wardly using the positivity of P (for details, see Ref. [15]). This means
that a truncation of the expansion after, say, the n = 4 term would
result in solutions which are negative for some times and some regions
of state space, which is of course completely unphysical. From now on,
we will only consider usual Fokker—Planck processes.

We can thus define a Langevin simulation as a procedure which
generates stochastic trajectories for such a process with a discretiza-
tion time step 7. The physics is then specified by the details of D)
and D@, In the multi—variable case, D) is a vector, while D®) ig
a second-rank tensor; they are related to the short—time behavior of
the (vectorial) mean displacement, and the displacement covariance
matrix, respectively.

The FEuler algorithm is the simplest procedure, which is derived
directly from what we have already learned:

(Az) = DY (z,4)7 + o(7)

(Az;iAzj) = 2D (2, )7 + of7) (14)
((Az)") = o(r) n>3;
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this is satisfied by the updating rule
zi(t+ 1) :zi(t)+D§1)T+\/27m, (15)

where the r; are random variables with (r;) = 0 and (r;yr;) = DE;) (all
higher moments existing).

This latter requirement is usually rather easy to satisfy, since in
many cases the diffusion tensor is either constant or diagonal, or both.
The most demanding case is where DZ@) has nonzero off-diagonal ele-
ments, which moreover depend on the stochastic variables. This occurs
for systems of Brownian particles with hydrodynamic interactions,
where the stochastic displacements are highly correlated (see contribu-
tion by A. Ladd). In that case, one has to calculate the “square root” of
a large matrix every single time step. This is conveniently done by the
algorithm first developed by Ermak and McCammon [4]. For a recent
large—scale application to the dynamics of a single polymer chain in
solution, see Ref. [12]. In this lecture, we will not further discuss this
case, and refer the interested reader to the original papers.

It should be emphasized that on the level of the Euler algorithm it
is not necessary to use random numbers with a Gaussian distribution,
although this is sometimes stated in the literature. As a matter of fact,
the derivation of the theory has so far not used Gaussian distributions
at all, but rather the properties written down in Eq. 14. From this,
one directly sees that the requirement is to just satisfy these, and a
uniform distribution, which is computationally more efficient, will be
just as good [3].

Nevertheless, the Gaussian distribution does have a prominent role.
The reason is that in the limit 7 — 0 the stochastic term strongly
dominates. Therefore, very many stochastic displacements have already
taken place before the deterministic drift is felt. A sum of very many
independent random variables with identical distribution is however
Gaussian (central limit theorem). For this reason, the stochastic term
is often called “Gaussian white noise” (the word “white” hints, roughly
spoken, to the fact that the process is supposed to be Markovian on
arbitrarily short time scales, or, in other words, that it does not have
an intrinsic time or frequency scale). However, from the standpoint
of implementation this means that “Gaussianity” is nothing the pro-
grammer should worry about — the procedure will rather produce it
automatically.

The very special role of the Gaussian distribution is also seen from
the fact that it actually is the exact solution of the FPE for the case
that both D) and D@ are constants, as is easily verified. In this case
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8 B. Diinweg

the updating rule Eq. 15 is exact for arbitrarily large time steps (and,
of course, there is no point in running such a simulation).
We now proceed by rewriting Eq. 15 as

% (zi(t+7) — z3(t)) = DY + \/gri. (16)

Attempting to take the limit 7 — 0 would generate an object which
does not exist in the sense of conventional calculus. Indeed, the stochas-
tic trajectories are only continuous, but not differentiable; this implies
that the left hand side diverges (as is also seen from the 7='/2 term on
the right hand side). Therefore, one writes down the so—called Langevin
equation

Sai= D 4 1), a7)
with deterministic drift Dgl) and Gaussian white noise f;, based on
the understanding that this means nothing but a formal way of writing
down the Euler updating rule, Eq. 15. The requirements on the random
numbers r; then translate into

(fi)=0 (18)

and

(fi(t)f;(t")) =2D;;0(t —t'). (19)
This specification is needed for consistency; it makes sure that integrat-
ing the Langevin equation over a small time interval 7 just recovers the
Euler rule (up to irrelevant terms of order o(7)), such that the funda-
mental properties Eq. 14 are satisfied. Similarly, one must specify the
higher—order moments of f; such that [ dt f;(¢) is a Gaussian random
variable (for details, see Ref. [15]).

One subtlety remains. As the Langevin equation is not an object
of ordinary calculus, one obviously has to define what is meant by
it. Unfortunately, the definition given above (the so—called Ito inter-
pretation) is not the only definition used in the literature. Another
common convention is the so—called Stratonovich interpretation. While
Eqgs. 17-19 are left unchanged, the Stratonovich interpretation uses a
different prescription how to proceed from the Langevin equation to the
updating rule at finite time step. This prescription is inspired by the
idea that one should first interpret the Langevin equation in the sense
of ordinary calculus, and take the limit of vanishing correlation time
of the noise at the very end. One thus arrives at a different updating
rule, which actually means a different stochastic process and a different
FPE. Fortunately, the difference only occurs for the case of so—called
multiplicative noise, where the noise strength (or the diffusion tensor)
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depends on the stochastic variable (the “usual” case where the noise
strength is constant is termed additive noise).

To understand the difference, let us thus consider the one-
dimensional Langevin equation with multiplicative noise

d
St = F(z)+o(z)f(t), (20)

where F denotes the deterministic part, while (f) = 0 and (f(t) f(¥')) =
26(t — t'). Now, Tto and Stratonovich give different answers to the
question how one should evaluate the stochastic term

(Ax)y = /0 “dto(x(t)f(2). (21)

While the Ito interpretation simply prescribes

(Az)st — of / dt f(t) (22)

([ atoorsn) =o, (23)

the Stratonovich interpretation rather Taylor expands o(z) within the
integral,

resulting in

/ dtola(®)f (1) 24)

/dtf /thx
0))/0 dt £(1) +ad—0/ dt/ dt' f(¢

such that we now obtain an effective drift term (often called “spurious

drift”)
T do
</ dta(az(t))f(t)> — %% 4 o(r). (25)
0 dz
This means that the Ito interpretation leads to a FPE where only F
occurs as drift term, while in the Stratonovich interpretation the drift
term is F' + o(do/dx).

3. The Fluctuation—Dissipation Theorem

So far, we have only studied the mathematics of Fokker-Planck pro-
cesses. In statistical physics, these processes are most commonly used
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10 B. Diinweg

to describe the fluctuations of a system in thermal equilibrium, or
the relaxation from a non—equilibrium state into equilibrium. This has
two important consequences: (i) Drift and diffusion coefficients cannot
depend explicitly on time, since otherwise the requirement of time
translational invariance were violated. (ii) The Boltzmann distribution

p(x) = Z~ exp (—fH(z)) , (26)

where H(z) is the Hamiltonian of the system, 5 = 1/(kgT), T the abso-
lute temperature, kg Boltzmann’s constant, and Z = [ dz exp (—0H)
the partition function, must be a stationary solution of the FPE,

Lexp (—pH) = 0. (27)

This results in a relation between drift and diffusion coefficient; in what
follows we will derive these relations for BD, SD, and DPD.

4. Common Simulation Methods

In BD, we consider a system of particles with coordinates 7, friction
coefficients (;, and diffusion coefficients D;. We denote the (effec-
tive) potential which describes the interaction between the Brownian
particles with U. This is the system Hamiltonian which governs the
Boltzmann distribution. The forces are then given by F; = —0U/0r;.
The BD algorithm is to simulate the Langevin equations

d

ﬁfi = an‘i‘gz (28)
(5i) =0 (29)
(5t @ 5(t)) = 2Di T 68t — ¥); (30)

we here have focused on the case without hydrodynamic interaction,
where the stochastic displacements are uncorrelated. One thus can read

off
ZBZCF ZD( ) (31)

and Eq. 27 results in
2
- o7

This is satisfied if the Finstein relation

kpT
Dy = —— 33
G (33)

{1 OH oH

53_7:} — BD; (9"} exp(—pH) = 0. (32)
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holds.

This method can be easily combined with the standard MC method.
The idea is simply to use the BD step as a MC #rial move, and to
accept or reject it by the standard Metropolis criterion. In order to
do this correctly, on must of course satisfy the condition of detailed
balance (see contribution by A. Milchev). This, in turn, requires to
take into account that the trial move is biased (“force biased MC”),
i. e. that the a priori probability for the reaction ¥ — 7 differs from
that for ¥ — 7. These a priori probabilities are of course nothing
but the probabilities to generate the appropriate random numbers. For
these, one should take a Gaussian distribution in order to avoid zero
values. One thus arrives at a modified Metropolis criterion where the
Boltzmann factor is multiplied by the ratio of the Gaussian functions
for the two reactions. In the limit of vanishing time step, the acceptance
rate of this procedure tends to unity.

Stochastic dynamics is a simulation method where one starts from a
Hamiltonian dynamical system, and augments the momentum equation
(Newton’s equation of motion) by a friction and a noise term. The
development is most transparent, and most general, if we start from
Hamilton’s equations of motion

d oH

g = — 4
dth Op; (34)
d oH

Epi = _a_qi (35)

where the ¢; denote the generalized coordinates, and the p; the gen-
eralized canonically conjugate momenta. We then add friction and
noise,

d oH

pr i o (36)
d oH oH

P = "o Cia_pi + 0i fi; (37)

here (; is again a friction coefficient (note that 0H/0p;, for usual
Cartesian coordinates, is nothing but the velocity), o; denotes the noise
strength, while (f;) = 0 and (f;(¢)f;(t')) = 20;;0(t — t'). We can even
allow that the friction constants (; and the noise strengths o; depend
on the coordinates ¢; (but not on the momenta p;!). For this system of
Langevin equations we can again read off the Fokker—Planck operator,

L=Lyg+ Lsp, (38)
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where the first part refers to the Hamiltonian part of the dynamics,

0 OH 0 OH
Lg=-—Y ———+) ———
" ; dq; Op; ; Ipi g
OH 0 oH 0
= -y ——+ >y ———, 39
; Ip; Dqi ; 9q; Ip; (39)
with
Liexp(—FH) =0, (40)
while the second part is due to friction and noise,
0 OH 9 O
— — == . , 41
Fsp ; Ipi k o 3;01} (4D
such that Eq. 27 results in
0 oH 9 87—[]
¢ — Bo? - =0. 42
S o iy~ 9% | o (5 (42)
Hence the relation
o? = kpT(; (43)

must hold. The temperature is thus controlled as the ratio between
noise strength and friction.

As already discussed in the Introduction, this is a useful and conve-
nient way to stabilize a standard MD simulation. In the limit of weak
friction, (; — 0, the dynamics does not differ very much from the orig-
inal Hamiltonian dynamics. In that case, the system can be simulated
by just taking a good integrator for Hamiltonian dynamics (usually the
Verlet or leapfrog algorithm, see contribution by D. Rapaport), and
adding friction and random force just to the deterministic force when-
ever the latter occurs. It should however be noted that, strictly spoken,
in this case the use of uniform random numbers reduces the order of the
algorithm from second (Verlet) to first (Euler). The reason is that an
overall accuracy up to second order would require to accurately sample
the moments of the noise up to fourth order, while uniform random
numbers only sample the first and second moment correctly. On the
other hand, this loss of accuracy is only minor for weak friction, since
in this case the behavior is dominated by the deterministic part. The
issue of higher—order integrators will be discussed below.

As also mentioned in the Introduction, the SD algorithm is useless
for studying hydrodynamic phenomena. The reason is that Galilei in-
variance and momentum conservation are among the most important
properties of hydrodynamics, and both are violated in SD. The overall
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momentum is not conserved, and the algorithm dampens the absolute
velocities, thus labeling the “laboratory frame” as special, which is of
course unphysical. In a real Galilei invariant fluid, the internal friction
(viscosity) rather dampens velocity gradients, i. e. relative velocities.
More quantitatively, it is easy to see that the change from MD to SD
corresponds, on the hydrodynamic scale, to a change from the usual
incompressible Navier—Stokes equation to a modified incompressible
Navier-Stokes equation: The usual term nV2# (n viscosity, i velocity
flow field), which describes the amount of internal friction per unit
volume, is changed to nV?# — ni, where n is the particle density.
From this, one directly reads off a typical length scale | = [n/(n¢ )]1/ 2,
which is the screening length beyond which hydrodynamic correlations
are broken up. For more details, and a more formal derivation, see Ref.
12].

Dissipative particle dynamics (DPD) has been developed to cure
this problem, and to simulate hydrodynamic phenomena in fluids on
a mesoscopic scale. DPD, as it is usually described in the literature,
consists of two parts: (i) Introduction of very soft interparticle poten-
tials in order to facilitate a large time step, and (ii) introduction of
a Galilei invariant thermostat, which is similar to SD, but dampens
relative velocities, and applies the stochastic kicks to pairs of particles
such that Newton’s third law (i. e. momentum conservation) is satisfied.
As the procedure is also completely local, it is therefore suitable for the
description of (isothermal) hydrodynamics. Unfortunately, it is often
not made sufficiently clear that these two parts are completely unrelated,
i. e. that one can use the DPD thermostat with “conventional” hard
potentials, and that one can go from a working MD code to DPD,
just as one would go to SD. We will from now on exclusively focus
on the thermostat aspect of DPD. As Espanol and Warren [5] have
shown, the structure of the FDT for DPD is very similar to the SD
case. A particularly useful application of the DPD thermostat, which
is just presently being appreciated, is its use in nonequilibrium stud-
ies like the simulation of steady—state Couette flow. Nonequilibrium
steady states are characterized by a constant nonzero rate of entropy
production, usually showing up as viscous heat. This produced entropy
must be removed from the system, and therefore such simulations are
usually coupled to a thermostat (an alternative approach, which rather
removes the entropy by a Maxwell demon, has recently been developed
by Miiller—Plathe [13]). Before the advent of DPD, it was a non—trivial
problem to introduce the thermostat in such a way that it would not
prefer a certain profile (so—called “profile—unbiased thermostats”, see
Ref. [6]). The DPD thermostat solves this problem in a very natural
and straightforward way [16].
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14 B. Diinweg

In practice, DPD simulations are done as follows: We first define two
functions, {(r), the relative friction coefficient for particle pairs with
interparticle distance r, and o(r), the noise strength for a stochastic
kick applied to the same particle pair. We will show below that the
FDT implies the relation

o*(r) = kpT((r), (44)

in close analogy to SD. The function has a finite range, such that only
near neighbors are taken into account.

Defining 7;; = 7; — 7; = r;j7;;, we then obtain the friction force on
particle 7 by projecting the relative velocities on the interparticle axes:

FID = =37 Clrig) [(5i = ) - 73] 7 (45)
j

it is easy to see that the relation ), F;(f " — 0 holds. Similarly, we get
the stochastic forces along the interparticle axes:

(st .
B =37 o(rig) mij (1) 745, (46)
J
where the noise 7;; satisfies the relations n;; = n;;, (7;5) = 0, and

(i ()t (t)) = 2(0ikdj; + 6i10;1)0(t — t'), such that different pairs are
statistically independent. As before, one easily shows )", ﬁi(St) = 0. The
equations of motion,

T = Eﬁi (47)
d L. .
o = B+ AR ) (48)

therefore indeed conserve the total momentum, as the conservative
forces F; satisfy Newton’s third law. The Fokker—Planck operator can
then be written as

L=Lyg+ LpprPp, (49)

where L again describes the Hamiltonian part with Lp exp (—fH) =
0 (cf. Eq. 39), and Lppp is given by

0 oH OH
L = E Tij)Pij oz (T | 55 — 2z
o ij )ty 2 [ ! <8pi 31’]‘)]

; 0 . 0
= > 0%(rij) <7’ij : 8—5) (Tz‘j : 57])

i#j
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8 2
+ LY ) (52 )

i j(#4)
- e e (22
= e o Y o o
0 0
200 Nir. . . _
+ o°(rij)Tij (3;5}' 8;5})] (50)

In the stochastic term, we have first taken into account the off-diagonal
terms (cross—correlations, which are actually anti—correlations between
the neighbors). The prefactors for the diagonal terms are given by the
sum of all the mean square noise strengths from all the neighbors.
Applying this operator to exp (—(8H), we find that the FDT is satisfied

if 02(r) = kpT((r).

5. Higher—Order Algorithms

Beyond the simple Euler method, one can try to develop algorithms
which are of higher order. For the case of additive noise, this can be done
in a rather systematic fashion via operator factorization. Assuming that
the Fokker—Planck operator does not explicitly depend on time, the
formal solution of the FPE is P = exp (Lt) 6(z — xp), where z(t = 0) =
xp. Calculating the exponential operator is nothing but actually solving
the FPE. In the interesting cases where simulations are required, this is
of course impossible. However, if we can decompose £ as £L = L1 + Lo
in such a way that both exp (£,t) and exp (£;t) are known, then we
may use the relation

exp (Lt) = exp (L£1t/2) exp (L1t) exp (L1t/2) + O(t3). (51)

Each of the three propagations corresponds to an exact solution and, as
such, can be cast into an exact updating procedure. Such a method is
then accurate up to second order. As a matter of fact, each of the three
updates must only be accurate up to second order, too. For example,
we can use the decomposition

L = Laget + Lstoch (52)

into deterministic and stochastic updates. Here exp(Lsiocnt) corre-
sponds to the standard Gaussian propagator, while exp(Lgest) is just a
deterministic update, which can be handled by a conventional method
for ordinary differential equations up to any desired order. It is even
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16 B. Diinweg

possible to go up to fourth order, which is however somewhat cumber-
some, since this involves the evaluation of higher-order derivatives of
the interaction potential. For more details, see Ref. [7].

In the case of multiplicative noise, things become much more in-
volved, because even for the pure stochastic update exp(Lszoent) there
is no general closed solution of the FPE. A second—order algorithm has
been developed (see, e. g., Ref. [14]); however, for the interesting case
of hydrodynamic interactions the method becomes so complicated that
it is practically not useful. The present author therefore agrees with
Ref. [10], which recommends to just use the Euler scheme, perhaps
combined with an extrapolation to zero time step.
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