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The contribution discusses two central models for polymer dynamics, the Rouse model and the
Zimm model. The latter takes into account hydrodynamic interactions, and is hence appropriate
for dilute solutions. In dense melts, the hydrodynamic interactions are screened, and the Rouse
model is applicable (within limitations) as long as the chains are short enough to preclude repta-
tion. The physics of this screening is discussed. The lecture then focuses on the methodological
issue how to take hydrodynamic interactions into account incomputer simulations. So far, the
most successful methods are hybrid approaches where standard Molecular Dynamics for the
polymer system is coupled to a mesoscopic model for momentumtransport in the solvent. The
most popular mesoscopic models are Lattice Boltzmann and Dissipative Particle Dynamics.
These methods are briefly discussed and contrasted. We describe a recent application of such
an approach to the problem of hydrodynamic screening.

1 Polymer Dynamics

1.1 Overview

In this lecture, we will deal with the dynamic behavior of polymers1 and discuss the sim-
plest systems only: We will focus onlinear, flexible, and unchargedmacromolecules,
disregading polydispersity (i. e. the broad distribution of chain lengths which usually oc-
cur in real systems), and study them in thebulk, in (or near)thermal equilibrium. We look
at the systems from the point of view of coarse–grained models: We are not interested in
the dependence of the properties on the details of the local chemistry, but rather ask for
universal scaling laws. The aim of computer simulations within this sub–field of polymer
physics is to carefully check the pertinent predictions, and to try to elucidate the underlying
physics. For certain properties, simulations can be numerically much more accurate than
experiments, and they therefore complement the latter.

Although our point of view and our restriction on the physical conditions may look
quite restrictive, there is nevertheless a rich host of phenomena which need explanation.
Since we look atsolutions, we can ask for the dependence of static and dynamic properties
on monomer concentration
, chain lengthN (i. e. the number of monomers per chain),
and the solvent quality. The generic phase diagram of such a solution has been presented in
the contribution by J. Baschnagel; one sees that even the statics is quite non–trivial, giving
rise to a host of scaling laws and various crossovers. Fig. 1 shows this diagram again,
augmented by information on the dynamics. One sees that the understanding the dynam-
ics is even more demanding than the statics, and that our present state of understanding is
based on three fundamental models: The Rouse model2, the Zimm model3, and the repta-
tion model1. In the present lecture we will discuss the Rouse and the Zimmmodel, while
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Figure 1. Phase diagram of a polymer solution, in the plane concentration vs. solvent quality. The various
dynamic regimes and crossovers are indicated.

we refer the reader to the contributions by J. Baschnagel andK. Kremer for the reptation
model.

So far, simulations have successfully treated the following cases:� A single chain in good solvent with Zimm dynamics4–10.� A dense melt and its crossover from Rouse to reptation dynamics11–14.� Semidilute solutions characterized by a crossover from Zimm to Rouse dynamics as
the concentration is increased15.

Quite promising attempts have also been made to study the dynamics of the theta transition
(i. e. a single chain collapses upon decrease of the solvent quality)16–18. Nevertheless, a
systematic exploration of the plane concentration vs. solvent quality has not yet been done.
After reading this article, the reader may perhaps understand why. For this reason, the
present lecture will also disregard solvent quality effects and focus on good solvents only.
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The methods to be discussed in this lecture aim at an optimal exploitation of the different
physical nature of the solvent and the solute, and this holdsfor any solvent quality.

To summarize: Our concern is to use computer simulations to put dynamic scaling laws
in dilute, semidilute, and concentrated systems under scrutiny. We will take the underlying
static scaling laws for granted (i. e. checked previously byother simulations and / or
experiments). Nevertheless, in order to understand the dynamic models, it is necessary to
first briefly review the statics.

1.2 Static Scaling in Polymer Solutions

The static conformations of flexible polymer chains are described via the statistics of a
random coil19. We model the chain as a sequence ofN “monomers” with positions~ri,i = 1; : : : ; N . From the chemist’s point of view, a monomer is one chemical repeat unit,
usually comprising several atoms (for instance, the repeatunit of polyethylene consists of
one carbon and two hydrogen atoms). The position~ri can thus be viewed as the center of
mass of the repeat uniti (or some similar quantity characterizing where the unit is). We
denote the typical bond length withb,
b2� = D(~ri+1 � ~ri)2E : (1)

It is however also possible to combine several repeat units into a “super–monomer”. In such
a case, the same chain would be described by a larger value ofb, and, correspondingly, by
a smaller value ofN . The notion of a monomer is therefore somewhat arbitrary. This leads
us to the important principle ofscale invariance: The measurable large–scale properties of
the chain may not depend explicitly on the way in which the chain has been decomposed
into monomers. By iterating this coarse–graining procedure (“renormalization group”),
and applying dimension arguments, it is then easy to show that scale invariance implies
power–law behavior. For a single chain which has no other important length scale thanR
(size of the chain as a whole), andbmin (shortest atomistic length scale below which a yet
finer decomposition is impossible), the power law readsR � bN� : (2)

Here we have assumed that one specific definition of a monomer (implying one specific
value ofN ) has been chosen. The exponent� depends on the physical conditions: For
isolated chains in good solvent, the chains are swollen as a result of the excluded–volume
interaction, with� � 0:588 in three dimensions. The statistics is that of a self–avoiding
walk (SAW). In dense systems, the excluded volume interaction is screened19, 20, hence�
has the Gaussian or random walk (RW) value� = 1=2. In what follows, the letter� will
either denote both values (in cases where the distinction between RW and SAW does not
matter), or the SAW value (in cases where it does).

We have not specified precisely how to measureR; the scaling law applies toall ways
of defining it. Convenient measures are the end–to–end–distance,
R2E� = D(~rN � ~r1)2E ; (3)

the gyration radius 
R2G� = 1N Xi ��~ri � ~RCM�2� (4)
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(~RCM denoting the chain’s center of mass,~RCM = N�1Pi ~ri), and the hydrodynamic
radius � 1RH � = 1N2 Xi 6=j � 1rij � ; (5)

whererij = j~ri � ~rj j.
Another important way to characterize the conformations isvia the single–chain static

structure factorS(k), defined asS(k) = 1N *�����Xi exp�i~k � ~ri������2+ = 1N *Xij exp�i~k � (~ri � ~rj)�+ : (6)

On length scalesb � k�1 � R, S(k) does not depend onN (note that the addition of
exponentials is just a RW in the complex plane). On the other hand,S(k) must have the
scaling formS(k) = Nf(kR). This implies a power law decayS(k) / k�1=� .

The conformations can always be described in terms of an effective potentialV (po-
tential of mean force) such that the equilibrium probability density isP (f~rig) / exp��V (f~rig)kBT � ; (7)kB andT denoting the Boltzmann constant and the absolute temperature, respectively.

For a Gaussian chain,V is just a harmonic potential:V = 3kBT2b2 N�1Xi=1 (~ri+1 � ~ri)2 : (8)

For a SAW chain, additional repulsive potentials between the monomers must be added
in order to model the excluded–volume interaction. Models of this type are called “bead–
spring” models.

Let us now discuss the crossover from SAW to RW behavior when the concentration
is increased. We will always assume good solvent conditions. The coil size remains in-
dependent of concentration as long as the chains do not overlap. The concentration
?
where overlap starts to happen19 is estimated via the requirement that an arrangement of
uperturbed SAWs is just space–filling:
? � NR3 � Nb3N3� � b�3N�(3��1): (9)

Solutions with concentration
 � 
? (well above overlap) but
 � b�3 (i. e. monomer
concentration still very small) are calledsemi–dilute. Such solutions have another impor-
tant length scale�, intermediate betweenbmin andR. � is called the “blob size” and can
be defined as follows: If the chains were cut into sub–chains,each with size�, then the
solution would be just at the overlap concentration corresponding to this lower molecular
weight. On length scales below�, the statistics corresponds to SAW behavior, while for
length scales beyond� RW behavior applies. Denoting the number of monomers within
the blob withn, we have� � bn� , and
 � n=�3, hence� � b �
b3�� �3��1 / 
�0:77: (10)
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The chain is then viewed as a RW sequence of blobs, withR � �(N=n)1=2. The single–
chain structure factor decays asS(k) / k�1=� for b � k�1 � �, and ask�2 for � �k�1 � R.

1.3 Rouse Model

The Rouse model1, 2 is the simplest model of polymer dynamics, while the Zimm model
and the reptation model are essentially modifications. The Rouse model is based on quite a
number of assumptions, some of which are easy to justify, while some are far from obvious.

Firstly, there is a colossal reduction in the number of degrees of freedom. While a
true Newtonian description requires the positions and momenta of all particles, the Rouse
model only takes into account the positions of the monomers of a single chain,~ri, i =1; : : : ; N , and assumes the following overdamped Langevin equation ofmotion:ddt~ri = 1� ~Fi + ~�i; (11)

where� is the monomer friction coefficient,~�i the random displacement (per unit time)
acting on monomeri, and ~Fi the force acting on monomeri, derived from the effective
potentialV (see previous subsection):~Fi = ��V�~ri : (12)

The random displacements are Gaussian white noise satisfying the standard fluctuation–
dissipation theorem,h��i i = 0 D��i (t)��j (t0)E = 2kBT� ÆijÆ��Æ(t� t0); (13)

such that the equilibrium distribution produced by the Langevin process is the correct one.
(Greek letters denote Cartesian indices.) The stochastic displacements in different direc-
tions, and of different monomers, are assumed as statistically independent.

At this point, it is clear that many important aspects have been disregarded. Firstly,
the neglect of the momenta is safe only at first, but not at second glance. The motivation
is the idea that in a dense simple fluid the motion of particlesis essentially an oscillation
in a local cage, and escape occurs only after many collisions, such that the memory of
the initial momentum is completely lost on the time scale on which a monomer moves its
own size. However, since the discovery of the long–time tails21 we know that this is not
quite true: Since momentum is a conserved quantity, it can only be transported away, but
not simply destroyed. On long time and length scales, this transport of momentum can be
described by the Stokes equation (hydrodynamic equation ofmotion for an incompressible
fluid, where the nonlinear term is neglected):� ��t~u = �r2~u; r � ~u = 0; (14)

where� is the fluid density,� its viscosity, and~u the velocity flow field. The momentum
transport hence takes place in adiffusivefashion, where the so–called “kinematic viscosity”�kin = �=� plays the role of a diffusion constant. Within the timet, an initial momentum
therefore spreads into a sphere whose radius is of order(�kint)1=2, or whose volume is
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of order(�kint)3=2. This is the reason for thet�3=2 decay of the velocity autocorrelation
function.

Looking again at the Rouse equation of motion, Eq. 11, this would mean that a de-
scription in terms of a simple friction coefficient is not strictly correct. Instead, one would
have to use an appropriate memory function. However, the Rouse model is known to work
(approximately) for dense polymer systems (short–chain melts). In this case, the collisions
between monomers do not occur in a nice and orderly fashion asin a simple fluid. Rather,
the typical collision process is a chain–chain collision, such that an incoming kick will
mainly result in a chain elongation against the connectivity forces, rather than being trans-
ported straight along. These processes destroy the memory,and they are also the reason
for hydrodynamic screening (see below). The random arrangement of chains results in a
randomization of the scattering, and correlations are removed. This argument restores the
validity of the simple friction coefficient ansatz. Of course, the value of� depends on the
definition of what one calls a monomer, just as the value ofb does.

Conversely, the typical “simple fluid” collision processeswill play a role in a dilute
solution, and the Rouse model is not expected to work. However, the hydrodynamic effects
will not only induce correlations of the monomer with itselfat later times, but also with
othermonomers on the chain. This phenomenon, which is actually much more important
than the self–correlation, is called “hydrodynamic interaction”. Taking these correlations
into account, one obtains the Zimm model, which is discussedbelow.

As a second caveat of the Rouse equation of motion, it must be stressed that the model
is a single–chaintheory, i. e. all correlation effects with other chains are ignored. This
latter neglect may be fine in dilute solution, but it is far from obvious for a dense melt
where the chains are very close to each other. Indeed, the dramatic failure of the Rouse
model for melts of sufficiently long chains, where rather thereptation model applies, is
an obvious hint of this fact. The reptation model, where the entanglements with the other
chains are replaced by a tube of a certain diameter1, is of course yet another single–chain
theory. From this point of view, it is not too surprising thatthe Rouse model does not work
preciselyfor polymer melts. Rather, computer simulations and experiments have revealed
a number of deviations22, 23, the most interesting of which is a subdiffusive motion of the
chain’s center of mass, which is not predicted by the Rouse model. There are attempts
by analytical theory24, 25, but this issue is still under investigation. To some extent, the
deviations might be trivially due to the fact that applicability of the Rouse model requires
that the chains are long enough to satisfy a Gaussian description, and at the same time short
enough that reptation does not yet play a role. Usually this window of chain lengths is very
small, and in many cases it practically does not exist.

Let us now discuss the consequences of the Rouse model. It is interesting to note that
for a Gaussian (RW) chain the model can be solvedexactly. The reason is that in this
caseV is a harmonic potential, i. e. the equation of motion is linear. The problem is
then mathematically very similar to phonons in a one–dimensional solid. Analogously to
phonons one introduces the so–called Rouse modes~Xp = p2N�1=2 NXi=1 ~ri 
os hp�N (i� 1=2)i ; p = 1; : : :N � 1; (15)

whose equations of motion decouple. Each mode is characterized by a mean square am-
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plitude D ~X2pE = b24 sin2 � p�2N � ; (16)

and a relaxation functionD ~Xp(t) � ~Xp(0)E = D ~X2pE exp� t�p� ; (17)

where the mode relaxation time�p is given by��1p = 12kBT�b2 sin2 � p�2N � : (18)

Note that for long chains and small mode number this is approximated by the scaling law�p / (N=p)2. The longest relaxation time is�1 � �R, the so–called Rouse time, scaling as�R / N2 / R4. At this point it is useful to introduce a dynamic exponentz, which relates
the length scaleR with the corresponding time scale�R via�R / Rz: (19)

We therefore seez = 4 for the RW Rouse model.
The mean square displacement of a single monomer,


�~r2�, can be written exactly as a
complicated expression, which however behaves asymptotically as


�~r2� / t1=2 for times�m � t� �R, where�m is the microscopic time scale given by the time a monomer needs
to move its own size,�m = b2(�=kBT ). The zeroth Rouse mode describes the motion of
the center of mass, which is pure diffusion on all time scales, with diffusion constantD = kBTN� : (20)

For times large compared to�R, all monomers move just diffusively with diffusion constantD.
It is physically more instructive to derive the results of the Rouse model directly by

scaling reasoning, and to do this for RW and SAW statistics simultaneously. Looking
at first at the equation of motion for the center of mass, one notes that the drift (force)
terms all cancel, due to Newton’s third law. Furthermore, the friction coefficients of all the
monomers simply add up; hence Eq. 20 is derived immediately.The scaling law isD / N�1 / R�1=� : (21)

Furthermore, one estimates the longest relaxation time�R via the consideration that the
object will just move its own size within�R:D�R / R2 �R / R2+1=� ; (22)

from which we read offz = 2+1=� for the general case. Furthermore, scaling tells us that
the mean square displacement of the single monomer should follow a power law for times�m � t � �R, simply because the system has no further important time scale. Requiring
�r2� � R2 for t � �R fixes the exponent as
�r2� / t2=z : (23)
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The physical picture is that originally a monomer can move freely (with diffusion constantD0 = kBT=�), while at later times it has to drag more and more neighboring monomers
along. Therefore the effective diffusion constant systematically decreases with time, until
(at t = �R) the whole chain is dragged along.

Finally, the single–chain dynamic structure factor, defined asS(k; t) = 1N *Xij exp�i~k � (~ri(t)� ~rj(0))�+ ; (24)

satisfies the scaling relation S(k; t) = k�1=�f �k2t2=z� (25)

for b� k�1 � R and�m � t� �R.

1.4 Zimm Model

As already indicated above, in dilute solutions it is necessary to take hydrodynamic mo-
mentum transport into account. The main effect is the so–called “hydrodynamic interac-
tion”: A monomeri is randomly kicked by its solvent surrounding, and is moved by a
certain random displacement (per unit time)~�i. Another monomerj suffers a displace-
ment~�j . Now, the motion of the solvent particles near~ri is highly correlatedwith that at
position~rj , due to fast diffusive momentum transport through the solvent. Strictly spoken,
this correlation only occurs at some later time (the time which the “signal” needs to travel
from ~ri to ~rj ), but this is usually quite short compared to the time which the monomersi
andj need to travel considerably. As already discussed, the momentum transport occurs
with the “diffusion constant”�kin, while the particles move (initially) with diffusion con-
stantD0 = kBT=�. The dimensionless ratio is called the Schmidt numberS
 = �kin=D0;
its value controls how accurate the neglect of retardation effects is. Typical numbers forS
 in dense fluids are of the orderS
 � 102.

Thus, in contrast to the Rouse case, where the stochastic displacements exhibit no
correlations between different particles and between different spatial directions, we now
have a non–trivial correlation functionh~�i(t)
 ~�j(t0)i / Æ(t � t0), where the tensorial
nature is due to the incompressibility constraint of the solvent flow, and the delta function in
time expresses the neglect of retardation effects. (The smbol
 denotes the tensor product.)

Furthermore, a force~F acting on a monomer at~ri will generate a surrounding flow
around it. Again neglecting retardation, one can use thestationaryStokes equation to
calculate the resulting flow field. The solution is1 the so–called Oseen tensor~u(~r) = $T (~r � ~ri) � ~F (26)$T (~r) = 18��r ($1 +r̂ 
 r̂); (27)

wherer̂ is the unit vector in the direction of~r.
We now write down the most general Langevin equation which isstill memory–free,

does not use more variables than the monomer coordinates, and satisfies the fluctuation–
dissipation theorem (to assure the correct equilibrium distribution function):ddt~ri =Xj $� ij �~Fj + ~�i (28)
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where
$� ij is the mobility tensor, and the stochastic displacements satisfy the relationh~�i(t)
 ~�j(t0)i = 2kBT $� ij Æ(t� t0): (29)

We only consider mobility tensors which are divergence–free, and hence we need not worry
about “spurious drift” terms1. Now, since the monomers are essentially just “embedded”

in the surrounding flow, we can identify (at least approximately)
$� ij=$T (~ri � ~rj) (note

that both objects just describe the velocity response to a force). This holds of course only

for i 6= j; for the diagonal elements we assume the Rouse form
$� ii=$1 =�.

The scaling analysis of the Zimm model now proceeds along thesame lines as for
the Rouse model. First, we study the center–of–mass diffusion constant. In the short–time
limit, it is easy to show that the center of mass moves with theKirkwood diffusion constantD(K) = D0N + kBT6�� � 1RH � ; (30)

and this differs only marginally from the long–time value26. Since the second term strongly
dominates in the long–chain limit, we find the scaling lawD / 1R; (31)

indicating that the chain as a whole essentially moves like aStokes sphere. The longest
relaxation time (Zimm time�Z ) is again fund by requiringD�Z � R2, resulting in�Z /R3, or z = 3 independently from chain statistics. The dynamics is thus faster than in the
Rouse case. All other scaling relations remain the same; onejust has to use the appropriate
values for� andz.

1.5 Hydrodynamic Screening and Dynamic Crossover

Upon increasing the concentration, we have a static crossover from SAW to RW behavior;
this is controlled by the blob size�. There is also a dynamic crossover from Zimm to
Rouse behavior whose physics had not fully been understood until very recently when a
computer simulation15 clarified the last remaining puzzles.

The underlying question is: How does the system get rid of itshydrodynamic correla-
tions? Early attempts27, 28 tried to attack this by studying the multiple scattering of the flow
field. The attractive feature of such considerations is the fact that, under the assumption of
a frozen polymer matrix, the analog of the Oseen tensor can beeasily calculated: Assum-
ing an array of fixed random obstacles with concentration
 and friction coefficient� (per
obstacle), the solvent flow field~u experiences a friction force per unit volume of��
~u,
such that the Stokes equation is modified to� ��t~u = �r2~u� �
~u: (32)

Its Green’s function now exhibits a Debye–Hückel–like decay / (1=r) exp(�r=�H),
where the hydrodynamic screening length�H is fund via���2H = �
. The long–range
Oseen decay is replaced by a short–range interaction, and thus Rouse behavior is expected
on length scales beyond�H , while Zimm behavior should apply on short length scales.
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De Gennes29 has critized this approach for the following reasons: (i) The chains are
not at all fixed obstacles, but, on the contrary, enslaved to the surrounding flow and just
dragged along; (ii) the predicted scaling�H / 
�1=2 would imply that� and�H are not
proportional to each other, which makes a scaling analysis difficult if not impossible.

De Gennes’ solution to the puzzle29 is based on the following argument: A descrip-
tion in terms of fixed obstaclesis justified, however only on length scales beyond the blob
size�. For these larger length scales, it is theentanglements(not in the sense of reptation
theory, but rather in the sense ofmutual interaction) which cause a hindrance in polymer
mobility compared to fast Zimm motion. Since a Zimm chain behaves essentially like a
Stokes sphere, one arrives at the picture of blobs “hooked up” in a temporary gel. There-
fore the appropriate obstacles are not the monomers, but rather the blobs, with Stokes
friction coefficient�blob � ��, and concentration
blob � ��3. Inserting these relations
into ���2H = �blob
blob, one finds�H � �, i. e. the length scales are (apart from prefactors)
identical.

This has been confirmed by most experiments30, 31; however, the picture of clean Rouse
motion beyond the length scale� was questioned by the observation of “incomplete screen-
ing” in the data of neutron spin echo experiments on labeled chains32, where a clear Zimm–
like contribution was found. The results of our recent simulation15 revealed the solution
of this puzzle: It is not sufficient to look at the problem justin terms of length scales,
but one has to consider the time scales as well, and distinguish between the casest � ��
andt � ��, where�� is the blob (Zimm) relaxation time,�� � ��3=(kBT ). Since one
has to wait (on average) for a time of order�� until an entanglement (or, synonymously:
an interaction, a chain–chain collision) occurs, there is no screening whatsover for short
times. The motion is rather free Zimm relaxation onall length scales, and the chains are
just dragged along with the flow. After��, the interactions are felt, and the blob screening
mechanism sets in, resulting in Rouse–like motion. This, however, has only an effect on
the length scales beyond�, since at that time all correlations within the blob have already
decayed.

Let us now discuss the numerical results of Ref.15. In order to simulate a real semidilute
solution, it is necessary to resolve both the RW regime at large length scales and the SAW
regime within the blob. In order to observe random coil behavior in computer chains, a
certain minimum number of monomers is necessary. Accordingto our experience, one
needs at leastN � 30 monomers to clearly see the scaling behavior of either a RW or
a SAW. For our semidilute solution, this means that we need roughly 30 monomers per
blob, and roughly30 blobs per chain. Therefore the minimum chain length is roughlyN = 1000. For such a chain we then expect a mean size ofR = 30� � 301=2 � 40,
in units of the bond length. In order to safely exclude self–overlaps, one would like to
make the linear size of the simulation box (with periodic boundary conditions) substantially
bigger. Our largest system therefore had linear box sizeL = 88. The concentration is then
obtained via� � 30� � 
�0:77 or 
 � 0:066. The total number of monomers in theL = 88 box then results as45000. In the actual simulation, we studied50 chains of lengthN = 1000 which is essentially the smallest system to study a semidilute solution. For
such a system we calculated the single–chain dynamic structure factorS(k; t). The static
(t = 0) structure factor revealed the expected RW and SAW regimes.To analyze dynamic
scaling, one plots the data as a function of the scaling argumentk2t2=z . Indeed we found
Zimm behavior (z = 3) at short times and small length scales, while the data show RW
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Figure 2. Scaling plot of single–chain dynamic structure factor data, for both Rouse and Zimm scaling, taken
from Ref.15. For more details, see the text and Ref.15.

Rouse behavior (z = 4) for late times, large length scales. A particularly careful analysis
was necessary to distinguish the short–time and long–time regimes (Zimm vs. Rouse) for
the data at large length scales (k� < 1). In order to enhance the short–time region, Fig. 2
shows� ln[S(k; t)=S(k; 0)℄ instead of simplyS(k; t)=S(k; 0) as a function of the scaling
argument, forbothZimm and Rouse scaling. It is clearly seen that Zimm scaling applies
for the short timest� �� , while Rouse scaling holds for the later timest� �� .
2 Simulation Methods

2.1 Overview

We now ask the question: What is the right way to simulate a system with hydrodynamic
interactions? For simple problems, many methods will work,but for a challenging appli-
cation like the system of Ref.15 it is necessary to choose and design the method carefully.

The most straightforward approach would be Brownian dynamics, where just Eqn. 28
is simulated directly, either for a single–chain system, ora many–chain system. However,
this will not work for a system of50000 monomers. Each time step one would have to
calculate a150000� 150000 matrix, and to calculate its square root, in order to find the
stochastic displacements. This is beyond the capacity of today’s computers. The unfavor-
able scaling of the computational complexity with the number of Brownian particles makes
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the method only feasible for small systems. In Ref.26 we studied the Zimm equation of
motion for a single chain, and calculated the diffusion constant accurately. The longest
chain which was accessible wasN = 200.

It is therefore quite clear that one needs a method which scaleslinearly with the num-
ber of Brownian particles. AnO(N) algorithm for evaluating hydrodynamic interactions
has indeed be developed, in close analogy to the fast multipole method for electrostatic
interactions33. However, this is practically only applicable to deterministic problems (like
sedimentation) where no thermal noise needs to be considered. For stochastic simulations,
the problem of calculating the matrix square root remains.

Therefore the most promising route is to simulate the momentum transport through the
solventexplicitlyvia some computational scheme. The most straightforward way to do this
is of course Molecular Dynamics (MD), where the Brownian particles are immersed into
a bath of solvent particles, and Newton’s equations of motion are solved (without modifi-
cation like a thermostat etc.). However, this leads to an unnecessarily large computational
effort. One needs to follow the motion of each solvent particle down to the time scale of
the local oscillation of the particles in their cages, whilethey have essentially no function
except for transporting momentum. One rather would like to simulate the solvent on a
somewhat larger time scale, in order to save computer time. Essentially, this is coarse–
graining with respect to time scales (not so much with respect to length scales, since one
would not like to lose resolution in representing the hydrodynamic interactions).

Indeed, there are several ways to do this. One approach, which is conceptually par-
ticularly close to MD, is Dissipative Particle Dynamics (DPD)34–45, which has become a
quite popular method for “mesoscopic” simulations of the dynamics of soft–matter sys-
tems. One makes the particles quite soft, in order to afford alarge time step, and also
adds a momentum–conserving Langevin thermostat. It shouldbe stressed that these two
components are conceptually completely independent, and can also be implemented inde-
pendently. It is therefore relatively straightforward to change an existing MD code into a
DPD simulation, by just adding the thermostat. More detailson DPD will follow below.

Another simulation aspect which needs appreciation is the issue of equilibration. This
is of course completely uninteresting for nonequilibrium studies, which become more and
more important, but for studying the dynamics in strict thermal equilibrium this is of
paramount importance. Soft matter objects with internal degrees of freedom (like poly-
mer chains, but also membranes) tend to have complex configuration spaces and large
relaxation times. On the other hand, one often is not interested in following the dynamic
correlation functions all the way up to the longest relaxation time. Such a situation is
exactly present in the study of Ref.15, where only the dynamics up to�� (and somewhat
beyond) is needed, but not up to�R. One would therefore like to be able to equilibrate the
system with a fast Monte Carlo algorithm, in order to shortcut the slow physical dynamics
(see contribution by J. Baschnagel), and to use the generated configurations for starting
runs with realistic (slow) dynamics, over which one averages. For dilute systems, the ideal
way to do this is tocompletely disregard the solvent in the equilibration procedure. How-
ever, this requires the solvent to bestructureless. A structured solvent (i. e. particles with
some non–trivial interaction potential) always modifies the potential of mean force of the
solute, and this is not known in advance. Therefore only the coupled solute–solvent system
can be equilibrated “cleanly”, i. e. without introducing systematic errors. Conversely, for
a structureless solvent the potential of mean force of the solute is identical to the “bare”
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potential (i. e. the interaction without solvent). For a particle method, this means that
the solvent should be an ideal gas. In this case, however, MD is not applicable since all
particle trajectories are trivial, and there are no collisions. Conversely, DPD is able to sim-
ulate an ideal gas with realistic dynamics, because collisions are effectively implemented
via the thermostat. Another particle method, which is also based on ideal gas particles,
is multi–particle collision dynamics (MPCD)46, where collisions are implemented via lo-
cal stochastic updating rules which conserve energy and momentum. In practice, this is
done by decomposing the system into boxes, and calculating the center–of–mass velocity
of each box. Then every particle velocity belonging to the box (in the center–of–mass ref-
erence frame) is subjected to the same stochastic rotation.For further details on MPCD,
see the original literature46.

Yet another approach to simulate momentum transport through the solvent is to solve
the (Navier–) Stokes equation (in a deterministic or stochastic version) on a grid, and to
couple an MD system for the solute to such a simulation. This yields a structureless sol-
vent automatically. Solving the hydrodynamics can be done either by a finite–difference
scheme, or by the Lattice Boltzmann method (LBM)47. The latter has become also quite
popular for soft matter systems, in particular colloidal suspensions48–56, and will be dis-
cussed below. Compared to DPD, it has the disadvantage that the underlying theory is
slightly involved, and that the coupling to the solute system (which is still simulated by
some MD–like algorithm) is not a straightforward consequence of the method, but rather
must be constructed by hand. The advantage, however, is thatit is based on a tight data
structure, with the consequence that it is computationallyquite efficient, rather straightfor-
ward to implement, and ideally suited for parallel computers (the only communication is
just the sending of data in the streaming step, while the collision step needs only local data).
Another important advantage of a grid–based method is that thermal fluctuations may be
both turned on (necessary for Brownian motion, for instance), or off (for some nonequi-
librium studies like sedimentation thermal fluctuations are not needed, in particular if the
solute system does not have fluctuating internal degrees of freedom). This flexibility is
a quite useful aspect, and not present in particle methods, which alwaysexhibit thermal
fluctuations. A noise–free simulation is of course much cheaper than a noisy one, since no
cumbersome averaging is necessary (except, perhaps, over initial conditions).

2.2 Dissipative Particle Dynamics (DPD)

Dissipative Particle Dynamics is essentially MD, where a momentum–conserving
Langevin thermostat is added. The method is best understoodby contrasting it to the
older method of Stochastic Dynamics (SD)57, which also adds a Langevin thermostat to
MD, but doesnotconserve the momentum. The formal development is most transparent if
we start from Hamilton’s formulation of Newton’s equationsof motion:ddtqi = �H�pi (33)ddtpi = ��H�qi ; (34)

where theqi denote the generalized coordinates, and thepi the generalized canonically
conjugate momenta, whileH is the Hamiltonian of the system. Adding friction and noise,
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we obtain the SD equations of motion:ddtqi = �H�pi (35)ddtpi = ��H�qi � �i �H�pi + �ifi; (36)

here�i is the friction coefficient for theith degree of freedom (note that�H=�pi, for usual
Cartesian coordinates, is nothing but the velocity),�i denotes the noise strength, whilehfii = 0 andhfi(t)fj(t0)i = 2ÆijÆ(t � t0). We can even allow that the friction constants�i and the noise strengths�i depend on the coordinatesqi (but not on the momentapi).

We now switch to an equivalent description of the stochasticprocess, where we study
the time evolution of the probability density in phase space, P (fqig; fpig; t). This is quite
analogous to switching from Hamilton’s equations of motionto the Liouville equation in
classical mechanics. The equation of motion forP is called the Fokker–Planck equation.
Its shape can be derived directly from the Langevin equation, using a standard procedure
described in textbooks on stochastic processes (see, e. g. Refs.58, 59 or60). For the present
case, one obtains ��tP = LP; (37)

whereL is the Fokker–Planck operator, which is naturally decomposed into two parts,L = LH + LSD; (38)

where the first part refers to the Hamiltonian part of the dynamics (it is nothing but the
Liouville operator), LH = �Xi ��qi �H�pi +Xi ��pi �H�qi= �Xi �H�pi ��qi +Xi �H�qi ��pi ; (39)

while the second part is due to friction and noise,LSD =Xi ��pi ��i �H�pi + �2i ��pi � : (40)

In order to describe a system in thermal equilibrium, the Boltzmann distribution must be
the stationary solution of the Fokker–Planck equation:L exp (��H) = 0; (41)

where� = 1=(kBT ). For the Hamiltonian part, this relation is identically fulfilled. There-
fore, the condition results inXi ��pi ��i �H�pi � ��2i �H�pi � exp (��H) = 0: (42)

Hence the relation �2i = kBT�i (43)
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must hold. This is the fluctuation–dissipation theorem (FDT), i. e. the temperature is
a result of the balance between friction and noise strength.However, the momentum is
not conserved, as one can check immediately from the equations of motion. Rather, the
center of mass of the system diffuses. The algorithm also violates Galilean invariance,
since it dampens theabsolutevelocities, thus labeling the “laboratory frame” as special,
which is of course unphysical. These are the reasons why SD isuseless for hydrodynamic
simulations. It can be shown60, 61 that this unphysical behavior can be expressed in terms
of a hydrodynamic screening length� = [�=(n�)℄1=2. Here, we have assumed a constant
friction, whilen is the particle number density. The arguments to derive thisare essentially
the same as those presented in Sec. 1.5 for a frozen matrix of frictional obstacles.

Dissipative Particle Dynamics (DPD) has been developed to cure this problem, and to
simulate hydrodynamic phenomena in fluids on a mesoscopic scale. DPD, as it is usually
described in the literature, consists of two parts: (i) Introduction of very soft interparticle
potentials in order to facilitate a large time step, and (ii)introduction of a Galilei invari-
ant thermostat, which is similar to SD, but dampensrelative velocities, and applies the
stochastic kicks topairs of particles such that Newton’s third law (i. e. momentum con-
servation) is satisfied. As the procedure is also completelylocal, it is therefore suitable for
the description of (isothermal) hydrodynamics. Unfortunately, it is often not made suffi-
ciently clear that these two parts arecompletely unrelated, i. e. that one can use the DPD
thermostat with “conventional” hard potentials, and that one can go from a working MD
code to DPD, just as one would go to SD. A technical problem of typical DPD simulations
is the fact that, due to the soft potentials, they are run withextremely large time steps. This
results in unacceptably large discretization errors. Currently this problem is under thor-
ough investigation40–45. We will from now on exclusively focus on the thermostat aspect
of DPD. As Espanol and Warren36 have shown, the structure of the FDT for DPD is very
similar to the SD case. A particularly useful application ofthe DPD thermostat, which is
just presently being appreciated, is its use innonequilibriumstudies like the simulation of
steady–state Couette flow. Nonequilibrium steady states are characterized by a constant
nonzero rate of entropy production, usually showing up as viscous heat. This produced en-
tropy must be removed from the system, and therefore such simulations are usually coupled
to a thermostat (an alternative approach, which rather removes the entropy by a Maxwell
demon, has recently been developed by Müller–Plathe62, 63). Before the advent of DPD,
it was a non–trivial problem to introduce the thermostat in such a way that it would not
prefer a certain profile (so–called “profile–unbiased thermostats”, see Ref.64). The DPD
thermostat solves this problem in a very natural and straightforward way65.

In practice, DPD simulations are done as follows: We first define two functions,�(r),
the relative friction coefficient for particle pairs with interparticle distancer, and�(r), the
noise strength for a stochastic kick applied to the same particle pair. We will show below
that the FDT implies the relation�2(r) = kBT�(r); (44)

in close analogy to SD. The function has a finite range, such that only near neighbors are
taken into account.

Defining~rij = ~ri � ~rj = rij r̂ij , we then obtain the friction force on particlei by
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projecting the relative velocities on the interparticle axes:~F (fr)i = �Xj �(rij ) [(~vi � ~vj) � r̂ij ℄ r̂ij ; (45)

it is easy to see that the relation
Pi ~F (fr)i = 0 holds. Similarly, we get the stochastic

forces along the interparticle axes:~F (st)i =Xj �(rij ) �ij(t) r̂ij ; (46)

where the noise�ij satisfies the relations�ij = �ji, h�iji = 0, andh�ij(t)�kl(t0)i =2(ÆikÆjl+ÆilÆjk)Æ(t�t0), such that different pairs are statistically independent.As before,

one easily shows
Pi ~F (st)i = 0. The equations of motion,ddt~ri = 1mi ~pi; (47)ddt~pi = ~Fi + ~F (fr)i + ~F (st)i ; (48)

wheremi is the mass of theith particle, andve
pi its momentum, therefore indeed con-
serve the total momentum, as the conservative forces~Fi satisfy Newton’s third law. The
Fokker–Planck operator can then be written asL = LH + LDPD ; (49)

whereLH again describes the Hamiltonian part withLH exp (��H) = 0 (cf. Eq. 39),
andLDPD is given byLDPD = Xij �(rij )r̂ij � ��~pi �r̂ij � ��H�~pi � �H�~pj���Xi 6=j �2(rij)�r̂ij � ��~pi��r̂ij � ��~pj�+ Xi Xj(6=i) �2(rij)�r̂ij � ��~pi�2= Xi Xj(6=i) r̂ij � ��~pi"�(rij)r̂ij ���H�~pi � �H�~pj�+ �2(rij)r̂ij �� ��~pi � ��~pj�#: (50)

In the stochastic term, we have first taken into account the off–diagonal terms (cross–
correlations, which are actually anti–correlations between the neighbors). The prefactors
for the diagonal terms are given by the sum of all the mean square noise strengths from all
the neighbors. Applying this operator toexp (��H), we find that the FDT is satisfied if�2(r) = kBT�(r).
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2.3 Lattice Boltzmann (LB)

The Lattice Boltzmann method (LBM) works quite differently. Essentially, the method is
the simulation of a fully discretized version of the (linearized) Boltzmann equation known
from the kinetic theory of gases. One starts from a regular lattice (usually a simple–cubic
lattice) with lattice spacinga; ~r denotes its sites. Furthermore, we introduce a finite (small)
set of (dimensionless) vectors~
i, such thata~
i is a vector connecting two sites on the
lattice. The set should be consistent with the point symmetry of the lattice. For example, on
the simple–cubic lattice one would have six vectors~
i connecting to the nearest neighbors,
and another twelve vectors to the next–nearest neighbors. Time is discretized in terms of a
time steph, and the model allows only for a finite set of velocities. These are the vectors(a=h)~
i. An object residing on a certain lattice site~r, and having the velocity(a=h)~
i,
would thus be moved to site~r + a~
i within one time step. A commonly used model is
the 18–velocity model, where the vectors~
i correspond to the nearest and next–nearest
neighbors. Sometimes an additional velocity~
i = 0 is included (19–velocity model); this
is however not necessary for simulating incompressible flow. The algorithm now works
with real–valued variablesni(~r; t), denoting the “number of particles” which reside on site~r at timet and have the velocity(a=h)~
i. Denoting the particle mass withm, we find for
the mass density at site~r at timet�(~r; t) = ma3 Xi ni(~r; t) (51)

and for the momentum density~j(~r; t) = ma2hXi ni(~r; t)~
i: (52)

We can also introduce the streaming velocity~u at site~r via ~u = ~j=�. It should be noted
that in many descriptions of the method the parametersm, a andh are set to unity, thus
defining the unit system of the method. However, when coupling the LBM to an MD
system, the latter has its own unit system. We prefer to use a unit system built upon MD,
and for this purpose we need to keep the parameters. Furthermore, it should be noted that
we do not consider the energy density. In this lecture, we only consider LBMs with mass
and momentum conservation, while energy conservation (heat conduction etc.) isnottaken
into account. LBMs with proper inclusion of the energy have been developed66, but are
more complicated.

Now, the algorithm proceeds via the following steps:

1. Starting from the variablesni, one calculates the hydrodynamic variables� and~j on
each lattice site.

2. From� and~j, one calculates a local pseudo–equilibrium distributionneqi . It should
be stressed that this is done for each site separately. Sincethe variables� and~j differ
from site to site, one has a different distributionneqi on each site. The kinetic–theory
analogue would be a Maxwell–Boltzmann velocity distribution centered around the
hydrodynamic streaming velocity at position~r. Sinceneqi andni correspond to the
samehydrodynamic variables, we have

Pi ni =Pi neqi and
Pi ni~
i =Pi neqi ~
i at

each site.
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3. Relaxation (“collisions”): The velocity distribution on the site is rearranged in order
to bring it closer to the local equilibrium of that site. Thisis done via a linear process:ni ! ni +Xj Lij(nj � neqj ): (53)

In many cases, the matrixLij is just a multiple of the unit matrix. These are the so–
called “lattice BGK” (Bhatnagar–Gross–Krook) methods. However, working with a
nontrivial matrix causes no practical difficulties and allows one to get rid of non–
hydrodynamic modes quickly49. In order to ensure mass and momentum conserva-
tion, the matrix should satisfy the conditions

Pi Lij = 0 and
Pi ~
iLij = 0.

4. Streaming: The populations are displaced to new sites according to their velocities:ni(~r; t)! ni(~r + a~
i; t+ h): (54)

This is the only step which is not completely local.

Further specification of the algorithm requires to give prescriptions for the calculation
of neqi , and of the relaxation procedure. A common procedure is to use the polynomial
ansatz49 neqi = a3m��Ai +Bi~
i � ~uha + Ciu2h2a2 +Di(~
i � ~u)2h2a2� ; (55)

where symmetry requires thatAi should only depend on the neighbor shell, but not on the
direction within it, and the same holds also forBi, Ci, Di. The 18–velocity model thus
has eight coefficients. These are determined via the following requirements:� neqi should produce the correct hydrodynamic variables� and~j, as mentioned above.� The stress tensor constructed fromneqi ,$�eq = ma3 a2h2 Xi neqi ~
i 
 ~
i; (56)

should have the hydrodynamic form$�eq = �
2s $1 +�~u
 ~u; (57)

here we have assumed the equation of state of an ideal gas withsound velocity
s
(other equations of state can be implemented67).� The viscosity tensor (which, on a cubic lattice, will in general be a fourth–rank tensor
with cubic anisotropy) should exhibit the full rotational symmetry, such that there are
only shear and bulk viscosity. This is the main reason why nearest and next–nearest
neighbor shells are used: The coefficients can be adjusted insuch a way that the
anisotropic contributions from the two shells just cancel.� For~u = 0 both shells should contain the same number of particles. This is useful for
numerical stability49.
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These conditions suffice to determine the coefficients and the parameter
s uniquely.
The relaxation operator is determined via the following considerations: Apart from

mass and momentum conservation, which already give four conditions, one observes that
the linear relaxation ofni towardsneqi corresponds to a linear relaxaton of the stress tensor$� = ma3 a2h2 Xi ni~
i 
 ~
i (58)

towards
$�eq

. We now require that this process exhibits two relaxation rates, one for the

trace of
$�, corresponding to the bulk viscosity, and one for the trace–free part, corre-

sponding to the shear viscosity. These parameters can thus be freely adjusted. Finally,
we require49 that the higher–order moments (non–hydrodynamic modes) are immediately
removed after the relaxation process (this corresponds to eigenvalues�1). Under these
circumstances, it turns out that the calculation of the new population (after the relaxation
step) does not even require the implementation of theLij matrix. One rather has to simply
update the pressure tensor, using the prescribed rates, andto use that result to calculate the
new populations (again, the coefficientsAi; : : : ; Di are used)49. Via a Chapman–Enskog
expansion one can show that this procedure yields hydrodynamic behavior in the macro-
scopic limit49 if the flow is incompressible, and the flow velocity is small compared to the
sound velocity. One particular advantage of the formulation based on the stress tensor is
that the inclusion of thermal noise is quite straightforward: According to linear fluctuating
hydrodynamics68, the noise term occurs in the stress tensor, and therefore itcan be directly
added in the simulation code. For further details, see the original literature49.

When coupling this to a system of Brownian particles, one canuse two methods: The
original approach by Ladd49, 50for colloidal suspensions was to use extended particles with
a surface, and to implement a bounce–back rule to simulate the modification of the flow,
plus the momentum transfer onto the particle. Combined witha lubrication correction for
suspensions at high densities, this approach has produced excellent results for suspensions
with hydrodynamic interactions52.

For polymer solutions, we found a point–particle approach69, 8 simpler and more effi-
cient: While the solvent is run via the stochastic version ofthe LBM, the polymer system
is simulated by MD augmented with friction and noise as in SD.However, the friction
force is not��~v (~v particle velocity), but rather��(~v � ~u), where~u is the flow velocity
at the position of the monomer, obtained via linear interpolation from the surrounding lat-
tice sites. This determines the momentum transfer onto the particle which has come from
the solvent. Momentum conservation requires that this momentum is subtracted from the
fluid. Details of this latter subtraction are not important;we used a procedure where we
distributed the momentum transfer onto the surrounding sites using the same weights as the
initial interpolation procedure. On each site, we then updated theni by requiring that the
distance toneqi remained unchanged. It can be shown that the coupled system does satisfy
the FDT. Since locality, mass conservation, and momentum conservation are fulfilled, this
procedure simulates hydrodynamic interactions faithfully, while being roughly 20 times
faster than the analogous MD system with hard solvent particles. The lattice spacing was
set roughly equal to the bond length; this is necessary to resolve the hydrodynamic interac-
tion down to the relevant scales. We have recently shown70 that this approach can also be
used to simulate colloidal particles, which are modeled as an arrangement of force centers
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like a “raspberry”.
The friction coefficient� should be called “bare” friction coefficient, since the long–

time single–particle mobility differs from1=� as a result of the long time tail. The correc-
tion can be quite strong, and actually depends on the latticespacinga. This can be shown
by the following consideration: We drag a particle with constant average velocity~v and
constant average force~F through a fluid globally at rest. Our simulation procedure tells
us that the force should be~F = �(~v � ~u), ~u being the flow velocity on the surrounding
lattice sites, which are, on average, a distance of ordera away. The Oseen tensor, in turn,
tells us thatu should be of orderu � F=(�a) or u = F=(g�a), whereg is some numerical
coefficient. Combining these equations, we find for the mobility� = 1� + 1g�a ; (59)

this relation has been checked numerically8. The lattice thus provides a Stokes–like contri-
bution to the mobility. It thus not only discretizes the hydrodynamics, but also regularizes
it, i. e. it naturally cures the pathology that a point particle does not exist (note that in the
continuum limita! 0 one would obtain an infinite mobility!). Sincea is just a discretiza-
tion parameter, the only conclusion is that� does not have any physical meaning. Rather,
for comparing with experiments one should look at the “dressed” mobility�.

3 A Final Remark

Although the presented material is highly selective, strongly reflecting my own research,
I hope the present lecture has given a slight glimpse at the problems one encounters when
simulating systems with hydrodynamic interactions, and also at the strategies which have
been developed to cope with them. The development of so–called “mesoscopic” simulation
methods for soft matter systems, with emphasis on hydrodynamics, is a quite active field
of current research, and far from being closed.
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