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The contribution discusses two central models for polynyeradhics, the Rouse model and the
Zimm model. The latter takes into account hydrodynamicradons, and is hence appropriate
for dilute solutions. In dense melts, the hydrodynamicratgons are screened, and the Rouse
model is applicable (within limitations) as long as the dsaire short enough to preclude repta-
tion. The physics of this screening is discussed. The le¢hen focuses on the methodological
issue how to take hydrodynamic interactions into accouebimputer simulations. So far, the
most successful methods are hybrid approaches where siakiddecular Dynamics for the
polymer system is coupled to a mesoscopic model for mometramsport in the solvent. The
most popular mesoscopic models are Lattice Boltzmann asdifizitive Particle Dynamics.
These methods are briefly discussed and contrasted. Wel@eaarecent application of such
an approach to the problem of hydrodynamic screening.

1 Polymer Dynamics

1.1 Overview

In this lecture, we will deal with the dynamic behavior of ypolers and discuss the sim-
plest systems only: We will focus dinear, flexible andunchargedmacromolecules,
disregading polydispersity (i. e. the broad distributidrcioain lengths which usually oc-
cur in real systems), and study them in thak, in (or near)thermal equilibrium We look
at the systems from the point of view of coarse—grained nsod&k are not interested in
the dependence of the properties on the details of the Idwahistry, but rather ask for
universal scaling laws. The aim of computer simulationinithis sub—field of polymer
physics is to carefully check the pertinent predictionsl, frtry to elucidate the underlying
physics. For certain properties, simulations can be nuwralyimuch more accurate than
experiments, and they therefore complement the latter.

Although our point of view and our restriction on the physicanditions may look
quite restrictive, there is nevertheless a rich host of phema which need explanation.
Since we look asolutions we can ask for the dependence of static and dynamic preperti
on monomer concentration, chain lengthN (i. e. the number of monomers per chain),
and the solvent quality. The generic phase diagram of suclutian has been presented in
the contribution by J. Baschnagel; one sees that even ttiessgaquite non—trivial, giving
rise to a host of scaling laws and various crossovers. Figholvs this diagram again,
augmented by information on the dynamics. One sees thatitherstanding the dynam-
ics is even more demanding than the statics, and that ouemiretate of understanding is
based on three fundamental models: The Rouse radtiel Zimm model, and the repta-
tion modet. In the present lecture we will discuss the Rouse and the Zinagel, while
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Figure 1. Phase diagram of a polymer solution, in the plame@atration vs. solvent quality. The various
dynamic regimes and crossovers are indicated.

we refer the reader to the contributions by J. BaschnageKam@emer for the reptation
model.

So far, simulations have successfully treated the follgvzases:
e Asingle chain in good solvent with Zimm dynamfic¥.
e A dense melt and its crossover from Rouse to reptation dycgnt

e Semidilute solutions characterized by a crossover fromZitm Rouse dynamics as
the concentration is increaséd

Quite promising attempts have also been made to study trenaigs of the theta transition
(i. e. a single chain collapses upon decrease of the solweity)'®'8 Nevertheless, a
systematic exploration of the plane concentration vs.estlguality has not yet been done.
After reading this article, the reader may perhaps undedstehy. For this reason, the
present lecture will also disregard solvent quality eBerid focus on good solvents only.



The methods to be discussed in this lecture aim at an optixpédiation of the different
physical nature of the solvent and the solute, and this Holdsny solvent quality.

To summarize: Our concern is to use computer simulationsttdynamic scaling laws
in dilute, semidilute, and concentrated systems undetisgriWe will take the underlying
static scaling laws for granted (i. e. checked previouslyobyer simulations and / or
experiments). Nevertheless, in order to understand thardimmodels, it is necessary to
first briefly review the statics.

1.2 Static Scaling in Polymer Solutions

The static conformations of flexible polymer chains are dbed via the statistics of a
random coit’. We model the chain as a sequence\bfmonomers” with positions?,

i =1,...,N. From the chemist’s point of view, a monomer is one chemiepéat unit,
usually comprising several atoms (for instance, the repeidbf polyethylene consists of
one carbon and two hydrogen atoms). The positiocan thus be viewed as the center of
mass of the repeat unit(or some similar quantity characterizing where the unit &}
denote the typical bond length with

(0?) = ((Frr = 7)) 1)
Itis however also possible to combine several repeat uniisai “super—monomer”. In such
a case, the same chain would be described by a larger valii@od, correspondingly, by
a smaller value oV. The notion of a monomer is therefore somewhat arbitraris [EBads
us to the important principle afcale invarianceThe measurable large—scale properties of
the chain may not depend explicitly on the way in which theichas been decomposed
into monomers. By iterating this coarse—graining procedtirenormalization group”),
and applying dimension arguments, it is then easy to showsttede invariance implies
power—law behavior. For a single chain which has no otheoimant length scale thaR
(size of the chain as a whole), ahg;,, (shortest atomistic length scale below which a yet
finer decomposition is impossible), the power law reads

R~ bN". )

Here we have assumed that one specific definition of a monamply{ng one specific
value of N) has been chosen. The exponerdepends on the physical conditions: For
isolated chains in good solvent, the chains are swollen asudtrof the excluded—volume
interaction, withry =~ 0.588 in three dimensions. The statistics is that of a self—angjdi
walk (SAW). In dense systems, the excluded volume intevadt screenéd %%, hencer
has the Gaussian or random walk (RW) value- 1/2. In what follows, the letter will
either denote both values (in cases where the distinctiomdss RW and SAW does not
matter), or the SAW value (in cases where it does).

We have not specified precisely how to measir¢he scaling law applies tall ways
of defining it. Convenient measures are the end—to—endwdist

(RE) = (v = 7)), 3)

the gyration radius

(R%) = %Xi:<(ﬁ‘—ﬁ0M)2> (4)



(R denoting the chain’s center of magégy, = N=! >-; ), and the hydrodynamic

radius
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wherer;; = |7 — 7.
Another important way to characterize the conformationgdghe single—chain static

structure factoS(k), defined as
2
1 e _ 1 R
S(k):ﬁ< ;exp (zk.rl) >_N<izjexp (zk-(rl r]))>. (6)

On length scales < k! <« R, S(k) does not depend oN (note that the addition of
exponentials is just a RW in the complex plane). On the othedhS (k) must have the
scaling formS (k) = N f(kR). This implies a power law deca§(k) oc k— /7.

The conformations can always be described in terms of ateffepotentiall” (po-
tential of mean force) such that the equilibrium probayptiensity is

P e (-T2D) @

kp andT denoting the Boltzmann constant and the absolute temperaaspectively.
For a Gaussian chaifi; is just a harmonic potential:

N-—1
V=200 S i - ) ®
i=1
For a SAW chain, additional repulsive potentials betweenrttonomers must be added
in order to model the excluded—volume interaction. Modélhis type are called “bead—
spring” models.

Let us now discuss the crossover from SAW to RW behavior wherconcentration
is increased. We will always assume good solvent conditidine coil size remains in-
dependent of concentration as long as the chains do notapveillhe concentratios*
where overlap starts to happéiis estimated via the requirement that an arrangement of
uperturbed SAWs is just space—filling:

¢~ % ~ % ~bTINT GV, (9)
Solutions with concentratioa > ¢* (well above overlap) but < b=2 (i. e. monomer
concentration still very small) are callseémi—dilute Such solutions have another impor-
tant length scal€, intermediate betweel,,;, andR. ¢ is called the “blob size” and can
be defined as follows: If the chains were cut into sub—chaash with size, then the
solution would be just at the overlap concentration comesing to this lower molecular
weight. On length scales belogy the statistics corresponds to SAW behavior, while for
length scales beyor§lRW behavior applies. Denoting the number of monomers within
the blob withn, we havet ~ bn”, andc ~ n/£3, hence

€~ b(ch?) T o 0T (10)



The chain is then viewed as a RW sequence of blobs, Rith £(N/n)'/2. The single—
chain structure factor decays 8¢k) o« k~ /¥ forb <« k' <« ¢, and ask 2 for £ <
k' < R.

1.3 Rouse Model

The Rouse modéF is the simplest model of polymer dynamics, while the Zimm elod
and the reptation model are essentially modifications. TdwesR model is based on quite a
number of assumptions, some of which are easy to justifyievgoime are far from obvious.
Firstly, there is a colossal reduction in the number of degref freedom. While a
true Newtonian description requires the positions and nmanef all particles, the Rouse
model only takes into account the positions of the monomeessingle chaing;, i =

1,..., N, and assumes the following overdamped Langevin equatiorotbn:
d 1
—7% = < F + i, 11
ik +p (11)

where( is the monomer friction coefficieng; the random displacement (per unit time)
acting on monomei, and F; the force acting on monomey derived from the effective
potentialV (see previous subsection):

» ov
F,=——. 12
=3 (12)
The random displacements are Gaussian white noise satisfyé standard fluctuation—
dissipation theorem,

(o) =0 (00 )) =2 b0000 ~ 1), (13)

such that the equilibrium distribution produced by the Lewrig process is the correct one.
(Greek letters denote Cartesian indices.) The stochaisfitagements in different direc-
tions, and of different monomers, are assumed as statigticdependent.

At this point, it is clear that many important aspects haverbdisregarded. Firstly,
the neglect of the momenta is safe only at first, but not atrsgtance. The motivation
is the idea that in a dense simple fluid the motion of partide=sssentially an oscillation
in a local cage, and escape occurs only after many collisisunsh that the memory of
the initial momentum is completely lost on the time scale dviclv a monomer moves its
own size. However, since the discovery of the long—timesthaive know that this is not
quite true: Since momentum is a conserved quantity, it cdy lmmtransported away, but
not simply destroyed. On long time and length scales, thissfport of momentum can be
described by the Stokes equation (hydrodynamic equatiorotibn for an incompressible
fluid, where the nonlinear term is neglected):

pgﬁ =V, V-i=0, (14)
ot

wherep is the fluid densityy its viscosity, andi the velocity flow field. The momentum

transport hence takes place idifusivefashion, where the so—called “kinematic viscosity

nrin = 0/ p plays the role of a diffusion constant. Within the timen initial momentum

therefore spreads into a sphere whose radius is of grgert)'/2, or whose volume is



of order(nint)*/2. This is the reason for thie 3/ decay of the velocity autocorrelation
function.

Looking again at the Rouse equation of motion, Eq. 11, thisld/onean that a de-
scription in terms of a simple friction coefficient is notistly correct. Instead, one would
have to use an appropriate memory function. However, thes&model is known to work
(approximately) for dense polymer systems (short—chaitsjnén this case, the collisions
between monomers do not occur in a nice and orderly fashiomasimple fluid. Rather,
the typical collision process is a chain—chain collisiomcts that an incoming kick will
mainly result in a chain elongation against the connegtiaitces, rather than being trans-
ported straight along. These processes destroy the mearahthey are also the reason
for hydrodynamic screening (see below). The random arraegéof chains results in a
randomization of the scattering, and correlations are x@mhoThis argument restores the
validity of the simple friction coefficient ansatz. Of coarshe value of depends on the
definition of what one calls a monomer, just as the valuedides.

Conversely, the typical “simple fluid” collision processedl play a role in a dilute
solution, and the Rouse model is not expected to work. Howtheehydrodynamic effects
will not only induce correlations of the monomer with itself later times, but also with
othermonomers on the chain. This phenomenon, which is actuallghrmore important
than the self—correlation, is called “hydrodynamic intgi@n”. Taking these correlations
into account, one obtains the Zimm model, which is discusstalv.

As a second caveat of the Rouse equation of motion, it mudtéssed that the model
is asingle—chairtheory, i. e. all correlation effects with other chains ayadred. This
latter neglect may be fine in dilute solution, but it is farrfr@bvious for a dense melt
where the chains are very close to each other. Indeed, theaticafailure of the Rouse
model for melts of sufficiently long chains, where rather thptation model applies, is
an obvious hint of this fact. The reptation model, where thimeglements with the other
chains are replaced by a tube of a certain diamgigof course yet another single—chain
theory. From this point of view, it is not too surprising thilaé Rouse model does not work
preciselyfor polymer melts. Rather, computer simulations and expenits have revealed
a number of deviatiort$ 23 the most interesting of which is a subdiffusive motion a th
chain’s center of mass, which is not predicted by the Rousdemorhere are attempts
by analytical theor§* 25 but this issue is still under investigation. To some extéme
deviations might be trivially due to the fact that applidapiof the Rouse model requires
that the chains are long enough to satisfy a Gaussian désoripnd at the same time short
enough that reptation does not yet play a role. Usually tivislaw of chain lengths is very
small, and in many cases it practically does not exist.

Let us now discuss the consequences of the Rouse modelnteiesting to note that
for a Gaussian (RW) chain the model can be solgrdctly The reason is that in this
caseV is a harmonic potential, i. e. the equation of motion is Ime@he problem is
then mathematically very similar to phonons in a one—dirwera solid. Analogously to
phonons one introduces the so—called Rouse modes

N
Xp:\/iN’l/2Zﬁcos{%(i—l/2)], p=1,...N -1, (15)

i=1

whose equations of motion decouple. Each mode is charaeteby a mean square am-



plitude

. b?
X)) = —— 16
< p> 4sin® (£5) (16)
and a relaxation function
" > > t
(%0 Z,0) = (T2)exo (£). a7)
p
where the mode relaxation timeg is given by
- 12kgT . , /p7
1 _ 2 (PT
T, = 0 sin (QN) . (18)

Note that for long chains and small mode number this is apprated by the scaling law
7, < (N/p)?. The longest relaxation time is = 7g, the so—called Rouse time, scaling as
TR < N? < R*. At this point it is useful to introduce a dynamic exponentvhich relates
the length scald? with the corresponding time scatg via

TR x R*. (29)

We therefore see = 4 for the RW Rouse model.

The mean square displacement of a single mono(mﬁz,), can be written exactly as a
complicated expression, which however behaves asymaligtas{ A ) oc t'/? for times
™ < t K TR, Wherer,, is the microscopic time scale given by the time a monomersieed
to move its own sizer,, = b*>({/kpT). The zeroth Rouse mode describes the motion of
the center of mass, which is pure diffusion on all time scaléth diffusion constant

D=5 (20)

For times large compared tg;, all monomers move just diffusively with diffusion constant
D.

It is physically more instructive to derive the results oé tRouse model directly by
scaling reasoning, and to do this for RW and SAW statistiosutaneously. Looking
at first at the equation of motion for the center of mass, ortesthat the drift (force)
terms all cancel, due to Newton'’s third law. Furthermore ftiction coefficients of all the
monomers simply add up; hence Eq. 20 is derived immediafélg.scaling law is

Dx N~ '« R7YY. (21)

Furthermore, one estimates the longest relaxation timeia the consideration that the
object will just move its own size withing:

D7 x R? TR o< R*HV/V, (22)

from which we read oft = 2+ 1/v for the general case. Furthermore, scaling tells us that
the mean square displacement of the single monomer shdldd/f@ power law for times

™ K t K TR, Simply because the system has no further important time.sB&quiring
(Ar?) ~ R? for t ~ 75 fixes the exponent as

(Ar?) o /2. (23)



The physical picture is that originally a monomer can moeelfy (with diffusion constant
Dy = kgT/(), while at later times it has to drag more and more neighlgamionomers
along. Therefore the effective diffusion constant systizally decreases with time, until
(att = Tg) the whole chain is dragged along.

Finally, the single—chain dynamic structure factor, define

<Z exp (zk 7i(t) — 7 (0 )))> ) (24)

satisfies the scaling relation
S(k,t) = k1" f (k%%) (25)
forb < k! <« Randr,, € t < Tp.

1.4 Zimm Model

As already indicated above, in dilute solutions it is neags$o take hydrodynamic mo-
mentum transport into account. The main effect is the stegtdhydrodynamic interac-
tion”: A monomeri is randomly kicked by its solvent surrounding, and is movgdb
certain random displacement (per unit timg) Another monomeyj suffers a displace-
mentg;. Now, the motion of the solvent particles ne&iis highly correlatedwith that at
positions;, due to fast diffusive momentum transport through the sulv8trictly spoken,
this correlation only occurs at some later time (the timechtihe “signal” needs to travel
from 7; to %), but this is usually quite short compared to the time whiwhrnonomers
andj need to travel considerably. As already discussed, the mtumetransport occurs
with the “diffusion constanty;,, while the particles move (initially) with diffusion con-
stantDg = kT /(. The dimensionless ratio is called the Schmidt nuntbes ny.;,, / Do;
its value controls how accurate the neglect of retardatffects is. Typical numbers for
Scin dense fluids are of the ordér: ~ 102.

Thus, in contrast to the Rouse case, where the stochasfilacksnents exhibit no
correlations between different particles and betweerenifit spatial directions, we now
have a non-trivial correlation functiofp;(t) ® g;(t')) o« d6(t — t'), where the tensorial
nature is due to the incompressibility constraint of the@sot flow, and the delta functionin
time expresses the neglect of retardation effects. (Th@kmdenotes the tensor product.)

Furthermore, a forcé' acting on a monomer at, will generate a surrounding flow
around it. Again neglecting retardation, one can usesthéonary Stokes equation to
calculate the resulting flow field. The solutiod the so—called Oseen tensor

i) = T =) F (26)
(1") = (1 +7 ® ), (27)

wherer is the unit vector in the dlrectlon (ﬁ.

We now write down the most general Langevin equation whicttiismemory—free,
does not use more variables than the monomer coordinatesatisfies the fluctuation—
dissipation theorem (to assure the correct equilibriumibiﬂion function):

Z Hg; - F + Pi (28)



Whereﬁij is the mobility tensor, and the stochastic displacemertisfgadhe relation

(Bi(t) @ (1)) = 2kpT I 5(t —1'). (29)

We only consider mobility tensors which are divergences;famd hence we need not worry
about “spurious drift” term's Now, since the monomers are essentially just “embedded”

in the surrounding flow, we can identify (at least approxieiye)t(ﬁijz? (7; — ;) (note
that both objects just describe the velocity response tacefo This holds of course only

for i # j; for the diagonal elements we assume the Rouse i%{mT /C.

The scaling analysis of the Zimm model now proceeds alongséme lines as for
the Rouse model. First, we study the center—of-mass diffiusinstant. In the short—time
limit, it is easy to show that the center of mass moves wittkiinewood diffusion constant

D kT 1
pE) — 20 B [ 30

N + 671'7’} RH ’ ( )
and this differs only marginally from the long—time vatfieSince the second term strongly
dominates in the long—chain limit, we find the scaling law

D x 1 (31)
R)

indicating that the chain as a whole essentially moves lilgtakes sphere. The longest
relaxation time (Zimm time-;) is again fund by requirind)r; ~ R2, resulting int; o
R3, or z = 3 independently from chain statistics. The dynamics is tlassef than in the
Rouse case. All other scaling relations remain the samejushbas to use the appropriate
values forv andz.

1.5 Hydrodynamic Screening and Dynamic Crossover

Upon increasing the concentration, we have a static cressmm SAW to RW behavior;
this is controlled by the blob siz& There is also a dynamic crossover from Zimm to
Rouse behavior whose physics had not fully been understotiidvery recently when a
computer simulatiol? clarified the last remaining puzzles.

The underlying question is: How does the system get rid dfytdrodynamic correla-
tions? Early attempt$ 28tried to attack this by studying the multiple scatteringhaf flow
field. The attractive feature of such considerations is dleethat, under the assumption of
a frozen polymer matrix, the analog of the Oseen tensor carabigy calculated: Assum-
ing an array of fixed random obstacles with concentratiand friction coefficient (per
obstacle), the solvent flow field experiences a friction force per unit volume -efci,
such that the Stokes equation is modified to

p%ﬁ =nV?i — (cil. (32)

Its Green’s function now exhibits a Debye—Huckel-like &aeec (1/7) exp(—r/&rmr),
where the hydrodynamic screening length is fund viangg,2 = (e. The long-range
Oseen decay is replaced by a short—range interaction, asdRibuse behavior is expected
on length scales beyorgg;, while Zimm behavior should apply on short length scales.



De Genne® has critized this approach for the following reasons: (ip Thains are
not at all fixed obstacles, but, on the contrary, enslaveti¢cstirrounding flow and just
dragged along; (ii) the predicted scaliig o ¢—'/2 would imply that¢ andéy are not
proportional to each other, which makes a scaling analyfisudt if not impossible.

De Gennes’ solution to the puzzfds based on the following argument: A descrip-
tion in terms of fixed obstaclés justified, however only on length scales beyond the blob
size¢. For these larger length scales, it is #r@ganglementéot in the sense of reptation
theory, but rather in the sense miitual interactioj which cause a hindrance in polymer
mobility compared to fast Zimm motion. Since a Zimm chain deds essentially like a
Stokes sphere, one arrives at the picture of blobs “hook&ihuptemporary gel. There-
fore the appropriate obstacles are not the monomers, therréte blobs, with Stokes
friction coefficient(y,, ~ n&, and concentrationy., ~ £ 2. Inserting these relations
into 775;,2 = ChiobCrion, ONE find<L g ~ &, i. e. the length scales are (apart from prefactors)
identical

This has been confirmed by most experim&ht§ however, the picture of clean Rouse
motion beyond the length scajevas questioned by the observation of “incomplete screen-
ing” in the data of neutron spin echo experiments on labei@ihs?, where a clear Zimm-—
like contribution was found. The results of our recent siaioh® revealed the solution
of this puzzle: It is not sufficient to look at the problem justterms of length scales,
but one has to consider the time scales as well, and disihdugtween the cases« ¢
andt > ¢, wherer; is the blob (Zimm) relaxation timey ~ 7n¢3/(kgT). Since one
has to wait (on average) for a time of orderuntil an entanglement (or, synonymously:
an interaction, a chain—chain collision) occurs, theredsareening whatsover for short
times. The motion is rather free Zimm relaxationahlength scales, and the chains are
just dragged along with the flow. Afteg, the interactions are felt, and the blob screening
mechanism sets in, resulting in Rouse—like motion. Thisyéwer, has only an effect on
the length scales beyorgd since at that time all correlations within the blob haveatty
decayed.

Let us now discuss the numerical results of Bein order to simulate a real semidilute
solution, it is necessary to resolve both the RW regime gel&ngth scales and the SAW
regime within the blob. In order to observe random coil bébraln computer chains, a
certain minimum number of monomers is necessary. Accortingur experience, one
needs at leasiV = 30 monomers to clearly see the scaling behavior of either a RW or
a SAW. For our semidilute solution, this means that we needfity 30 monomers per
blob, and roughi\80 blobs per chain. Therefore the minimum chain length is rbpugh
N = 1000. For such a chain we then expect a mean siz& ot 30" x 30'/? = 40,
in units of the bond length. In order to safely exclude selertaps, one would like to
make the linear size of the simulation box (with periodic bdary conditions) substantially
bigger. Our largest system therefore had linear box 5ize88. The concentration is then
obtained via¢ ~ 30 ~ ¢ "7 or ¢ ~ 0.066. The total number of monomers in the
L = 88 box then results a$5000. In the actual simulation, we studiéd chains of length
N = 1000 which is essentially the smallest system to study a ser@diilution For
such a system we calculated the single—chain dynamic steufactorS(k, t). The static
(t = 0) structure factor revealed the expected RW and SAW regiffeeanalyze dynamic
scaling, one plots the data as a function of the scaling aegwkit?/*. Indeed we found
Zimm behavior £ = 3) at short times and small length scales, while the data shéw R
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Figure 2. Scaling plot of single—chain dynamic structurgtda data, for both Rouse and Zimm scaling, taken
from Refl®. For more details, see the text and Ref.

Rouse behavior(= 4) for late times, large length scales. A particularly carefialysis
was necessary to distinguish the short-time and long—tgienes (Zimm vs. Rouse) for
the data at large length scalég (< 1). In order to enhance the short-time region, Fig. 2
shows— In[S(k,t)/S(k,0)] instead of simplyS(k,t)/S(k,0) as a function of the scaling
argument, foboth Zimm and Rouse scaling. It is clearly seen that Zimm scalimglias

for the short time¢ < 7¢, while Rouse scaling holds for the later times> 7.

2 Simulation Methods

2.1 Overview

We now ask the question: What is the right way to simulate tesysvith hydrodynamic
interactions? For simple problems, many methods will wbtk,for a challenging appli-
cation like the system of RéP. it is necessary to choose and design the method carefully.
The most straightforward approach would be Brownian dyeamihere just Eqn. 28
is simulated directly, either for a single—chain systemg arany—chain system. However,
this will not work for a system 060000 monomers. Each time step one would have to
calculate al50000 x 150000 matrix, and to calculate its square root, in order to find the
stochastic displacements. This is beyond the capacitydafyte computers. The unfavor-
able scaling of the computational complexity with the nundi@rownian particles makes

11



the method only feasible for small systems. In Refve studied the Zimm equation of
motion for a single chain, and calculated the diffusion tansaccurately. The longest
chain which was accessible was= 200.

It is therefore quite clear that one needs a method whickestaéarly with the num-
ber of Brownian particles. A@(N) algorithm for evaluating hydrodynamic interactions
has indeed be developed, in close analogy to the fast midtipethod for electrostatic
interactiond®. However, this is practically only applicable to deterrstit problems (like
sedimentation) where no thermal noise needs to be condidéoe stochastic simulations,
the problem of calculating the matrix square root remains.

Therefore the most promising route is to simulate the moomartansport through the
solventexplicitly via some computational scheme. The most straightforwaydevdo this
is of course Molecular Dynamics (MD), where the Browniantigkes are immersed into
a bath of solvent particles, and Newton’s equations of nmadie solved (without modifi-
cation like a thermostat etc.). However, this leads to areaassarily large computational
effort. One needs to follow the motion of each solvent platitown to the time scale of
the local oscillation of the particles in their cages, whiley have essentially no function
except for transporting momentum. One rather would likeitoutate the solvent on a
somewhat larger time scale, in order to save computer tingserfially, this is coarse—
graining with respect to time scales (not so much with resfzelength scales, since one
would not like to lose resolution in representing the hygmamic interactions).

Indeed, there are several ways to do this. One approachhvusimonceptually par-
ticularly close to MD, is Dissipative Particle Dynamics (DP*5 which has become a
quite popular method for “mesoscopic” simulations of th@ayics of soft—-matter sys-
tems. One makes the particles quite soft, in order to affolarge time step, and also
adds a momentum—conserving Langevin thermostat. It sHmiktressed that these two
components are conceptually completely independent, amalso be implemented inde-
pendently. It is therefore relatively straightforward ttaoge an existing MD code into a
DPD simulation, by just adding the thermostat. More det@ilPD will follow below.

Another simulation aspect which needs appreciation issbea of equilibration. This
is of course completely uninteresting for nonequilibriunndées, which become more and
more important, but for studying the dynamics in strict that equilibrium this is of
paramount importance. Soft matter objects with internglrees of freedom (like poly-
mer chains, but also membranes) tend to have complex coafignrspaces and large
relaxation times. On the other hand, one often is not intedeis following the dynamic
correlation functions all the way up to the longest relspmtiime. Such a situation is
exactly present in the study of REf. where only the dynamics up t@ (and somewhat
beyond) is needed, but not uptg. One would therefore like to be able to equilibrate the
system with a fast Monte Carlo algorithm, in order to shdrtbe slow physical dynamics
(see contribution by J. Baschnagel), and to use the gexecatdigurations for starting
runs with realistic (slow) dynamics, over which one avemder dilute systems, the ideal
way to do this is tacompletely disregard the solvent in the equilibration mdare How-
ever, this requires the solvent to sieuctureless A structured solvent (i. e. particles with
some non—trivial interaction potential) always modifies gotential of mean force of the
solute, and this is not known in advance. Therefore only thplked solute—solvent system
can be equilibrated “cleanly”, i. e. without introducingssgmatic errors. Conversely, for
a structureless solvent the potential of mean force of thétesds identical to the “bare”
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potential (i. e. the interaction without solvent). For atjde method, this means that
the solvent should be an ideal gas. In this case, however, s\t applicable since all
particle trajectories are trivial, and there are no cdlisi. Conversely, DPD is able to sim-
ulate an ideal gas with realistic dynamics, because ootissare effectively implemented
via the thermostat. Another particle method, which is alaeddl on ideal gas particles,
is multi—particle collision dynamics (MPCE$, where collisions are implemented via lo-
cal stochastic updating rules which conserve energy andenam. In practice, this is
done by decomposing the system into boxes, and calculdteéngdnter—of—-mass velocity
of each box. Then every particle velocity belonging to the fin the center—of-mass ref-
erence frame) is subjected to the same stochastic rotafimnfurther details on MPCD,
see the original literatufé,

Yet another approach to simulate momentum transport thirtiug solvent is to solve
the (Navier—) Stokes equation (in a deterministic or stetibaversion) on a grid, and to
couple an MD system for the solute to such a simulation. Thiklg a structureless sol-
vent automatically. Solving the hydrodynamics can be dateeby a finite—difference
scheme, or by the Lattice Boltzmann method (LBR)The latter has become also quite
popular for soft matter systems, in particular colloidasension$°¢ and will be dis-
cussed below. Compared to DPD, it has the disadvantagehthatriderlying theory is
slightly involved, and that the coupling to the solute sgsi@vhich is still simulated by
some MD-like algorithm) is not a straightforward conseqeeof the method, but rather
must be constructed by hand. The advantage, however, i# fediased on a tight data
structure, with the consequence that it is computatiomalite efficient, rather straightfor-
ward to implement, and ideally suited for parallel compsifghe only communication is
just the sending of data in the streaming step, while thésiati step needs only local data).
Another important advantage of a grid—based method is teatrtal fluctuations may be
both turned on (necessary for Brownian motion, for instynaeoff (for some nonequi-
librium studies like sedimentation thermal fluctuations aot needed, in particular if the
solute system does not have fluctuating internal degreeeefiém). This flexibility is
a quite useful aspect, and not present in particle methokghvalwaysexhibit thermal
fluctuations. A noise—free simulation is of course much peethan a noisy one, since no
cumbersome averaging is necessary (except, perhapsndisdrdonditions).

2.2 Dissipative Particle Dynamics (DPD)

Dissipative Particle Dynamics is essentially MD, where anmmeatum-conserving
Langevin thermostat is added. The method is best underdétpambntrasting it to the
older method of Stochastic Dynamics (SD)which also adds a Langevin thermostat to
MD, but doesnotconserve the momentum. The formal development is mostgeaiast if
we start from Hamilton’s formulation of Newton'’s equatiasfanotion:

d OH

E(h‘ = B_Ih (33)
d OH

api = _a_qi’ (34)

where theg; denote the generalized coordinates, andpththe generalized canonically
conjugate momenta, whil® is the Hamiltonian of the system. Adding friction and noise,
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we obtain the SD equations of motion:

d OH

a% = a—pz (35)
d 87-[

%pi - Cz (36)

here(; is the friction coefficient for théth degree of freedom (note th@t{/dp;, for usual
Cartesian coordinates, is nothing but the velocity) denotes the noise strength, while
(f;y = 0and(f;(t)f;(t")) = 20;;6(¢t — t'). We can even allow that the friction constants
(; and the noise strengtlas depend on the coordinates(but not on the momenta).

We now switch to an equivalent description of the stochgsticess, where we study
the time evolution of the probability density in phase spdtiq;}, {p:},t). This is quite
analogous to switching from Hamilton’s equations of motiorthe Liouville equation in
classical mechanics. The equation of motion Ris called the Fokker—Planck equation.
Its shape can be derived directly from the Langevin equatisimg a standard procedure
described in textbooks on stochastic processes (see, @fg®R® or®?). For the present
case, one obtains

0
—P=LP 7
5P = LP. (37)
where, is the Fokker—Planck operator, which is naturally decoredasto two parts,
L=Lyg+Lsp, (38)

where the first part refers to the Hamiltonian part of the dyita (it is nothing but the
Liouville operator),

0 OH 0 OH
Z 9q; Op; ; Ipi 0g;

OH 0O oOH 0O
“Ea—pia—qi@a—qia—px (%9

while the second part is due to friction and noise,
0
o 40
=S o o o) (40)
In order to describe a system in thermal equilibrium, thetBoann distribution must be
the stationary solution of the Fokker—Planck equation:
Lexp (—FH) =0, (41)

wheres = 1/(kgT). For the Hamiltonian part, this relation is identicallyffliéd. There-
fore, the condition results in

S g (G5 7 g (90 =0 2)

Hence the relation

o} = kgT¢; (43)
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must hold. This is the fluctuation—dissipation theorem (;0Te. the temperature is

a result of the balance between friction and noise strengthwever, the momentum is
not conservedas one can check immediately from the equations of motiathd®, the
center of mass of the system diffuses. The algorithm alstateés Galilean invariance,
since it dampens thabsolutevelocities, thus labeling the “laboratory frame” as spkcia
which is of course unphysical. These are the reasons why 88eless for hydrodynamic
simulations. It can be showh®! that this unphysical behavior can be expressed in terms

of a hydrodynamic screening length= [n/(n()]1/2. Here, we have assumed a constant
friction, while n is the particle number density. The arguments to deriveatt@essentially
the same as those presented in Sec. 1.5 for a frozen matrictidrial obstacles.

Dissipative Particle Dynamics (DPD) has been developedite this problem, and to
simulate hydrodynamic phenomena in fluids on a mesoscople.sPPD, as it is usually
described in the literature, consists of two parts: (i)ddtiction of very soft interparticle
potentials in order to facilitate a large time step, andififjoduction of a Galilei invari-
ant thermostat, which is similar to SD, but dampeelative velocities, and applies the
stochastic kicks tgairs of particles such that Newton’s third law (i. e. momentum-con
servation) is satisfied. As the procedure is also compléteby, it is therefore suitable for
the description of (isothermal) hydrodynamics. Unfortigha it is often not made suffi-
ciently clear that these two parts axempletely unrelated. e. that one can use the DPD
thermostat with “conventional” hard potentials, and tha¢ @an go from a working MD
code to DPD, just as one would go to SD. A technical problemyital DPD simulations
is the fact that, due to the soft potentials, they are run extihemely large time steps. This
results in unacceptably large discretization errors. €hily this problem is under thor-
ough investigatioff> We will from now on exclusively focus on the thermostat atpe
of DPD. As Espanol and Warréghhave shown, the structure of the FDT for DPD is very
similar to the SD case. A particularly useful applicatiortted DPD thermostat, which is
just presently being appreciated, is its usadmequilibriumstudies like the simulation of
steady-state Couette flow. Nonequilibrium steady stateslaaracterized by a constant
nonzero rate of entropy production, usually showing up asotis heat. This produced en-
tropy must be removed from the system, and therefore sualiaions are usually coupled
to a thermostat (an alternative approach, which rather vemthe entropy by a Maxwell
demon, has recently been developed by Muller—Patfi Before the advent of DPD,
it was a non-trivial problem to introduce the thermostatunhsa way that it would not
prefer a certain profile (so—called “profile—unbiased thestats”, see Reéf). The DPD
thermostat solves this problem in a very natural and sttiighiard way®.

In practice, DPD simulations are done as follows: We firstraefivo functions((r),
the relative friction coefficient for particle pairs withtérparticle distance, ando (), the
noise strength for a stochastic kick applied to the samécpapair. We will show below
that the FDT implies the relation

a?(r) = kgT((r), (44)

in close analogy to SD. The function has a finite range, suahahly near neighbors are
taken into account.
Defining 7;; = 73 — 7; = ri;7;;, we then obtain the friction force on particieoy
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projecting the relative velocities on the interparticlesx

fr) ZC rzy U ) rz]] Tijs (45)

it is easy to see that the relation, Iﬁi(fr) = 0 holds. Similarly, we get the stochastic
forces along the interparticle axes:

F:i(St) = Z (rij) mij (t) i, (46)

j
where the noisey;; satisfies the relations;; = n;;, (n;;) = 0, and{(n;; E)n(t')) =
2(6:1051+ 00,1 )0(t —t'), such that different pairs are statistically independ@stbefore,

one easily shows™, F*" = 0. The equations of motion,

d 1

Eri = Epi, (47)
d o . e

—5 = Fi+ FUD 4 FD, (48)

wherem; is the mass of théth particle, andvecp; its momentum, therefore indeed con-
serve the total momentum, as the conservative fof¢esatisfy Newton'’s third law. The
Fokker—Planck operator can then be written as

L=Lyg+ Lppp, (49)

whereL g again describes the Hamiltonian part withy exp (—8H) = 0 (cf. Eq. 39),
andLppp is given by

0 OH OH
Comn = o+ (5= 5]
Py 0D; 0D; 8107

. 0 0
JE— 2 .. A»~ . —_— A»~ - —_—
2o ry) ( ap> ( 6p>

i#]
8 2

IPRLOICE)

ij(#4) !
LYY l i) (67—[ fm)

ij =3 ij)lig "\ 950 T 95,
T () 8 Op; ap]
. 0 )

In the stochastic term, we have first taken into account tfied@gonal terms (cross—
correlations, which are actually anti—correlations bewéhe neighbors). The prefactors
for the diagonal terms are given by the sum of all the meanrequaise strengths from all
the neighbors. Applying this operator ¢ap (—8#), we find that the FDT is satisfied if

o2(r) = kgT((r).
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2.3 Lattice Boltzmann (LB)

The Lattice Boltzmann method (LBM) works quite differentlyssentially, the method is
the simulation of a fully discretized version of the (linad) Boltzmann equation known
from the kinetic theory of gases. One starts from a regutticéa(usually a simple—cubic
lattice) with lattice spacing;  denotes its sites. Furthermore, we introduce a finite (3mall
set of (dimensionless) vectors, such thatac; is a vector connecting two sites on the
lattice. The set should be consistent with the point symyradtihe lattice. For example, on
the simple—cubic lattice one would have six vect@rsonnecting to the nearest neighbors,
and another twelve vectors to the next—nearest neighbon i§ discretized in terms of a
time steph, and the model allows only for a finite set of velocities. Téase the vectors
(a/h)&. An object residing on a certain lattice siteand having the velocitya/h)é;,
would thus be moved to sité + ac¢; within one time step. A commonly used model is
the 18-velocity model, where the vectaiscorrespond to the nearest and next—nearest
neighbors. Sometimes an additional velodity= 0 is included (19—velocity model); this
is however not necessary for simulating incompressible. fldtve algorithm now works
with real-valued variables; (7, t), denoting the “number of particles” which reside on site
7 at timet and have the velocitya/h)é;. Denoting the particle mass with, we find for
the mass density at sitéat timet

p(it) = = > milF.) (51)

a

and for the momentum density

2 m NN
J(Ft) = p=T Zni(r,t)ci. (52)

We can also introduce the streaming veloditgt siter via & = f/p. It should be noted
that in many descriptions of the method the parametera andh are set to unity, thus
defining the unit system of the method. However, when cogplire LBM to an MD
system, the latter has its own unit system. We prefer to usetaystem built upon MD,
and for this purpose we need to keep the parameters. Fumtherinshould be noted that
we do not consider the energy density. In this lecture, wg oahsider LBMs with mass
and momentum conservation, while energy conservation ¢oealuction etc.) isottaken
into account. LBMs with proper inclusion of the energy haeei develope, but are
more complicated.
Now, the algorithm proceeds via the following steps:

1. Starting from the variables;, one calculates the hydrodynamic variak;bemdf on
each lattice site.

2. Fromp andj, one calculates a local pseudo—equilibrium distribui¢h 1t should
be stressed that this is done for each site separately. Biacariablep andj differ
from site to site, one has a different distributieff on each site. The kinetic—theory
analogue would be a Maxwell-Boltzmann velocity distribatcentered around the
hydrodynamic streaming velocity at positioh Sincen;? andn; correspond to the
samehydrodynamic variables, we haye. n; = >, n;? and}_, n;é = >, n;’¢; at
each site.
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3. Relaxation (“collisions”): The velocity distributiomahe site is rearranged in order
to bring it closer to the local equilibrium of that site. Tlésdone via a linear process:

n; — n; + ZLij(nj — nj.q). (53)
i

In many cases, the matrik;; is just a multiple of the unit matrix. These are the so—

called “lattice BGK” (Bhatnagar—Gross—Krook) methods.wéwer, working with a

nontrivial matrix causes no practical difficulties and aloone to get rid of non—

hydrodynamic modes quicKly. In order to ensure mass and momentum conserva-

tion, the matrix should satisfy the conditiop$, L;; = 0 and}_, ¢;L;; = 0.

4. Streaming: The populations are displaced to new sitesrdity to their velocities:
ni (7, t) = ni(7+ ac;, t + h). (54)
This is the only step which is not completely local.

Further specification of the algorithm requires to give priggions for the calculation
of n;?, and of the relaxation procedure. A common procedure is ¢éotlis polynomial
ansat2®

a3

eq L Lh 5 h? L o h?

n, = -—p A; + B¢ -u— + Ciu —2+Di(ci-u) | (55)
m a a a

where symmetry requires thdt should only depend on the neighbor shell, but not on the

direction within it, and the same holds also 8y, C;, D;. The 18—velocity model thus

has eight coefficients. These are determined via the fatigwequirements:

¢ n;? should produce the correct hydrodynamic variatolasndf, as mentioned above.

e The stress tensor constructed fraff,

—>€eq m (1,2 N N
I = ;ﬁ ;nchi & C;, (56)

should have the hydrodynamic form

—>€edq 5 o N

II =pc; 1 +pi®u; (57)
here we have assumed the equation of state of an ideal gasevitid velocityc;
(other equations of state can be implemefted

e The viscosity tensor (which, on a cubic lattice, will in gesiée a fourth—rank tensor
with cubic anisotropy) should exhibit the full rotationghsmetry, such that there are
only shear and bulk viscosity. This is the main reason whyestand next—nearest
neighbor shells are used: The coefficients can be adjustsddh a way that the
anisotropic contributions from the two shells just cancel.

e Fori = 0 both shells should contain the same number of particles iShiseful for
numerical stabilit§?®.
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These conditions suffice to determine the coefficients aagénametet, uniquely.

The relaxation operator is determined via the following sidarations: Apart from
mass and momentum conservation, which already give foutitons, one observes that
the linear relaxation of; towardsn;? corresponds to a linear relaxaton of the stress tensor

2
s ma - o
i

—>eq
towardsIT . We now require that this process exhibits two relaxatiagag;aone for the

trace ofﬁ, corresponding to the bulk viscosity, and one for the tréree-part, corre-
sponding to the shear viscosity. These parameters can théredly adjusted. Finally,
we requiré® that the higher—order moments (non-hydrodynamic modesjanediately
removed after the relaxation process (this correspondigyemealues—1). Under these
circumstances, it turns out that the calculation of the neputation (after the relaxation
step) does not even require the implementation ofthematrix. One rather has to simply
update the pressure tensor, using the prescribed ratef) and that result to calculate the
new populations (again, the coefficients, ..., D; are usedy. Via a Chapman—Enskog
expansion one can show that this procedure yields hydradigriaehavior in the macro-
scopic limit*® if the flow is incompressible, and the flow velocity is smathpared to the
sound velocity One particular advantage of the formulation based on tlesstensor is
that the inclusion of thermal noise is quite straightfordvakccording to linear fluctuating
hydrodynamic®, the noise term occurs in the stress tensor, and therefoma ie directly
added in the simulation code. For further details, see thyinad literaturé®.

When coupling this to a system of Brownian particles, onewsmtwo methods: The
original approach by Lad@& *°for colloidal suspensions was to use extended particlés wit
a surface, and to implement a bounce—back rule to simulatentidification of the flow,
plus the momentum transfer onto the particle. Combined aitlbrication correction for
suspensions at high densities, this approach has prodxcelisat results for suspensions
with hydrodynamic interactiof

For polymer solutions, we found a point—particle appr8&éisimpler and more effi-
cient: While the solvent is run via the stochastic versiothefLBM, the polymer system
is simulated by MD augmented with friction and noise as in Siowever, the friction
force is not—(@ (v particle velocity), but rather {(¢ — @), whered is the flow velocity
at the position of the monomer, obtained via linear intemfioh from the surrounding lat-
tice sites. This determines the momentum transfer ontodhécfe which has come from
the solvent. Momentum conservation requires that this nrmume is subtracted from the
fluid. Details of this latter subtraction are not important used a procedure where we
distributed the momentum transfer onto the surroundieg sising the same weights as the
initial interpolation procedure. On each site, we then wpd#hen; by requiring that the
distance to;? remained unchanged. It can be shown that the coupled systessdtisfy
the FDT. Since locality, mass conservation, and momentumerwvation are fulfilled, this
procedure simulates hydrodynamic interactions faitiifudthile being roughly 20 times
faster than the analogous MD system with hard solvent pestidhe lattice spacing was
set roughly equal to the bond length; this is necessary tiveshe hydrodynamic interac-
tion down to the relevant scales. We have recently sHbwat this approach can also be
used to simulate colloidal particles, which are modeledeareangement of force centers
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like a “raspberry”.

The friction coefficient should be called “bare” friction coefficient, since the leng
time single—particle mobility differs frori/¢ as a result of the long time tail. The correc-
tion can be quite strong, and actually depends on the lagfiaeinge. This can be shown
by the following consideration: We drag a particle with ciam$ average velocity and
constant average forde through a fluid globally at rest. Our simulation procedutkste
us that the force should b€ = ((# — @), @ being the flow velocity on the surrounding
lattice sites, which are, on average, a distance of ardavay. The Oseen tensor, in turn,
tells us that, should be of ordet ~ F'/(na) oru = F/(gna), whereg is some numerical
coefficient. Combining these equations, we find for the nikybil
pa— 1 + 1 .

T e
this relation has been checked numericalljhe lattice thus provides a Stokes—like contri-
bution to the mobility. It thus not only discretizes the hgdynamics, but also regularizes
it, i. e. it naturally cures the pathology that a point pdetidoes not exist (note that in the
continuum limite — 0 one would obtain an infinite mobility!). Sineeis just a discretiza-
tion parameter, the only conclusion is tifaloes not have any physical meaning. Rather,
for comparing with experiments one should look at the “dedssnobility .

(59)

3 A Final Remark

Although the presented material is highly selective, gitpmeflecting my own research,
| hope the present lecture has given a slight glimpse at thiglggms one encounters when
simulating systems with hydrodynamic interactions, arso alt the strategies which have
been developed to cope with them. The development of s@ecatiesoscopic” simulation
methods for soft matter systems, with emphasis on hydradigga is a quite active field
of current research, and far from being closed.
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