
Parallel Simulation of Polymers on the Cray T3EM. P�utz, A. Kolb and B. D�unwegMax Planck Institute for Polymer ResearchAckermannweg 10D-55128 Mainz, GermanyAbstract. In this article we present a way of simulating polymer systems onthe mesoscopic scale using massively parallel computers. We use a continuumbead-spring model and molecular dynamics with statistical noise and frictionto propagate our systems in time.For simple 
exible polymer melts and networks our model contains only pairinteractions. In this case spatial decomposition of the simulation box ontoseveral processing units is the ideal way of parallelizing the problem. Wedescribe the algorithm we use and the data structures involved in considerabledetail. The communication overhead is quite small, giving rise to an almostperfect scaling of the algorithm up to 256 Cray T3E processing elements, theonly requirement being that our dense systems exceed a particle number ofroughly 400 particles per processor.Furthermore we have developed a hybrid approach using both spatial andforce decomposition for more complicated interactions along the backbone ofthe polymer chains. This approach allows us to study the behavior of semi-
exible polymers that have bending (three point) and rotational (four point)interactions. This hybrid algorithm proves to be very e�cient: It scales verywell with the number of processors, and in comparison with the simpler pairinteraction algorithm it shows only a 15% - 20% drop in performance whenused to simulate 
exible polymers.1 IntroductionPolymer systems pose a big challenge to computational physics. Typically, theyexhibit a large variety of length and time scales which span over many ordersof magnitude. For example, in a polymer melt the typical oscillation time ofa C-C bond is of the order of picoseconds, while the time needed for a chainto di�use its own size (or to relax its conformation) grows very strongly withmolecular weight, and can easily reach up to the regime of micro- or even mil-liseconds. Therefore, it is obviously hopeless to run a Molecular Dynamics (MD)simulation of long-chain polymer systems which realistically models these C-Coscillations, and still attempts to reach the di�usive regime, which is necessaryif the simulation is to provide a sample of con�gurations which can be used for



averaging in the sense of equilibrium statistical physics.Fortunately, however, the many time scales are directly related to correspondinglength scales: High frequencies / short times correspond to short length scales,while the longer time scales are related to larger length scales - it simply takesmore time to relax the structure of a larger object. In many cases this relationactually shows up in the form of simple power laws which directly relate therelaxation time to the corresponding length scale. To mention again the case ofa polymer melt: According to the so-called reptation model [1], which describesthe experimental data for the viscoelastic behavior reasonably well, the relax-ation time � is proportional to the third power of the degree of polymerization,N . Likewise, the typical chain conformations in the melt are described by ran-dom walks, and hence the typical size of the coil, R, is proportional to N1=2.Combining these laws, one sees that � / R6, i. e. an extremely strong increaseof relaxation time with typical size.The mesoscopic approach to polymer simulations is then to take advantage ofthese scaling properties, and look at the system at a length and time scale wherethe microscopic details have averaged out. The complicated many-body inter-action between all the atoms is replaced by a simpli�ed model which containsa considerably smaller number of degrees of freedom. More precisely, severalchemical repeat units are combined to a single e�ective bead; this is the so-called "coarse-graining" procedure. If the number of original monomers is cho-sen large enough, the chain can be viewed as fully 
exible on the scale of thecoarse-grained model. Hence, the e�ective interactions which are used in themodel system have to take into account only a few fundamental properties ofpolymers: Connectivity, i. e. the chain structure as such, excluded volume, i. e.the impossibility of two monomers sitting on top of each other, non-crossability(which is particularly important for the chain motion), and 
exibility, which isusually modeled via spherically symmetric interactions. For details of the stan-dard model which is used for many purposes in the theory group at the MPI forPolymer Research, see the next section.Such models are much more appropriate for studying phenomena on the largerlength and time scales. Of course, unless one knows how the parameters of thecoarse-grained model (interaction constants, etc.) are related to the underlyingchemistry, the relation to the latter is lost. Establishing a reliable relation be-tween these two scales is a highly non-trivial task, and is currently developinginto a full branch of research in its own right. However, there are also quite anumber of phenomena which are not well understood, but are universal in thesense that they occur independently of the details of the underlying microscopicchemistry. For these questions it is justi�ed to simply disregard the chemical de-tail, and instead study the system on the mesoscopic scale right at the outset. Inpractice, this means that as many parameters as possible are simply set to unity.For example, it is observed experimentally that a stretched polymer network ex-hibits an anisotropic scattering pattern, the so-called "butter
y e�ect". It has



been debated if this is a result of thermal 
uctuations or rather of the intrinsicdisorder which is a result of random crosslinking [2]. To clarify this question, wehave run (and are currently still running) large polymer networks of up to 2�106particles. Very large systems are needed, because the observed phenomena occurfor rather large wavelengths. For systems like these, we have developed an e�-cient parallel algorithm which exploits the physical nature of the problem: Sincethe interactions are short-ranged, and the density 
uctuations are small, domaindecomposition is the method of choice, since only communication to (logically)adjacent processors is required, and the program is automatically rather wellload-balanced. Very good performance has been obtained on Cray T3Es, whichseems to be mainly a result of the excellent communication hardware of thisarchitecture.The remainder of this article is organized as follows: In Sec. 2 we de�ne themodel and the basic algorithm, whose scalar optimization is outlined in Sec. 3.Sec. 4 describes the basic parallelization strategy, while Sec. 5 outlines the gen-eralization to the case of additional bending and torsional potentials along thechain, where we found a hybrid scheme (i. e. a mixture of spatial and force de-composition) more useful. Sec. 6 concludes with some benchmark data obtainedon a Cray T3E.2 Model and Algorithm2.1 A Mesoscopic Polymer ModelThe conformations of polymers which are much longer than their persistencelength can be well described by simple bead-spring models on the mesoscopicscale. The model we employ has frequently been used in previous simulationsfor melts, networks and single chains [3]. Thus, many of its properties are wellknown, which makes it relatively easy to choose suitable parameters for a givenproblem. Since many details of the implementation depend on the exact de�ni-tion of this model, we shall present it here for completeness.We model a polymer chain via several monomers with mass m which are con-nected by �nitely extendable non-linear elastic (FENE) springs. All monomersrepell each other due to a repulsive Lennard-Jones interaction. The reason thatthe springs are not harmonic is mainly historic and not of fundamental impor-tance. We want to make use of the results of previous simulations, thereforewe keep the FENE springs. If we have M chains with Ni monomers each, theHamiltonian for the model isH ��pi;j ; ri;j	� = M;NiXi=1;j=1 p2i;j2mi;j +M;Ni�1Xi=1;j=1 VFENE (jri;j � ri;j+1j) (1)



+ M;NiXi=1;j=1 M;NkXk=1;l=1 VLJ (jri;j � rk;lj)where i; k label chains, j; l label monomers andVFENE (r) = �2 R2�2 ln�1� r2R2� for r < R; (2)VLJ (r) = 4� ���r �12 � ��r �6 + 14� for r < rc = 2 16�: (3)VFENE and VLJ are zero for other values of r. One sets � = 1 and � = 1 which�xes the energy and length scales. This leaves us essentially three parameters:the mass parameter m, which can usually also be set to one if one does notinclude monomers of di�erent mass, the strength � of the FENE springs andtheir extensibility R. The latter controls the relative importance of the excludedvolume of the monomers. For dense melts and networks at a typical monomerdensity � = 0:85 we choose � = 30 and R = 1:5. This choice serves a two-foldgoal: First, the frequency of oscillation between two monomers coupled by aspring (and, of course, excluded volume interaction [see Fig. 1]) is approximatelyequal to the frequency of a monomer within the e�ective potential well caused byits surrounding monomers due to excluded volume interactions only. Therefore,we have only one natural high frequency cuto� in the system which is good if oneemploys a single time step integration scheme. Secondly, two di�erent chains ortwo separated parts of the same chain have an e�ective energy barrier of about70� to cross through each other, and thus the topological constraint that twochains may not cross each other is e�ectively met for all reasonable temperatures(kT is typically one or of order one).

Figure 1: Bead-spring model: Monomers along a chain are connected with anhar-monic springs, excluded volume (arrows) is modeled by Lennard-Jones repulsion.



2.2 Method of IntegrationWe use the standard velocity Verlet integration scheme to propagate our systemsin time. In order to keep it stable at bigger time steps and to simulate a canonicalensemble instead of a microcanonical one, we further introduce a stochastic forceWi;j(t) on each monomer and friction term �_ri;j with a friction coe�cient �.Further one has to impose the following restrictions to the �rst and secondmoment of Wi;j(t): hWi;j(t)i = 0hWi;j(t) �Wk;l(t0)i = 6kT��(t� t0)�i;k�j;l (4)The latter couples jWj, � and T according to the 
uctuation-dissipation the-orem. For the generation of the stochastic forces we use uniformly distributedrandom numbers in the range of [��;�]3 where � = q 24kT�mh and h is thetime step of integration.The velocity Verlet integrator then takes the following form:r(t+ h) = r(t) + hv(t)�1� h�2m�+ h22mF(t) (5)v(t + h) = �v(t)�1� h�2m�+ h22m (F(t) + F(t+ h))��1 + h�2m��1 (6)F includes both potential and stochastic forces. Typically the parameters weuse will vary around T = 1:0 and � = 0:5. The friction induced by the heatbath is roughly equal to 140 of the e�ective friction between monomers.3 Optimization of the Linked Cell AlgorithmClearly the double sum in (1) is the most time consuming part of the force calcu-lation. This is even more so since the particles' coordinates are not restricted toa small part of space. Therefore one has to check each pair of particles whetherthey are within interaction range or not. This brute force approach clearly scaleswith the square of the number Ntot of particles. Therefore it is only e�cient fora relatively small number of particles up to Ntot � 500.For larger systems one usually reduces the e�ort to linear order in Ntot using thelinked cell scheme [4,5]. The main idea behind this is to divide the simulationbox into small cells with a diameter equal to the interaction radius ria (see thecoarse grid in Fig. 2). Then one sorts all particles into these cells according totheir coordinates. For each cell one has to keep a pointer list of the particles itcontains. To �nd all possible interacting pairs one has to go through all cellsand each particle within them and scan only neighboring cells for interactingparticles. This loop is illustrated by the following C code:



for(cell = 0;cell < lastCell;cell++)for(i = 0;i < particlesInCell[cell];i++) {iPointer = particleList[cell][i];for(j = i+1;i < particlesInCell[cell];j++) {jPointer = particleList[cell][j];CalcInteraction(iPointer,jPointer);}for(nCell = firstNeighCell[cell];nCell <= lastNeighCell;nCell++)for(j = 0;i < particlesInCell[nCell];j++) {jPointer = particleList[cell][j];CalcInteraction(i,j);}}The linked cell algorithm reduces the search e�ort to the order272 ��r3ia�2 Ntot�r3ia = 272 ��r3ia�Ntot (7)where � is the particle density. The last factor Ntot�r3ia gives the number of cells,each of these has 33 = 27 neighbors on a 3d lattice and contains �r3ia particlesin average. The prefactor of 12 accounts for the fact that two neighboring cellshave to be checked only once during the search exploiting the actio equalsreactio principle for pair forces. As a result the algorithm scales only linearlywith Ntot, however, with a proportionality factor which can actually be quitelarge depending on the density and range of interactions.If one compares the interaction sphere around one particular particle andcompares it to the volume that is actually scanned around it by this algorithmone �nds that only a fraction 4�81 � 16 of the particles really interact. To avoidthese wasted distance calculations one should approximate the interactionsphere more closely. One way to do it would be to make the cells smaller andsimultanously increase the number of neighbor cells (next nearest etc.) whichone has to scan. However this method has the severe drawback of increasingthe loop iterations dramatically while most of the cells will be empty. Thus,the loop overhead will eventually eat up the bene�t of the saved distancecalculations. Our own tests showed that this is already the case if one dividesthe cell size by a factor of two.However, Everaers and Kremer [6] have shown how to exploit the fact thatless particles occupy the cells. They devised a method they called neighborcell assignment to achieve that only a single particle or none sits in one cell.This opened the opportunity to simplify the data structure which made theiralgorithm fully vectorizable and reduced the loop overhead signi�cantly (twoloops in the ordinary linked cell algorithm can be saved). The drawback of thisalgorithm is that it is relatively complicated and di�cult to tune. Furthermoreits superiority is limited on scalar architectures.



Figure 2: Neighbor cells (thick lines) with minicells (thin lines). The circle showsthe interaction radius around one particle and how it is approximated by theminicells (shaded).Instead we decided to try a di�erent method of reducing the wasted volumekeeping the loop overhead constant. We divide the cells again into n3miniminicells and set up a table for each pair of neighbor cells and each pair ofminicells therein which contains the boolean information whether two minicellsin neighboring cells can possibly interact (i. e. are within ria of each other).Then we supplement the cell list which contains all particles within a cell withthe additional information of the minicell in which each particle sits. This isa very simple calculation and can be done during the step when all particlesare stored within this list. Before we do the actual distance calculation of twoparticles we �rst take a look at the minicell table to �nd out if their minicells arewithin interaction range. So we have exchanged the costly distance calculationinvolving 6 memory loads and 9 FLOPS by one memory load and a simpleinteger comparison for most of the potential interaction pairs.Our experiences show us that the actual gain of this method depends stronglyon non-universal factors such as memory speed (for table access) and thedetails of the lookup-table implementation. On a computer with 64 bit integers(such as the T3E) a choice of nmini = 4 seems optimal since then the minicellinteraction table can be stored in a compressed bit array minimizing memoryloads and cache misses. Also the particle pointers in the cell list can store theminicell index in the unused upper bits of the pointers further reducing memoryloads. This method of reducing memory loads by storing related pieces ofinformation which are frequently accessed together in di�erent bits of a singleinteger variable is a very good optimization technique on scalar computers. This



is particularly true if the memory caches are too small for the data �elds to �tinto them. Bit coding, of course, increases the number of instructions to extracta speci�c piece of information, however these bit manipulation instructions areusually very fast compared to the latency times of the main memory.If we now look at the ratio of the amount of computing time spent on forcecalculations to the amount of time spent searching for interactions the resultis still tantalizing: only 25% of the time are real work instructions, the restis consumed almost completely by search loop overhead. This problem canhowever be tackled by the standard method of using a so-called Verlet table[4,5], which stores all pairs of particles with distance ria + s. The length s,which is also called skin, represents a safety shell around the actual interactionsphere. When one has to calculate the forces for the next time step one doesnot need to scan all particle pairs for possible interactions but only those whichare stored in the list. One can use this list as long as one of the particles hasmoved a distance of s2 . This criterion can be found for the worst case scenariothat any two particles move directly towards each other with equal speed andno other particles kick them out of their paths. To check this criterion one hasto calculate the displacement for each particle since the last calculation of thelist, and compare the maximum of these displacements with s2 . This is only aminor calculation which can be done during the propagation of coordinates inthe integration step.The big advantage of the Verlet list is that it signi�cantly reduces the overheadfor searching interactions for many time steps. How big this improvementactually is depends again very strongly on the system parameters like ria,� and the time step of integration. For dense systems one can even weakenthe s2 -criterion exploiting the fact that the worst case scenario drawn aboveis highly unlikely. For most of our simulations (at a density of � = 0:85) wewere able to allow displacements of approximately 2s3 and thereby increase thenumber of reuses of a Verlet list by about 40% without changing our results.Of course, such non-exact optimizations have to be checked with great care.3.1 Implementation of Periodic Boundary ConditionsIn order to simplify the distance calculations while using periodic boundaryconditions we employ the usual ghost particle scheme [5]. That is, the particlesnear the boundaries of the simulation box are replicated in memory with theircoordinates shifted by the size of the simulation box. We store the pointers ofthese replicated particles within the cell lists instead of the original ones. Thismethod saves us the complicated distance calculations across boundaries of thesimulation box which would involve some backfolding of distance by multiplesof the box size (usually done by costly integer conversions). Furthermore theconcept of ghost particles �ts neatly into the domain decomposition scheme



described in the next section.4 Pair Interactions: Spatial DecompositionThe method of choice to parallelize MD with short-range forces seems to bespatial decomposition of the simulation box. That is, one simply splits upthe box into smaller sub-boxes and assigns one processor for each sub-boxto deal with it. Each processor stores and calculates only the coordinates,velocities and forces of those particles that currently are within its sub-box.Of course, since the particles are free to move in space they will eventuallycross boundaries of these sub-boxes and therefore one has to redistribute themamong the processors. Also when one has to calculate the forces acting on eachparticle a processor needs to know the coordinates of particles sitting near theboundary of its sub-box within other processors' domains. This informationhas to be updated at every step of the integration.To solve the problem of boundary forces we introduce local ghost particlesand frames around each sub-box. These ghost frames are equivalent to a shellaround a sub-box with thickness ria + s (see Fig. 4). The particles inside theframes are stored in the same array that holds the local (inner) particles of thesub-box. Therefore the array holding the coordinates has to be dimensioned bigenough for local and ghost particles. Further we have to take into account thatthe numbers of particles 
uctuate with time. Figure 3 depicts the sequence ofstorage of local and ghost particles within an array. First there are the localones then follow the particles of the boundaries in +X and �X direction,thereafter the +Y and �Y boundaries and lastly the +Z and �Z frames.
LOCAL               +X       -X         +Y            -Y           +Z              -Z

Figure 3: Storage order of di�erent (local and frame) particles within the coor-dinate array.This particular ordering follows directly from the sequence of communicationsteps for the boundaries. First each processor sorts out all local particles thatbelong to the X frames of their neighbors and copies them directly into theremote coordinate arrays. In the second step every processor searches for



particles in the Y boundaries including the particles in the X frames theyhave just received. In this way XY edges are sent automatically to theirright destinations without the need of sending them explicitly in a separatecommunication step. In the last step we repeat this procedure for the Zboundaries and now the corners of the ghost frames reach their destination, too.4.1 The Connectivity of ChainsSo far we have not paid any attention to the fact that particles may not be iden-tical. Since we want to simulate polymer chains and networks we need a methodto deal with the connectivity between monomers. On a single CPU computerone would simply deal with the excluded volume and spring interactions sepa-rately. For the latter one can usually exploit the fact that the coordinates of themonomers of a single chain are stored linearly in memory. So one can handlethe spring interactions within a single loop over all monomers of a chain. Usingdomain decomposition that ordering of particles in memory will be lost after the�rst few integration steps since particles move between the processors' domains.Therefore we give each particle a unique label which it carries along with itselfduring communication steps. In this label we have to store the following piecesof information: the identi�cation number of the chain and the monomer indexof the particle within that chain, and for networks also the index of the crosslinkto which it is attached, or if it is itself a crosslink a 
ag which indicates this.All these numbers and 
ags �t into a single 64 bit integer again, which makesthe computational task of �nding the relationship between two monomers fairlyeasy and keeps the additional communication overhead very low.For the implementation of the communication we employed the CRAY speci�cSHMEM-library. The main reasons for this choice were its easy applicability andits speed. The loss of portability is in our opinion not very severe, since a portingto MPI or PVM is straightforward and quick to implement. The details of theimplementation are quite intricate at certain points. A detailed explanation willbe given elsewhere [7].5 Many-Body Interactions: A Hybrid ApproachThe simple domain decomposition scheme in conjunction with the monomerlabelling discussed above works very well for MD problems with pair interac-tions only. If one wants to simulate polymers on smaller length scales than thepersistence length one needs to take into account the bending sti�ness of thechains and at even smaller scales also rotational energy costs. These are usuallyincorporated into the models via the following types of potentials:Ubend = C (cos�i � cos�0)2 ; (8)



Urot = Xk ck cosk 	i; (9)cos�i = ui � ui�1uiui�1 ; (10)cos	i = (ui � ui�1) � (ui+1 � ui)jui � ui�1j jui+1 � uij (11)where ui is the bond vector from monomer i to monomer i+1 along a chain andC, ck and �0 are model parameters. The bending term (8) is a three-body term,while the rotation potential (9) involves four particles. If we want to stick withdomain decomposition, we would have to scan for triples and quadruples, whichdramatically complicates the search loop. Again in single CPU simulations thisproblem would not be felt as a problem at all. Since all of the 3- and 4-bodyinteractions are among monomers of a single chain one could handle them in oneloop over all monomers of a chain exploiting the fact that monomer positions inmemory are known at compile time.To combine spatial decomposition with a linear storage of monomers of a singlechain in memory we decided to use a double book-keeping scheme. On the onehand we deal with the excluded volume interactions as before by distributingsingle monomers onto the processors according to their coordinates. On theother hand we introduce a second set of particle coordinates which is howeversplit into subsets on the basis of the chain index of the particles such that allmonomers of a chain are treated by the same processor. The monomers of a sin-gle chain are stored in ascending order so that the calculation of spring, bendingand rotational forces is easy to implement.Of course, the double book-keeping has some disadvantages. The most impor-tant one is that we have to keep the two sets of coordinates coherent and alsothe forces calculated from the di�erent sets have to be added in an additionalcommunication step. It should be noted that, if no further constraints on thedistribution of chains are imposed, these communication steps are global in thesense that probably each processor has to send data to every other processor inthe set. Another (however much less severe) drawback is that the memory costfor each particle increases by approximately 30% (it is not doubled since not allarrays have to be replicated).The following recipe summarizes the hybrid approach again and shows explicitlywhen and where the additional communication is needed:CalcForces () {CalcExcludedVolumeForces(); /* using local + ghost particles */DistributeWholeChains(); /* each CPU collects the coords.for its chains */CalculateIntraChainForces(); /* using the linear chain arrays */AddIntraForcesToExlcudedVol(); /* Sort forces back from chainto domain order */}



1

1

2 2

11

11

2 2

2 2Figure 4: Spatial decomposition of the simulation box. Ghost frames (dark) areshown in the lower part; they are duplicates of the boundaries (light) on neigh-boring processors. The numbers indicate the sequence in which communicationis performed.



256

128

64

32

16

8

4

2

1
2561286432168421

66% of

are ghosts
particles

sp
ee

d
u

p

Number of CPUsFigure 5: Speedup measurement of the two di�erent algorithms. The diamondsare for the simple domain decomposition and the crosses show the hybrid algo-rithm results. The straight lines show the ideal scaling behavior to guide theeye.6 Performance Analysis and ConclusionWe have tested the implementation of our MD program including the optimiza-tions described in the previous sections for a typical system size on a CRAYT3E. For benchmarking we have chosen a system of 1000 
exible (no bendingor torsional forces) chains of length 100 at a density of � = 0:85 at T = 1:0,� = 0:5, a time step of h = 0:01, a skin parameter s = 0:38 and a list criterion ofmaxi (rdisp(i; t; t0)) � s1:4 . The single CPU performance under these conditionswas 148000 particle updates per second on one T3E node which can be comparedto the to our knowledge fastest algorithm to date by Everaers et al. [6] runningat 330000 particle updates per second on a single CRAY-YMP processor. Onehas to keep in mind that their grid search algorithm with neighbor cell assign-ment is fully vectorized and a T3E node is just a scalar 300 MHz DEC Alpha21164 CPU.Looking at the scaling of the code with the number of processors we observe verygood behavior up to 256 processors for this benchmark (see Fig. 5), althoughmore than 23 of the particles on each CPU are ghost particles at this processornumber. The speedup is still 175, i. e. approximately 70% of the ideal value.



The losses are almost completely due to load imbalance since there are too fewparticles (less than 400) in each processor's domain, giving rise to noticable 
uc-tuations in the force calculations. The in
uence of increasing communicationoverhead is only a minor e�ect. For the investigation of inhomogeneities onpolymer networks and gels we need systems in excess of 500000 particles, forwhich scaling is almost perfect up to 256 processors.We have also tested our hybrid algorithm on the same benchmark to see theoverhead compared to simple domain decomposition and its scaling behavior.The result is plotted in the same Fig. 5. In general we can see that the hybridapproach is about 15% to 20% slower and scaling starts to break down at about64 processors. If one remembers that the hybrid code has been developed for thestudy of much more complex systems, the performance loss can be considerednegligible. The relatively early breakdown in scaling is related to the fact thatthe communication process for switching between the domain decomposition pic-ture and the chain decomposition picture involves communications between allprocessors and not just neighbouring ones. We believe that this can be overcomebe re�ning the chain decomposition scheme in such a way that most of the chainstreated by a processor are at least to their major parts within that processor'sdomain. This would render the communication local again.AcknowledgementsMost of the development of the code has been done on the T3D and T3E systemsat the RZG of the MPG in Garching, the T3E of the MPI for Polymer Researchin Mainz and at the HLRZ in J�ulich. We thank both the RZG and the HLRZfor a generous allocation of CPU time.References1. M. Doi, S. F. Edwards, The Theory of Polymer Dynamics (ClarendonPress, Oxford, 1986).2. S. Panyukov, Y. Rabin, Physics Reports 269, 1 (1996).3. Monte Carlo and Molecular Dynamics Simulations in Polymer Science,edited by K. Binder (Oxford University Press, New York, 1995).4. M. P. Allen, D. J. Tildesley, Computer Simulation of Liquids (Clarendon,Oxford, 1987).5. D. C. Rapaport, The Art of Molecular Dynamics Simulation (CambridgeUniversity Press, New York, 1995).6. R. Everaers, K. Kremer, Comp. Phys. Comm. 81, 19 (1994).7. M. P�utz, A. Kolb, in preparation.


