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AbstractThe conformational behavior of a single, intrinsically 
exible, weakly chargedpolyelectrolyte chain in poor solvent is analyzed by extensive computer simulationscombining Monte Carlo and Molecular Dynamics techniques. After determining the� point for the charge{free case, we focus on the weak screening limit, correspondingto low salt concentration in the solution. We study the dependence on both thesolvent strength, characterized by the relative deviation from the � point, � , and thefraction of charged monomers in the chain, which is e�ectively tuned by varying theCoulomb interaction parameter. The conformations are discussed in terms of globalproperties (like the end{to{end distance, the inertia tensor components, etc.), andfunctions revealing more detailed information, like the density distribution aroundthe center of mass, and the structure factor. For chains in the � regime our datacon�rm the picture of a string of electrostatic blobs. For poorer solvents (up to� = 0:4) we observe, upon increasing the intra{chain Coulomb repulsion, a splittingof the spherical globule into a dumbbell{type structure, accompanied by a sharpincrease in the chain's gyration radius. For su�ciently large � , a further splittingis observed as well. Such a \necklace globule" (a sequence of transitions) had beenpredicted by Dobrynin, Rubinstein and Obukhov (Macromolecules 1996, v. 29,p. 2974), with a nontrivial scaling of the gyration radius with chain length andinteraction parameters, which is con�rmed by our data. By means of a scalinganalysis we argue that the transitions can be interpreted as thermodynamic �rst{order phase transformations, when taking the appropriate thermodynamic limit,which implies a scaling of the electrostatic coupling with inverse chain length.
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1 IntroductionPolyelectrolytes represent a broad and very important class of materials including mostbiological1,2 and many synthetic polymers. In the last few decades considerable progresshas been achieved in the understanding of the behavior of polyelectrolytes in solution.3,4While many neutral polymers are not soluble in water, polyelectrolytes usually are, whichis the main reason for their biological, and, increasingly, their technological importance.This solubility is caused by the presence of charged monomers and the large gain in trans-lational entropy when counterions are released into the bulk of the solution. However, foruncharged monomers water is usually a very poor solvent, i. e. the interaction betweenuncharged monomers has the character of short{range attraction. If the fraction of un-charged monomers in the chain is su�ciently high (this is the case for weakly chargedpolyelectrolytes) this short{range attraction can induce a collapse transition (� transi-tion), i. e. the formation of a polyelectrolyte globule. A particularly spectacular exampleof this marginal solubility in water is polystyrenesulphonate (PSS), where even a smallfraction of non{sulphonated (and hence strongly hydrophobic) styrene monomer units issu�cient to cause the formation of intra{ and inter{chain aggregates in dilute solution.5,6The �rst theoretical model for the conformation of an individual weakly charged poly-electrolyte molecule in a poor solvent was proposed by Khokhlov.7 This model suggestedthat, due to the balance between the electrostatic repulsion and the globule's surfacetension, the chain forms an elongated cylinder (a \cigar"). However, the cylindrical glob-ule is unstable with respect to capillary wave 
uctuations, which cause a splitting intospherical collapsed cores and extended strings. The equilibrium intra{chain tension in thestring is determined (up to �nite size corrections) only by the solvent strength, i. e. by3



the strength of the short{range attraction between the monomers. This instability was�rst shown for a neutral polymer subjected to an external extensional force in a poor sol-vent.8,9 Later it was realized that it also occurs for charged chains, where the extensionis caused by the intramolecular Coulomb repulsion.10,11 The e�ect is analogous to thesplitting of a charged liquid droplet into an array of smaller ones, which was predictedby Rayleigh long ago.12 Because of the connectivity of the monomers one can expect theformation of a necklace type structure in which collapsed spherical beads are connectedby extended narrow strings whose tension balances the Coulomb repulsion. This necklacemodel for the polyelectrolyte globule in a salt{free solution has recently been proposedby Dobrynin, Rubinstein and Obukhov (DRO).11 It focuses on the essential features,which are short{range attraction (poor solvent condition) and long{range repulsion (un-screened Coulomb interactions in a salt{free solution) between monomers connected to achain. Earlier such a necklace structure had been predicted by Kantor and Kardar10 fora polyampholyte chain with an excess charge, which provides the long{range repulsion,while the short{range attraction is a result of correlations in the 
uctuations of the intra{chain charge distribution. A very recent calculation on necklace formation was done bySolis and Olvera de la Cruz,13 where the instability of the cylinder{like conformation wasdemonstrated by a variational approach.The DRO necklace model can be considered as an alternative to the cylindrical modelby Khokhlov. Both models predict a structure which is locally collapsed but stronglyextended on large scales. However, in contrast to the homogeneous cylindrical model, theDRO model predicts a strong longitudinal modulation in the thickness of the extendedpolyelectrolyte globule. Because of the presence of long strings connecting the collapsedbeads the overall longitudinal dimension of the chain is larger and, as a result, the energy4



of the intra{chain Coulomb repulsion is smaller. Another major di�erence between themodels is the nature of the conformational changes which the chain undergoes as eitherthe Coulomb repulsion (i. e. the charge density) is increased, or the monomer{monomerattraction (i. e. the solvent strength) is decreased. While the Khokhlov model predicts asmooth deformation of the globule into a more and more elongated object, the DRO modelimplies a sequence of rather abrupt changes: The spherical globule splits into a dumbbell,the dumbbell into a trimbell, etc. These transitions can be considered as �rst{order phasetransitions in the thermodynamic limit of in�nite chain length, N ! 1, while they arestrongly smeared out for �nite chains (as is the � collapse, which is however second{order in the thermodynamic limit). It should be noted that the long{range nature of theCoulomb interaction allows a well{de�ned thermodynamic limit only if, simultaneouslywith N !1, the strength of this interaction tends to zero (for more details see below).The experiments with PSS5,6 provide some indications, but not a direct proof of theexistence of the necklace polyelectrolyte globule. One of the main experimental di�cultiesis the necessity to work with very dilute solutions to prevent inter{chain aggregation.On the other hand, the very dilute regime is rather favorable for computer simulations(see, e. g., Ref. 14), since one can study a single chain, thereby avoiding most of thetechnical complications related to the long{range interactions with the periodic images ofa simulation cell. However, rather long runs are necessary in order to obtain good statisticsof the chain conformations, in particular in the transition regimes where 
uctuationsare large and relax slowly. Nevertheless, taking these caveats into account, computersimulations should be able to provide the most direct and least ambiguous proof of thecorrectness of the DRO picture. It is the purpose of the present paper to do this inmore detail, and with better statistics, than the existing previous studies: Refs. 155



and 16 observed a sharp increase of the chain size with charge density, but did notanalyze the conformations in more detail. The original DRO paper11 presented MonteCarlo results of a chain consisting of up to 200 monomers. A similar sharp increase wasobserved; however, the main evidence for the correctness of the model was drawn fromsnapshots, while density distributions etc. were not studied systematically. Moreover,the � transition was not localized in this study, which is however important in order toquantify the notion of a poor solvent. In the present paper, we use extensive combinedMonte Carlo (MC) and Molecular Dynamics (MD) simulations in order to systematicallyanalyze the conformations of a weakly charged polyelectrolyte chain with short{rangeattraction between monomers, scanning a wide range of the phase diagram both withrespect to degree of ionization and with respect to solvent quality, and paying particularattention to the transition from the spherically symmetrical globule to the extended state.The present investigation is complementary to other simulations of the conformationsof polyelectrolytes. We employ the same methodology as Ref. 17. That latter study, how-ever, has rather studied a � chain with varying strength and range of the electrostaticinteraction. In a realistic system, the concentration is always �nite, which also means a�nite concentration of counterions, implying some degree of electrostatic screening. Thepresent simulation studies the case of an extremely large screening length, which, forpractical purposes, can be viewed as an unscreened Coulomb interaction. This case maybe somewhat unphysical compared to typical experimental systems (note that the disso-ciation of water makes it impossible to completely eliminate the counterions by dilution);however, it is the simplest case, and theoretically best understood. It is therefore evenmore interesting to note that both collapsed globules as well as DRO necklace globulesalso occur for more realistic systems. This has been shown in recent simulations of many{6



chain systems with explicit counterions,18,19 where it was also observed that the collapsedchains can form a rather dense 
uid phase without precipitation, in close analogy tocharge{stabilized colloids.The paper is organized as follows: In Sec. 2 we review the main predictions of thescaling theories of a polyelectrolyte globule, and show how the formation of an additionalbead on the necklace can be viewed as a �rst{order phase transition. Section 3 contains thedescription of the model and the simulation algorithm. In Sec. 4 we study the unchargedreference chain and determine its � point, while Sec. 5 presents our main results for thecharged chain. Section 6 concludes with a brief discussion.
2 Theoretical PredictionsWe start with a brief review of the main theoretical predictions concerning the behavior ofa polyelectrolyte chain under poor solvent conditions. Both pertinent scaling theories7,11deal with weakly charged intrinsically 
exible polyelectrolyte chains. The condition ofintrinsic 
exibility implies that the Kuhn segment length of the reference polymer chain(in the absence of charges) is of order of the chain thickness taken as a monomer unitlength, b. The condition of weak charging can be formulated as a requirement of smallfraction f of (elementary) charged monomer units in the chain, or, more speci�cally,fu2 � 1; (2.1)where u = lB=b is the dimensionless coupling parameter characterizing the strength of theCoulomb interactions and lB = e2=(4��kBT ) is the Bjerrum length (here e is the elemen-tary charge, � the dielectric constant of the solvent, kB Boltzmann's constant and T thetemperature). The condition of weak charging, Eqn. 2.1, implies that the Coulomb repul-7



sion between neighboring charges (along the chain) is too weak to signi�cantly perturbthe Gaussian chain statistics between them | note that short{range repulsive excludedvolume interactions play no role since we consider the system near its � point. The lengthscale on which the chain remains virtually unperturbed by intra{chain Coulomb repulsionand retains its Gaussian shape is called the electrostatic blob20,21 and its size is equal to�e �= b �f 2u��1=3 ; (2.2)while the number of monomers in a blob isge �= �2eb2 �= �f 2u��2=3 : (2.3)If the condition of weak charging, Eqn. 2.1, is ful�lled, the number of charges per elec-trostatic blob, fge = (fu2)�1=3, is large. Therefore, the discrete character of the chargedistribution does not play any role for the conformational properties of the chain on ascale comparable or larger than �e. Hence a weakly charged polyelectrolyte chain withdiscrete charge distribution is equivalent to one with a smeared{out charge distribution,i. e. a fractional charge ef per monomer. The strength of the intra{chain Coulomb repul-sion (normalized to kBT ) can be thus characterized by the dimensionless parameter f 2u.On length scales above �e, the Coulomb repulsion dominates and leads to a stretching ofthe chain (obviously, this can occur only for su�ciently long chains, bN1=2 � �e, where Ndenotes the number of monomers). Envisioning the chain as a string of electrostatic blobs(in close analogy to Pincus blobs22 for a chain which is stretched by external forces), one�nds for the size of the chain (under � conditions)R� �= Nge �e �= Nb2�e �= bN �f 2u�1=3 : (2.4)Below the � point there is also a short{range attraction between the monomers, whosestrength is characterized by the second virial coe�cient between uncharged monomers.8



This is proportional to the relative deviation from the � temperature, � = (� � T )=�;remember that the � temperature is de�ned for a chain without charges as the point atwhich it acquires Gaussian statistics. We hence consider an uncharged chain �rst. Thepertinent length scale is the thermal correlation length or blob size23�t �= b� : (2.5)Below the scale of �t, the attractive interactions are unimportant and the chain is Gaus-sian. One thermal blob contains gt �= �2tb2 �= ��2 (2.6)monomers. Above �t the structure is a collapsed globule, which, again, is of course onlypossible for su�ciently long chains, bN1=2 � �t. For such a close{packed array of thermalblobs the overall size is Rgl �=  Ngt !1=3 �t �= bN1=3��1=3; (2.7)while the average monomer density is� �= gt�3t �= �b3 : (2.8)When both Coulomb repulsive and short{range attractive interactions are present, thedimensionless ratio �e=�t becomes a natural scaling variable. In the limit of dominant elec-trostatic interactions, corresponding to �e=�t � 1, the polyelectrolyte chain behaves as ina � solvent, i. e. its conformation is expected to be a string of electrostatic blobs describedby Eqn. 2.4. In the opposite limit, where the short{range attraction is strong (�e=�t � 1),the chain is in a poor solvent, and its conformations are governed by the interplay betweenshort{range attraction and long{range repulsion. The models of Khokhlov7 and of DRO11are both concerned with that case, and both start from the assumption that in thermal9



equilibrium the object is a densely packed array of thermal blobs of size �t. However, itis no longer a spherical globule, but rather assumes an extended shape, thereby loweringits electrostatic energy Fe, while paying with an increase in surface energy Fs. It is thebalance between those two terms which determines the equilibrium shape, and they areroughly estimated via Fe �= Q2�L (2.9)and Fs �= kBT�2t A; (2.10)where Q is the overall charge of the object, L its linear extension (in the long direction),and A its surface (each thermal blob at the surface contributes kBT ).Khokhlov7 assumed that the object is just an elongated cylinder. By minimization ofthe free energy with respect to its shape one �nds that its thickness is just �e, while itslength is given by Rcyl �= bN��1 �f 2u�2=3 ; (2.11)and the equilibrium free energy isFkBT �= Nb2�t�e �= N� �f 2u�1=3 : (2.12)The DRO picture,11 on the contrary, assumes a necklace globule, i. e. a stretched{outsequence of thick spherical globules (\beads") connected by thin strings which are alsoelongated. The model allows for three variational parameters, which, e. g., can be chosenas the thicknesses of the beads and the strings, and the length of the strings. Since themodel is treated in the long{chain limit, the number of beads is large and can be treatedas a continuous parameter which just follows from the three lengths, the density, Eqn. 2.8,and the total number of monomers, N . Minimizing the free energy for such an object, one10



�nds that the equilibrium size of the beads is again given by �e, which nicely correspondsto the cylinder thickness in the Khokhlov picture. The thickness of the string is �t, whichis as small as it can get without loosing excessive amounts of conformational entropy.Finally, the result for the length of the strings islstr �= �e  �e�t!1=2 �= b �f 2u!1=2 � �e: (2.13)Since the bead volume �3e is much larger than the string volume �3=2e �3=2t , the beads containpractically all of the chain's mass. For that reason, the number of beads is simply givenby Nbead �= N��3e �= Nf 2u� ; (2.14)while for the length of the necklace globule one �ndsRnec �= Nbeadlstr �= bN��1=2 �f 2u�1=2 : (2.15)Note that this implies a di�erent scaling of R with the interaction parameters f 2u and �than the Khokhlov picture, Eqn. 2.11. This di�erent scaling, apart from the observationof abrupt changes in R, will allow us to test the Khokhlov prediction against the DROpicture.For the DRO free energy in equilibrium �nds the same formula as Eqn. 2.12, i. e.cylinder and necklace globule have, in leading order, the same scaling behavior of the freeenergy. However, the necklace globule has a smaller prefactor, as is demonstrated in moredetail in Appendix A (the wording of Ref. 11 on this issue may be somewhat misleadingto some readers). The leading{order contributions to the free energy are the intra{beadrepulsion (i. e. the Coulombic self{energy of a bead, disregarding the interaction with theother beads), and the bead surface energy, which balance each other; both contributions11



are of order kBTNb2=(�e�t) (where we have summed over all beads). The inter{beadrepulsion is of order kBTNb2=(�3=2e �1=2t ) (the intra{string repulsion is negligible); it isbalanced by the string energy, which is of same order. It is important to notice that thesecontributions are much smaller than the leading{order terms (by a factor of (�t=�e)1=2).This is the reason why in leading order the Coulombic bead{bead interactions may beneglected, such that in essence the old Rayleigh12 picture applies. It should however alsobe noticed that this is only correct as long as the number of beads does not becometoo large | otherwise logarithmic contributions from the bead{bead interactions becomeimportant (these have been neglected in the DRO treatment11).A transition in the DRO picture is just the increase of Nbead by one. From this,one sees that the natural scaling variable, which determines the e�ective strength of theelectrostatic interaction, is Nf 2u=� . Moreover, this also shows how the thermodynamiclimit has to be taken properly for the present system: If we would consider the system justas a function of f 2u, then an in�nitely long chain would jump from a globule (f 2u = 0)into an in�nitely long stretched{out state with in�nitely many beads at in�nitesimallyweak repulsion, i. e. all transitions would just \collapse" into one single transition atf 2u = 0. If, however, one considers the limit N ! 1, f 2u ! 0, Nf 2u = const., thenthe number of beads remains constant, i. e. the beads and strings simply get bigger andbigger without any instability. Furthermore, by rewriting Eqn. 2.12 asFkBT �= N2=3� 4=3  Nf 2u� !1=3 ; (2.16)one sees that the free energy scales as N2=3, i. e. in the considered limit one must viewquantities which scale as N2=3 as thermodynamically extensive quantities.Three �nal remarks are still necessary. Firstly, upon increasing the strength of the12



electrostatic repulsion, the number of beads progressively increases, while their size �edecreases. At very large f 2u the interaction is so strong that the condition �e � �t nolonger holds. One then enters the regime of a � solvent, where the chain extension israther described by Eqn. 2.4. This is however a smooth crossover: At the crossover point�e = �t or f 2u = � 3, the chain extension of the necklace globule (Eqn. 2.15) coincides withthat of the string of electrostatic blobs (Eqn. 2.4). At this point the Khokhlov cylinder(Eqn. 2.11) has also the same length.Secondly, the above derivation has explicitly exploited the large{N limit, i. e. thepossibility to treat Nbead as a continuous variable. However, this limit is not accessible tosimulations, due to limitations in computer power. Moreover, the limit of small Nbead, i. e.the transition globule ! dumbbell ! trimbell etc., is also physically more interesting,since here the changes in the chain's shape are much more pronounced. Therefore, wehave analyzed the transition globule ! dumbbell in some more detail. Obviously, theglobule's geometry is completely �xed by its spherical shape and the density, while forthe dumbbell we have one variational parameter, e. g. the bead size, assuming a stringthickness of �t at the outset. This results in a nontrivial optimization problem, whichhowever can be solved in the asymptotic limit N !1, f 2u! 0, Nf 2u = const.. Sortingthe resulting terms according to the powers of N , one sees that one has to balance thestring length against the overall repulsion, resulting in contributions to the free energy/ N1=2, while the leading order terms are proportional to N2=3, describing the balancebetween intra{bead repulsion and bead surface tension. Since in the considered limit themass fraction in the string is negligible, the bead size is simply determined by splittingthe mass between the two beads. It therefore turns out that the scaling formulae of theDRO model (in particular Eqn. 2.15) do also hold in the limit of small Nbead. Since R13



according to Eqn. 2.15 depends on N , f 2u, and � in the same way for each of the necklacestates, one must expect that the transition from the globule to the dumbbell is far morepronounced than all the other transitions.Thirdly, it is not immediately obvious in what sense the transition Nbead ! Nbead + 1can be viewed as a thermodynamic phase transition. In order to answer this question,we make the following observations: If an interpretation as a phase transition is justi�ed,then we must view Nf 2u=� (or, for constant � , more conveniently Nf 2u) as the \�eld"which drives the transition. The corresponding thermodynamically conjugate variable,normalized as an intensive variable (which for simplicity we call the order parameterm), then must be subject to a singularity at the transition (jump in case of a �rst{order transition, in�nite slope in case of a second{order transition). This can however beexplicitly checked for the DRO picture by noting that the order parameter ism = �N�2=3 @F@(Nf 2u) ; (2.17)by de�nition of the thermodynamic conjugate, taking into account that the scaling of thefree energy F with chain length, Eqn. 2.16, implies a normalization with N�2=3. Now, ina model with fractional charge ef on each monomer, the Hamiltonian can be written asH = H0 + kBT2 f 2uXi 6=j brij ; (2.18)where H0 contains all the non{electrostatic terms, while ~rij = ~ri � ~rj, ~ri denoting theposition of monomer i. FromF = �kBT ln Z d3~r1 : : : Z d3~rN exp (�H= (kBT )) (2.19)one can directly evaluate the derivative in Eqn. 2.17, resulting inm = �kBT bN1=32RH (2.20)14



with 1RH = 1N2 Xi 6=j * 1rij+ : (2.21)RH is usually called the hydrodynamic radius of the chain.24 We did not sample thisquantity in our simulations because we had not yet realized its signi�cance at the pro-duction stage of our work. For a DRO necklace globule with Nbead beads of size dbead, thebehavior of RH may be estimated by the following reasoning (which is quite analogousto that in Ref. 11): First, we exploit the fact that the beads contain practically all themass. For that reason we may assume that the monomers i and j which contribute tothe sum in Eqn. 2.21 are actually bead monomers | the fraction of interactions whichinvolve string monomers is tiny. Within one bead, there are (N=Nbead) monomers, andhence the number of interactions within that bead is (1=2)(N=Nbead)2. A typical valuefor rij within the bead is dbead, and hence the contribution from one bead is estimatedas (N=Nbead)2=dbead. For a given pair of beads, the number of interactions is (up to afactor of 2) the same; however, here each interaction contributes only with 1=lstr, whichis much smaller. For this reason, we may also neglect the bead{bead interactions, unlessthe number of beads is quite large, giving rise to many of these interactions. These lattercontributions are however logarithmic contributions, which are also consistently neglectedin the DRO treatment.11 We hence �nd by summing up the intra{bead contributions1RH �= 1N2Nbead � NNbead�2 1dbead = 1Nbeaddbead : (2.22)From this one sees that RH for the present system has a somewhat di�erent meaningthan for neutral polymer coils. While for the coil RH is just another measure of the chainextension, such that the ratio R=RH is a universal number, we here �nd for that ratioRRH �= lstrdbead �=  �e�t!1=2 ; (2.23)15



by using dbead �= �e, and Eqn. 2.13. The ratio therefore strongly depends on the interac-tion. The order parameter m can be interpreted as the ratio of the single{globule size (cf.Eqn. 2.7; note that � must be considered a constant) to the total size of all the beads inthe DRO necklace. Furthermore, from Eqns. 2.2 and 2.14 one �ndsm �= �kBT� 1=3N�2=3bead ; (2.24)i. e. the order parameter jumps whenever a new bead is added. This means that thetransition Nbead ! Nbead + 1 is indeed a thermodynamic �rst{order phase transition.Moreover, the magnitude of these jumps decreases more and more as Nbead increases, i. e.the transitions get weaker and weaker.Figure 1 summarizes the DRO picture in terms of a schematic phase diagram in the(double{logarithmic) (�; f 2u) plane. In regions I� and I� the chain is so weakly chargedthat it is in essence unperturbed by the Coulomb repulsion. Region I� corresponds tothe Gaussian coil, while in region I� the chain has a globule conformation. In region II�the chain is represented by a linear sequence of electrostatic Gaussian blobs. Region II�corresponds to the necklace globule described above. The lines � � uf 2N , � uf 2N=2,� uf 2N=3; : : :, mark the phase boundaries between the single spherical globule, the dumb-bell, the three{bead necklace, etc.
3 Model and Simulation MethodWe consider a freely jointed uniformly charged chain consisting of N monomers. Thenon{electrostatic interactions between all the monomers are described by the modi�ed
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Lennard{Jones potentialU (m)LJ (r) = 8>>><>>>: 4�LJ ����r �12 � ��r �6 + 14�+ � hcos 2�rrc � 1i� ; r < rc0; r > rc (3.1)with rc = 21=6�. This potential (see Fig. 2) introduces a very narrow attractive part suchthat the range of interaction remains short. The strength of the attractive interaction isvaried via the parameter �; this is equivalent to varying the solvent strength. We use � asa unit of length, �LJ as a unit of energy and the monomer mass, m, as a unit of mass. Allfurther quantities will be presented in this unit system. The calculations were performedat temperature kBT = 1:0.The bonds between neighboring monomers are described by the �nitely extendablenonlinear elastic (FENE) potentialUFENE(r) = �k2r20 ln 1� r2r20! ; (3.2)where k is a spring constant and r0 the maximum bond length. The simulation wasperformed with the standard parameters k = 30 and r0 = 1:525,26 which keep the bondlength at a nearly constant value b � 1.All monomers interact with each other (in addition to the short{range Lennard{Jonespotential, Eqn. 3.1) via a screened Coulomb (Debye{H�uckel) potential:UC(r)kBT = lB exp (�r=lD)r ; (3.3)where lB is the Bjerrum length (see Sec. 2) and lD the Debye length which describes thescreening of the electrostatic interactions due to the presence of counterions and salt in thesolution. At very low concentration of both salt and polyelectrolyte this screening e�ectbecomes negligible, i. e. lD becomes much larger than the extension of even a stretched17



chain, and the interaction becomes e�ectively purely Coulombic. It is this limit which wehave studied in the present work, using a value of lD = 500, while our longest chain ismade of N = 256 monomers.In our simulation we varied the strength of the intra{chain Coulomb repulsion viathe Bjerrum length lB, from which we calculated the dimensionless interaction parameteru = lB=b, using the bond length we actually sampled in the simulation. At constanttemperature this can correspond to a change in the solvent dielectric constant, or to achange in the fraction of charged monomers in the chain, or both. As outlined in moredetail at the beginning of Sec. 2, the overall charge may be distributed homogeneously onthe chain, without altering the essential physics. Hence in our model the parameter f 2uof Sec. 2 has to be replaced by just u, which was varied from u = 0 (neutral chain) up tou � 1. It turned out that most interesting e�ects occur in this regime. Moreover, aboveu �= 1 one expects Manning counterion condensation27 to occur in a realistic system(unless the concentrations are extremely small): The Coulomb interaction becomes sostrong that entropy is no longer able to keep all counterions in solution. Of course, thise�ect cannot be described within our model, since the counterion degrees of freedom arenot present.It should be noticed that, strictly spoken, we would have to restrict the range of u evenmuch further, in order for the theory of Sec. 2 to fully apply. The problem is that for largeu (of order unity) we violate the condition of weak charging, as is seen from Eqn. 2.1,setting f = 1. This simply means that for the larger values of u our model, which is basedon a fractional charge on each monomer, is not fully equivalent to the same chain with fullcharges on the corresponding fraction of monomers. All other predictions of the theoryremain valid. The reason why we had to introduce this de�ciency is a purely technical18



one: In order to get into the regime of the globule ! dumbbell transition at small u,one would have to work with very long chains, as seen from Eqn. 2.14. This is howevercomputationally very hard, for reasons of long equilibration times. Other simulations likeRef. 17 have faced similar problems to reach the limit of weak charging.The ensemble{averaged chain properties were obtained by a hybrid Monte Carlo al-gorithm in close analogy to the procedure employed in Ref. 17. In order to achievee�cient sampling (i. e. short correlation times) on both long and short length scales,we combined an o�{lattice pivot algorithm28 with stochastic dynamics, i. e. MD coupledto a Langevin heat bath via friction and noise,25 using a damping constant 
 = 1:0.The equations of motion were solved by the velocity Verlet integrator29 with a time steph = 8� 10�3 : : : 10� 10�3 in units of the natural Lennard{Jones time tLJ = � (m=�LJ)1=2.In order to ensure that data were taken from su�ciently long runs, we started the simula-tions from two very di�erent con�gurations, a fully stretched chain and a coiled conforma-tion which was generated by placing a self{avoiding random walk on a cubic lattice. Wethen required that both runs, within statistical accuracy, would produce identical results.Without such a test procedure it is very hard to reliably check that the simulation dataare actually valid equilibrium values. In particular, we tested the end{to{end distance R,D~R2E = D(~rN � ~r1)2E ; (3.4)the gyration radius Rg, DR2gE = N�1 NXi=1 ��~ri � ~Rcm�2� (3.5)(with ~Rcm the chain's center of mass), and the bond length b. Before taking data, thechains were equilibrated by repeating the following hybrid procedure between three andeight times (depending on chain length and solvent quality): First the local structure19



was equilibrated by 105 MD steps, and then the overall structure was relaxed by adding5 � 104 pivot moves. In the subsequent production stage MD and MC were more thor-oughly mixed: After 20 : : : 50 MD steps we added one pivot move, and repeated thisprocedure until we had collected 1�107 : : : 3�107 steps in total. The acceptance rate forthe pivot moves varied between roughly 10% for neutral chains and 30% : : : 50% for thelargest values of u. In all cases, we observed a systematic increase of the acceptance ratewith increasing chain stretching. In order to estimate the number of generated statisti-cally independent chain conformations we calculated the normalized time autocorrelationfunction of the squared end{to{end distanceCR2(t) = hR2(0)R2(t)i � hR2i2hR4i � hR2i2 (3.6)and obtained the correlation time tR from CR2(tR) = e�1. The number of independentconformations is then given by the ratio nconf = trun=(2tR), where trun is the length ofthe overall run.30 In all simulations the statistics was satisfactory, nconf = 100 : : : 1000.Several conformational characteristics were evaluated. During every production run2000 measurements were done. Aside from R and Rg (see Eqns. 3.4 and 3.5) we alsostudied the inertia tensor31,32 T cm�� = 1N NXi=1 xi�xi�; (3.7)where xi� and xi� are the � and � cartesian components of ~ri� ~Rcm. At each measurementwe calculated the eigenvalues �i of T cm, ordered them according to their size (such that�1 � �2 � �3), and averaged them afterwards, thereby removing the trivial rotationalsymmetry which otherwise would produce identical values. The roots of these eigenvaluesare measures of the chain dimensions along the three orthogonal principal axes.Furthermore we calculated the probability distribution function P (R) of the end{to{20



end distance and the spherically averaged monomer density �(r) in the chain's center{of{mass reference frame. The latter function was used in Ref. 33 to characterize theinternal structure of a partially ionized polyelectrolyte chain consisting of hard spheres.In our calculation the distances were divided into intervals of size � = N=500 and afrequency count for each stroboscopic con�guration was done. The distribution functionswere normalized so that the area under the distribution curve equals unity.Finally, we also analyzed the chain conformations by the single{chain structure factorS(q) = 1N Xij hexp (�i~q (~ri � ~rj))i : (3.8)As was calculated in Ref. 11, one expectsS(q) � m2beadN 0@Nbead + 2 Nbead�1Xk=1 (Nbead � k) sin(qlstrk)qlstrk 1A sin(qdbead)� qdbead cos(qdbead)(qdbead)3 !2 (3.9)for a DRO necklace globule with Nbead beads of size dbead, each of which contains mbeadmonomers, and which are separated by strings of length lstr.
4 Results for Neutral Chains: � Point and GlobularStateIn order to determine the � region (cf. Eqn. 3.1) corresponding to poor solvent conditionsfor our model polyelectrolyte chain, it is necessary to determine �rst the value of �� whichcorresponds to the � point for the uncharged chain (u = 0). At � = �� the short{rangeattractive interactions between monomers compensate their excluded volume and thechain without charges becomes Gaussian, R2 �= Nb2. For � < ��, corresponding to good21



solvent conditions, the chain is a swollen coil, R2 � N2�b2 (� � 0:59), while in the poorsolvent region � > �� the chain collapses into a globule, R2 � N2=3b2.This collapse transition was studied by simulating neutral chains of length N =5; 9; 17; 33; 65; 129. In Fig. 3 we plot hR2i=(Nb2) vs. N�1 for di�erent values �. At� = �� the N{dependence must 
atten o� for large N . From this we �nd �� = 2:53�0:1.An analogous procedure was used, e. g., in Refs. 34, 35 and 36.As a consistency check, we also tested the scaling relation35{38hR2iNb2 = f(�N1=2); (4.1)where � is the normalized distance from the � point,� = � � ���� ; (4.2)and f(x) is a universal scaling function with the asymptotic behavior23
f(x) / 8>>>>>>>><>>>>>>>>: jxj4��2 ; x� �1x0; jxj � 1x�2=3; x� 1: (4.3)

This is done in Fig. 4, where one sees that the curves for various chain lengths nicelycollapse when using the scaling argument �N1=2. This is a further indication for havingfound the correct value ��. However, the data do not reach far into the good solvent andpoor solvent regimes, such that the asymptotics indicated in Eqn. 4.3 is not visible.For the ratio hR2i=hR2gi at � = �� we found a value close to 6, as it should be for aGaussian chain. The calculated ratio h�1i1=2 : h�2i1=2 : h�3i1=2 = 3:43 : 1:63 : 1 agrees alsovery well with the ratio 3:44 : 1:64 : 1 for a random walk.31Further data at u = 0 were taken deeper in the poor solvent regime, where one expects22



for the gyration radius (see Eqn. 2.7)DR2gE1=2bN1=3 = k��1=3: (4.4)This relation is tested in Fig. 5 for chain length N = 129; we �nd good agreement in theregion 0:02 < � < 0:2 with a proportionality constant k = 0:27. For longer chains, oneexpects the globular regime to extend to even smaller values of � , corresponding to thevalues of the scaling variable N1=2� � 1.At larger � the dependence of hR2gi1=2 on � deviates from the theoretically predicted onegiven by Eqn. 2.7. The reason is simply that for strong attraction the monomers becomee�ectively close{packed, such that no further shrinking is possible. The deviation becomessigni�cant at � � 0:2, which corresponds to the gyration radius Rg � 2:3. However, fora spherical globule of radius Rtot with uniform density, Rg = (3=5)1=2Rtot. Hence theglobule's radius is estimated as Rtot = 3:0, corresponding to a density of � = 0:85. Thisis a very high density at which typically simulations of polymer melts are performed.26
5 Results for Charged ChainsIn the charged case u > 0 we have studied only chains ofN = 129 and N = 256 monomers.We varied � from 0 up to 0:39 and u from 0 to 0:6, thus scanning a wide range of solventstrength (under poor solvent conditions) and of degree of ionization.When the electrostatic interactions are switched on, the size and the shape of thechain start to change. Figure 6 summarizes how the gyration radius (normalized by Nb)increases as a function of u. One clearly sees that quite di�erent behavior occurs fordi�erent solvent strengths � . For vanishing or small � one observes the scaling predictedby Eqn. 2.4, thus con�rming the picture of a string of electrostatic blobs20 in the � regime.23



None of the other formulae considered in Sec. 2 predicts a u1=3 behavior. A similar resultfor a charged chain near � was obtained in Ref. 16. In the poor solvent regime (typicallyfor � > 0:1, which corresponds well to the N1=2� � 1 criterion) the curves look quitedi�erent, but also cross over into the same u1=3 behavior for large u. This indicates thatfor such large electrostatic repulsion the solvent becomes a � solvent again, in perfectagreement with the scaling theory which says that e�ectively � conditions are presentwhen �e � �t or u� � 3. The data also support the theoretical prediction that this changein behavior is a smooth crossover (this is also true for all the other data we produced inthat regime, as will be seen below). Moreover, one sees that in the large{u limit thegyration radius becomes practically independent of � , again in agreement with Eqn. 2.4.For smaller u the behavior is however quite di�erent: For very small u the gyrationradius remains essentially una�ected by the Coulomb repulsion, while it sharply increasesat larger u. This qualitative observation is in better agreement with the DRO picturethan with Khokhlov's. Interpreting the sharp increase as the formation of a necklace outof the globule, one expects an u1=2 increase of Rg in the necklace phase (see Eqn. 2.15),while for a cylinder one would get u2=3 behavior (Eqn. 2.11). As is seen in Fig. 6, DRObehavior is indeed visible; however, it is practically impossible to distinguish it from u2=3,due to the overall rounding of the curves.A clearer understanding is obtained when replotting the data according to the variousscaling predictions, as is done in Fig. 7. Firstly, one sees that the location of the sharpincrease is roughly the same if one uses the scaling variableNu=� instead of u, as predictedby the DRO picture. The transition is located at uN=� � 25. Secondly, we normalize Rgin such a way that it is a constant according to the various predictions: For single{globulescaling, we plot Rg� 1=3=(bN1=3) (Eqn. 2.7), for necklace scaling Rg� 1=2=(Nbu1=2) (Eqn.24



2.15), and for Khokhlov scaling Rg�=(Nbu2=3) (Eqn. 2.11). Indeed, if one disregards thedata for � < 0:1 (which are still in the � regime), one sees that the DRO predictionsare con�rmed in the respective phases (globular scaling below the transition, necklacescaling above), while Khokhlov scaling is not con�rmed (instead of being constant, thedata exhibit a continuous decrease). When � is varied at constant u, the same behavioris observed, which is of course far from surprising (data not shown).Further indications of the strong stretching at Nu=� � 25 come from the parametersr = hR2i=hR2gi (Fig. 8) and the \asphericity" factor39� = 3 DPi(�i � �)2E2 D(Pi �i)2E (5.1)with � = (�1 + �2 + �3) =3. Data for � are not shown; the curves look rather similar tothose of Fig. 8, varying between zero and one. As before, we use Nu=� as appropriatescaling variable. For a spherical globule, � = 0, while r = 2 if the chain ends aredistributed randomly over the globule's volume. However, for entropic reasons the chainends are expected to be preferentially located at the globule's surface, in which caser = 10=3. Further known values are r = 6 and � = 10=1939 for a Gaussian chain, andr = 12 and � = 1 for a completely stretched chain. Similarly to the behavior of Rg, one�nds smooth stretching near � (small �), while for larger � both r and � increase sharplyat the transition Nu=� � 25. Both parameters show that even for the strongest repulsionthe chain has not yet reached its fully stretched state. Moreover, the value of r � 3 inthe globular state con�rms the picture of chain ends located at the surface.Since the observed chain stretching is only incomplete, the 
uctuations in the end{to{end distance are quite large, even for the most extended conformations. This is demon-strated in quite some detail in Fig. 9, where we plot the probability distribution of the25



end{to{end distance, P (R), for various values of � and u. Near the � point (small �)one observes a unimodal distribution whose maximum is shifted to larger R as the elec-trostatic repulsion is increased, consistent with the picture of continuous stretching of a� chain. At larger � , however, we observe that the distribution gets much narrower foru = 0, corresponding to the globule, while at intermediate values of u a bimodal distribu-tion is found. We interpret this bimodal distribution as phase coexistence between globuleand dumbbell; a criterion for the location of the �rst{order transition is the requirementthat both peaks have the same statistical weight.40 Actually, from looking at Fig. 9, onewould locate the transition at � = 0:24; u � 0:05 and � = 0:29; u � 0:06, correspondingto Nu=� � 25 for both cases (N = 129), in perfect agreement with the previous anal-ysis. Figure 10 studies P (R) of the N = 129 chain at constant electrostatic repulsionu = 0:05 for increasing � . The stretched � chain is smoothly transformed into a necklaceglobule without any particular changes in P (R), while again the bimodal distribution at� = 0:24; u = 0:05 indicates phase coexistence with the globule, which remains the onlystable phase for even larger � . It should be mentioned that P (R) in the globular state willlook di�erent for di�erent chain end locations (bulk of the globule vs. surface); however,our data are not accurate enough to see this di�erence clearly. Hence it turns out that thevalue hR2i = DR2gE � 3 is a better indicator for the chain end localization at the surface.The stretching is also associated with a strong peak in the speci�c heat (Fig. 11),evaluated via the 
uctuation relationCv = 1N(kBT )2 �DU2E� hUi2� ; (5.2)where U is the overall potential energy. Such a strong peak is quite typical for a phasetransition; again for all systems it occurs at the same location Nu=� � 25. For the26



poorest solvent � = 0:39 the peak is rather broad and also somewhat shifted to largervalues of Nu=� . We believe that the reason for this is the formation of the trimbell phase,a transition which is not well separated from the globule! dumbbell transition within ourlimitations of resolution and chain length. Looking back at Fig. 6, one sees for � = 0:39a weak shoulder in R after the initial sharp increase; this might also be related to thistransition (note that the theory expects the change in R to be much more dramatic forthe globule ! dumbbell transition than for dumbbell ! trimbell).Nevertheless, these indications are very weak, and one would like to analyze the con-formations within the necklace regime in more detail using more local information. Tothis end, we sampled the density distribution �(r) of monomers around the chain's centerof mass, presented in Fig. 12 for di�erent values of � and N = 129. It should be notedthat for these plots we simply counted the monomers in a distance r from the center ofmass, without taking geometric factors into account; this is the reason why � always tendsto zero for r ! 0. The curves were normalized such that their area is unity.At small � , one simply observes a broadening of the distribution upon increase of theelectrostatic interaction, corresponding to the stretching of the � chain. For � = 0:24,the behavior is however much more complex: First the narrow distribution correspondingto the globule becomes broader, then a bimodal distribution is observed, which can againbe interpreted as phase coexistence between globule and dumbbell (phase transition atu � 0:05, same as above), followed by a unimodal density with a peak at large r which canbe interpreted as a dumbbell. This distribution however becomes bimodal again for evenlarger u, corresponding to accumulation of mass near the center, or trimbell formation.In essence, the same behavior also occurs for the larger values of � . We therefore concludethat the simulation indeed observes the trimbell phase.27



In terms of the single{chain structure factor, which is shown in Fig. 13 for various� and u and N = 129, the behavior is again simple for small � : At the � point � = 0,u = 0 one nicely observes the q�2 scattering law of a Gaussian chain, while the stretched� chain (� = 0, large u) shows the expected q�1 decay. The � chain also shows that theoscillations starting approximately for q > 5 are associated with the molecular structureon the monomer level. For larger � , S(q) becomes more complicated. For u = 0 (globule)there are oscillations between q = 1 and q = 5, as expected for a sphere (see Fig. 14,where S(q) is shown for some simple geometric structures). For larger u, there is anadditional shoulder{like structure well below q = 1; this is associated with the additionallength scale of the string in the necklace. Indeed, as is seen from Fig. 14, such a behavioris expected for a dumbbell, but not for a cylinder. The double shoulder which appearsfor � = 0:39, u = 0:15, is probably due to a trimbell structure or even more complicatedconformations.The most direct way to see the DRO necklace is of course the inspection of snapshotconformations, of which we present a few at the end of this section for the N = 129 chainin the poorest solvent � = 0:39 (Fig. 15). The sequence globule ! dumbbell ! trimbelloccurring upon increasing the electrostatic repulsion is quite easily seen. Further increaseof u extends the chain to such large dimensions that the (perhaps existing) stability of afurther four{bead phase is strongly blurred.
6 ConclusionsAs a result of our simulations we have obtained a detailed description of the confor-mations of a single, 
exible polyelectrolyte chain in poor solvent. The conformational28



transitions related to the collapse of the polyelectrolyte chain and induced by varyingeither the solvent strength (the relative deviation from the � point, �) or the strength ofthe electrostatic interaction (coupling parameter u = lB=b) have been analyzed. Apartfrom verifying the picture of a string of electrostatic blobs in the � regime, our dataprovide reliable evidence for the existence of the DRO11 necklace type conformation ofa polyelectrolyte chain under poor solvent conditions. Conversely, the older Khokhlov7picture of an extended cylinder is clearly ruled out, as is known since DRO's analyticaland numerical work, and further corroborated in detail by our data: The scaling behaviorfor the chain extension is well consistent with the DRO picture, but not with Khokhlov'sprediction. There is a well{de�ned transition in the chain size, also visible in the speci�cheat, which occurs at constant Nu=� , as predicted by DRO. Further detailed analysis ofthe chain conformations (density distributions, structure factor, snapshots) revealed thatnot only the dumbbell phase, but also the trimbell structure was accessible within theparameter range of our simulation. A simulation which would attempt to observe evenmore beads unambiguously would involve substantially longer chains and a very largenumerical e�ort.All in all, the validity of the DRO picture is not too surprising, since it was alreadyknown since Rayleigh's times12 that a large charged droplet is instable. However, theadded understanding is that chain connectivity does not alter the picture | it is energet-ically and entropically possible to form strings between the beads which are su�cientlylong and thin, such that the beads e�ectively do not interact, as in the old Rayleighpicture.The characteristic features of the transition from the globule to the dumbbell are (i)a sharp change of the size and the shape of the chain, (ii) coexistence of two states in29



the transition region and (iii) a peak in the speci�c heat. While this is quite typical for�rst{order phase coexistence, our scaling analysis has actually shown that this conceptis well justi�ed. As the nature of the transitions is now well understood, one can con-tinue and study them with even higher accuracy, using reweighting and �nite size scalingtechniques.40Nevertheless, some details of the phase diagram are still far from clear. The linesshown in Fig. 1 are, strictly spoken, lines which mark the crossovers between variousregimes of the phase diagram. They are not true phase boundary lines, since the diagramis drawn for �nite chain length, where all phase transitions are smeared out. In thethermodynamic limit N ! 1, where phase transitions do exist, one can consider twocases: Either one studies an electrostatic interaction which tends to zero as N ! 1,such that Nf 2u = const., and the phase diagram is drawn in the (Nf 2u; �) plane. Inthat case one has well{separated �rst{order transition lines between the necklace globulephases, which all end in the � point Nf 2u = 0; � = 0. In this phase diagram the �region has shrunken to the line � = 0. The alternative case is to leave all interactionparameters constant as N !1, and draw the phase diagram in the (f 2u; �) plane. Thenall the transitions between the necklace globule phases shrink to a single transition atf 2u = 0, where the system jumps from the single globule to an extended necklace globulestate (with in�nitely many beads). The � region of this phase diagram occupies thearea characterized by � < const.(f 2u)1=3; in this region one has a string of electrostaticblobs, while for larger � one enters the necklace globule phase. Our data indicate thatthis change is a smooth crossover, but do by no means exclude the possibility that itis actually a weak thermodynamic second{order phase transition. The order parameterof this transition would be the modulation in the thickness at a �nite wavelength. The30



amplitude of this modulation can become arbitrarily small, and would vanish in the �phase. Such a scenario is actually predicted by recent variational calculations.13 A test bycomputer simulation has not been done yet; an attempt to provide an unambiguous proofwould probably turn out to be rather di�cult, and require both substantial computationale�orts and advanced data analysis.AcknowledgmentsThis study was supported by collaboration grant No. I/72164 from the Volkswagen foun-dation, and by RFFR grant No. 96-03-33833. Stimulating discussions with K. Kremerare gratefully acknowledged. Moreover, we thank U. Micka for letting us use his computerprogram, upon which ours was built.
A Rayleigh InstabilityWe here show in some more detail why a su�ciently large charged droplet should splitinto smaller ones,12 and why this state is lower in energy than an elongated Khokhlovcylinder. In contrast to the scaling arguments of Sec. 2, we also take the prefactors intoaccount.Instead of a simple cylinder it is more convenient to consider a prolate ellipsoid withone large semi{axis a, and two identical small semi{axes b. Its volume is V = (4�=3)ab2,while the surface area is given by A = 4�ab. It is useful to introduce the aspect ratiox = a=b � 1; a spherical droplet corresponds to the limiting case x ! 1. If the ellipsoidis charged with a homogeneous charge density �, such that the total charge is Q = �V ,

31



then the electrostatic self{energy is given by41Ucyl;el = 35 Q24��af(x) (A.1)with f(x) = cosh�1 xp1� x�2 ; (A.2)which increases monotonously with the aspect ratio x, starting at the value f(x = 1) = 1.We simplify the discussion by replacing the function f , which varies rather smoothly, bya constant f0. Taking also the surface energy with surface tension � into account, thetotal energy of the ellipsoid within this approximation isUapprcyl;tot(f0) = 3f05 Q24��a + �p12�aV ; (A.3)where the surface area has been expressed in terms of the parameters a and V . Optimizingthis expression with respect to a at constant volume, and re{expressing the charge in termsof volume and charge density, one obtainsa = 14�  12f 2025 !1=3  �2��!2=3 V (A.4)and Uapprcyl;opt(f0) = 3 9f020 !1=3  �2�2� !1=3 V: (A.5)This provides a reasonable approximation to the energy of the ellipsoid when choosing areasonable value for f0. For example, for an aspect ratio of 10 one obtains f(x = 10) =3:008. On a more rigorous basis, one can exploit the relationUcyl;tot > Uapprcyl;tot(f0 = 1); (A.6)which the true total energy satis�es. Taking the minimum value on both sides of theinequality, one sees that the true equilibrium energy of the ellipsoid is at any rate larger32



than Uapprcyl;opt(f0 = 1). As will be shown below, this latter energy is however precisely thevalue which is obtained for a set of spherical droplets of equal size (\Rayleigh state"),whose number is chosen to minimize the energy, and which are far enough away from eachother to not interact (see discussion in Sec. 2 why this interaction can be neglected forthe DRO necklace globule). It is hence shown that the preferred Rayleigh state di�ersfrom the cylinder by a smaller prefactor, up to corrections to scaling, which manifestthemselves in the fact that f(x) is, strictly spoken, not a constant.Let us now discuss the Rayleigh state in some more detail. The energy of a sphericaldroplet is obtained from the above formulae by setting x = 1. When charge and size areexpressed in terms of the volume, it is given byUsph;tot = � 34��2=3 "15 �2� V 5=3 + 4��V 2=3# : (A.7)If the volume is distributed onto two non{interacting droplets of volume V1 and V � V1(V1 � V=2), the energy isU2;tot = � 34��2=3 "15 �2� �V 5=31 + (V � V1)5=3�+ 4�� �V 2=31 + (V � V1)2=3�# : (A.8)For small V and / or large ��=�2, this function is minimized for V1 = 0, i. e. the one{droplet state. For su�ciently large V and / or small ��=�2, the minimum occurs atV1 = V=2, i. e. the symmetric two{droplet state. Obviously, more and more splitting willoccur when V is increased.Suppose now that the volume has been distributed onto N droplets, where N is theoptimum number of droplets. If, for a given pair of droplets, the sizes were di�erent,the system could lower its energy by re{distributing the volume such that the pair issymmetric. Hence all droplets must have the same size in equilibrium. For this system33



the energy is UN;tot = � 34��2=3 "15 �2� N �VN �5=3 + 4��N �VN �2=3# : (A.9)In the thermodynamic limit (V large, N large) N can be treated as continuous variable.Optimizing the above expression with respect to N yields for the size of a single dropletVN = 152 4�3 ���2 ; (A.10)while for the total energy in equilibrium one obtains exactly the same value as Eqn. A.5,evaluated at f0 = 1, as anticipated above.
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Figure 1: Phase diagram of a polyelectrolyte chain of N monomers in a poor solvent. � =(�� T )=� measures the strength of the monomer{monomer attraction, while u = lB=b,the normalized Bjerrum length, and f , the charge fraction, measure the strength of theCoulombic repulsion. Regime I� corresponds to the unperturbed Gaussian coil, II� tothe stretched chain of Gaussian blobs. In regime I� the chain forms a globule, while inregime II� a cascade of transitions to necklace globules is expected.
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Figure 2: Nonbonded monomer{monomer potential, normalized by kBT . Dashed line:Potential used in this work, see Eqn. 3.1, at �LJ=(kBT ) = 1 and � = 2:53. As shown in Sec.4, this corresponds to � conditions. Solid line, for comparison: Standard Lennard{Jonespotential at �LJ=(kBT ) = 0:31. According to Ref. 34, and consistent with exploratorytest runs by us, this is again close to the � point of the corresponding system.
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Figure 3: Chain length dependence of the normalized square of the end{to{end distanceof a neutral chain, for di�erent values of the parameter � of the modi�ed Lennard{Jonespotential.
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Figure 6: Dependence of the normalized gyration radius on the normalized Bjerrum lengthfor di�erent values of � . All data are for N = 129 except one curve as indicated.
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Figure 7: Reduced radius of gyration as a function of the parameter uN=� . In each curve,� is constant. The normalization is chosen such that the curves should be one constantfor a) single{globule scaling, b) necklace scaling, and c) Khokhlov cylinder scaling. Alldata are for N = 129 except one curve as indicated.44
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Figure 9: Probability distribution functions of the N = 129 chain end{to{end distancefor di�erent values of u: a) At the � point; b) � = 0:09; c) � = 0:24; d) � = 0:29.47
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Figure 10: Distribution function of the chain end{to{end distance for N = 129 anddi�erent values of � at u = 0:05.
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Figure 11: Speci�c heat per monomer as a function of uN=� for di�erent values of � andchain length N = 129.
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Figure 12: Density distribution function of monomers around the center of mass of achain of N = 129 monomers, for di�erent values of u: a) At the � point; b) � = 0:09; c)� = 0:24; d) � = 0:29 e) � = 0:39. 51
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Figure 13: Spherically averaged structure factor of the N = 129 chain for di�erent valuesof u: a) At the � point; b) � = 0:09; c) � = 0:24; d) � = 0:29; e) � = 0:39.
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Figure 15: Snapshots of the conformations of the chain with N = 129 monomers at� = 0:39: a) Neutral chain, u = 0; b) u = 0:1; c) u = 0:12; d) u = 0:15; e) u = 0:2.56


