
Parallel Excluded Volume Tempering for Polymer MeltsAlex Bunker and Burkhard D�unwegMax Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany(August 30, 2000)We have developed a technique to accelerate the acquisition of e�ectively uncorrelated con�g-urations for o�-lattice models of dense polymer melts which makes use of both parallel temperingand large scale Monte Carlo moves. The method is based upon simulating a set of systems inparallel, each of which has a slightly di�erent repulsive core potential, such that a thermodynamicpath from full excluded volume to an ideal gas of random walks is generated. While each system isrun with standard stochastic dynamics, resulting in an NVT ensemble, we implement the paralleltempering through stochastic swaps between the con�gurations of adjacent potentials, and the largescale Monte Carlo moves through attempted pivot and translation moves which reach a realisticacceptance probability as the limit of the ideal gas of random walks is approached. Compared topure stochastic dynamics, this results in an increased e�ciency even for a system of chains as shortas N = 60 monomers, however at this chain length the large scale Monte Carlo moves were ine�ec-tive. For even longer chains the speedup becomes substantial, as observed from preliminary datafor N = 200. We also compare our scheme to the end-bridging algorithm of Theodorou et al.. ForN = 60 end-bridging must allow a polydispersity of more than 10% in order to relax the end-to-endvector more quickly than our method. The comparison is however hampered by the fact that theend-to-end vector becomes a somewhat arti�cial quantity when one implements end-bridging, andis perhaps no longer the slowest dynamic variable.PACS: 05.10Ln,61.20.Ja,61.25.Hq,61.41.+e,83.10.NnI. INTRODUCTIONComputer simulations of dense polymer systems which make use of o�-lattice models have been successful in thedetermination of both static properties, such as phase equilibria [1{4] or rubber elasticity [5], and dynamic properties,such as the details of single-chain and collective relaxation [6{9]. For a melt of polymers of length N , the relaxationtime � , the time taken for the polymer to assume a new con�guration, scales as � / N2 for small N (Rouse dynamics),while for largerN reptation behavior, � / N3 [6,10] sets in. If the computer simulation of a polymer melt is performedin such a way that the dynamic properties are realistically reproduced then this scaling will be directly related to thecomputational e�ort needed to e�ectively sample phase space and obtain meaningful results for the static properties[11]. As a result progress in the simulation of systems involving polymers with large N has been severely hampered.A modern trend in Monte Carlo simulations in statistical physics is to strictly distinguish between simulations whichonly aim to determine the static properties of a given system, and those which also set out to determine the dynamicbehavior. In the latter case one has to follow the natural motion of the system con�ned to local dynamics constrainedby topology and/or barriers. If one is however only interested in generating uncorrelated con�gurations as quickly aspossible, one can use an arti�cial dynamics which is able to reach new e�ectively uncorrelated con�gurations muchmore quickly than the physical dynamics would allow.The Rouse scaling law � / N2 is a direct consequence of only allowing local motions to occur. It is independentof any constraint to motion and holds even for phantom chains with no interaction whatsoever except connectivity.Clearly, violating locality is an important step if one wishes to accelerate the acquisition of uncorrelated con�gurations.Particularly successful examples of schemes which achieve this include cluster algorithms [12] for critical phenomena,and the pivot algorithm [13,14] for isolated polymer chains, which collectively rotates a large part of the chain atonce, thus allowing one to study the static properties for N = 105 and above [14].In a dense polymer system, however, such an approach will clearly fail, since practically any attempted large scalemove will be rejected due to overlap with other monomers. The e�ective constraints to motion which cause thesetechniques to fail are of physical importance | this is the mechanism which, for su�ciently long chains, gives rise tothe onset of the considerably slower reptation dynamics. As a result previous attempts to speed up simulations ofpolymer melts by only lifting locality are unable to alleviate the problem. For example, the continuum con�gurationalbiased Monte Carlo method (CCB, [15{18]) and its variants [19] remove a chain (partly), and attempt to regrow itinto the existing matrix. This can in principle be seen as a non-local approach like the pivot algorithm, however, in asimulation of a dense polymer melt the chain will grow preferentially back into the cavity from which it was previouslyremoved. This e�ect becomes more pronounced with increasing chain length.A simulation algorithm geared at only generating uncorrelated equilibrium con�gurations should thus not only �nd away to violate locality but also the constraints resulting from the topology of the system and/or barriers. Fortunately,1



techniques have been developed to achieve this. The multicanonical ensemble and its variants (also called \umbrellasampling", \entropic sampling" or \1=k sampling") [20{25] try to identify barriers and then introduce a suitable biasin order to remove them (i. e. to allow the system to easily enter these unfavorable states). Simulated tempering (alsocalled \expanded ensemble") [26{28] tries to systematically soften the constraints to motion by giving the systemaccess to di�erent parameter values where the barriers are weaker.While the original implementations of simulated tempering [26,27] focused on rather obvious intensive variableslike temperature or chemical potential, it is evident that the formalism is applicable to any parameter which appearsin the (e�ective) Hamiltonian. One useful parameter for polymer systems is the length of a particular tagged chain;this is the approach followed in the work by dePablo et al. [28]. Later this was combined with further parameters(temperature, chemical potential) [29]. Another possible control parameter is the strength of the excluded volumeinteraction, and this is the route we follow in this paper. Since this term in the Hamiltonian directly generatesthe topological constraints which ultimately give rise to reptation-like slowing down, it is reasonable to expect thata systematic reduction of its strength should bear the potential of signi�cant speedups. This latter manipulationhas already successfully been applied to lattice polymers for measuring chemical potentials [30,31] and within theframework of a multicanonical ensemble [32], while for continuum polymers it has so far only been used in an adhoc fashion for equilibration purposes [6,8]. The present work should thus be viewed as an alternative approachto the existing method of dePablo et al. [29]. While their simulations introduce non-local moves by chain growthand removal, and e�ective constraint reduction by linking the system to lower chemical potentials, and thus lowerdensities, we rather remove the constraints by reducing the excluded volume interaction within the framework ofparallel tempering, and introduce non-locality via pivot moves [13,14].Parallel tempering, also called \multiple Markov chains" [33,34] or \exchange Monte Carlo" [35], is very similarin spirit to simulated tempering [26,27], but o�ers a number of both conceptual and technical advantages. Bothapproaches are based on studying a whole family of Hamiltonians Hi, i = 1; : : : ; n, each of which de�nes a standardBoltzmann weight exp (�Hi), where, for convenience, the temperature has been absorbed into the de�nition of theHamiltonian. This family of Hamiltonians will form a sequence in the one dimensional space of the control parameter.Along this line, the Hamiltonians must be located close enough to each other, such that the distribution of equilibriumstates resulting from the Boltzmann weight exp (�Hi) has signi�cant overlap with the distributions given by theBoltzmann weights exp (�Hi�1) and exp (�Hi+1). A typical con�guration for Hamiltonian Hi should be within thethermal 
uctuations for both Hamiltonians, Hi�1 and Hi+1. As system size (volume V ) increases the distributionsbecome sharper and sharper. As a result more and more Hamiltonians will be required for this condition to still besatis�ed. One would thus in principle like to study a system which is as small as possible.If we denote the control parameter by �, the above condition can be expressed as follows: For the averages of agiven extensive variable A in two adjacent ensembles characterized by � and �+�� the relation���hAi�+�� � hAi���� � ����@ hAi@� ���� j��j<��
A2�� � hAi2��1=2 (1)should hold. Since �
A2�� � hAi2��1=2 / V 1=2 (2)for reasons of Gaussian statistics and @A=@� / V , one �nds �� / V �1=2 or n, the number of Hamiltonians in thesequence, / V 1=2.Given a family of Hamiltonians with the above condition satis�ed, the tempering procedure consists of allowing agiven system to make stochastic switches to neighboring Hamiltonians on the sequence in parameter space at �xedsystem con�guration. Ideally, this results in a di�usion process with respect to the Hamiltonians. In particular,a con�guration which was originally subject to a \hard" Hamiltonian (with constraints) can di�use to a \soft"Hamiltonian (without), relax there quickly, and return to the original hard Hamiltonian. This should, hopefully,accelerate the rate at which the system traverses phase space.For a dense three-dimensional melt of 
exible polymers one expects the following scaling: The time to di�use alongthe path of Hamiltonians and back is proportional to n2 / V . Assuming that the soft Hamiltonian does not provideany constraints, and that a suitable algorithm is able to generate there a completely new con�guration in practicallyzero relaxation time, one �nds altogether � / V . Furthermore, the smallest system one can study is given by equatingthe linear box size to the mean end-to-end distance R / N1=2 (in a melt the conformations are random walks [10]).Thus � / V / N3=2, which is somewhat better than plain Rouse relaxation, � / N2, and considerably faster thanreptation, � / N3. Nevertheless, it should be noted that the well-known slithering-snake algorithm [14] scales as� / N�1, i. e. is expected to be asymptotically even better than our procedure. For very dense systems the prefactorin this law will however be large, due to small acceptance rates of the slithering-snake moves, such that one might2



need unrealistically long chains in order to actually observe the superiority. Where we expect the biggest payo� forour algorithm, however, is in systems where the (true physical) dynamics is governed by an activated process, suchas star polymers [36], where � / exp (const:N) ; (3)and for which the slithering-snake algorithm is not applicable. Regardless of these considerations, our �rst tests havedeliberately focused on melts of linear chains, since this is the system which is characterized best with respect to bothstatics and dynamics.The di�erence between simulated tempering and parallel tempering originates in how this idea is put into practice.Standard simulated tempering [26{28] considers only one system, whose con�gurations we denote by ~x, and simplyadds the parameter � as an additional degree of freedom, which is treated via a standard Monte Carlo algorithmin that expanded state space. This procedure is governed by the Hamiltonian H(�; ~x) � �(�), where � is a suitablepre-weighting factor, to be determined self-consistently in order to prevent the simulation from getting trapped in thesoftest Hamiltonian. The partition function of the resulting expanded ensemble is given byZ =Xi exp (�i) Z d~x exp (�Hi) =Xi exp (�i � Fi) ; (4)where F is the free energy (temperature is again absorbed in the de�nition). Since the arguments of the exponentialsare extensive, the sum will always be strongly dominated by the largest term, unless all of them are practicallyidentical. This means that unless �i � Fi 8 i the system will not be able to traverse the full extent of the availableparameter space as one or more parameter values will become highly improbable.In parallel tempering n systems are run in parallel, each of which is assigned one of the Hamiltonians Hi. Di�usionin Hamiltonian space is then facilitated by simple swaps of the con�gurations of adjacent Hamiltonians. Since eachHamiltonian will always be occupied, there is no problem of the simulation not visiting any particular \unfavorable"Hamiltonian, and thus it is no longer necessary to determine pre-weighting factors. Furthermore, the scaling consid-erations from above remain valid; the increased CPU e�ort by a factor of n is rewarded by the fact that we now haven random walkers available to produce data. The series of n systems can be seen as one extended ensemble with thepartition function Z = Z d~x1 : : : d~xn 1n!Xpexp ��Hp(1)(~x1)� : : : exp ��Hp(n)(~xn)�=Yi Zi; (5)where p denotes the possible permutations of the index set i = 1; : : : ; n, and we have made use of the arbitrariness inlabeling. Thus the method just simulates n statistically independent systems.The detailed balance condition for the swap is derived in a straightforward manner: If we denote two systems inwhich we attempt to switch the Hamiltonians by ~x (governed initially by Hamiltonian H1) and ~y (governed initiallyby Hamiltonian H2), then the transition probabilities w must satisfyw ((~x; ~y)! (~y; ~x))w ((~y; ~x)! (~x; ~y)) = Peq(~y; ~x)Peq(~x; ~y) (6)= exp (�H1(~y)�H2(~x) +H1(~x) +H2(~y)) =: B(the partition functions cancel out in the ratio of equilibrium distributions). Using the standard Metropolis rule, theattempted swap (~x; ~y)! (~y; ~x) is accepted with probability min(1; B).Given the simplicity of the method, and its potential, one should expect that its popularity will increase substantiallyin the future. So far, its use has not been very widespread, partly due to the fact that access to massively parallelcomputing facilities (for which the approach is ideally suited) is still somewhat limited. Applications up to nowhave included spin glasses [35,37], structural glasses [37,38], liquid-vapor phase coexistence in both simple [39] andpolymeric [29] 
uids, and several studies on the theta collapse of single polymer chains, and related issues [34,40{45].The fact that the strength of the excluded volume interaction could be used as a parameter in parallel tempering ismentioned in Ref. [32]; however, no actual run data were presented.The remainder of this paper is organized as follows: In Sec. II we describe the details of model and algorithm.Section IIA de�nes the standard Kremer-Grest model of a polymer melt [6], and its simulation by means of stochastic3



Langevin dynamics. Section II B then describes the most important ingredients of our parallel tempering procedure,which is based upon altering the functional form of the repulsive core potential and replacing it by a non-divergent\soft-core" potential, until the limit of phantom chains is reached. This allows the chains to pass through each other,thus eliminating the slow reptation dynamics. When the repulsive core potential is soft enough we will be able toperform pivot and whole polymer translation moves in the melt for which � / N�0, as described in more detailin Sec. II C. We also perform a comparison with end-bridging [46,47], a very fast Monte Carlo algorithm whichhowever does not conserve the chain lengths, and whose basic features are outlined in Sec. II D. Section III reportsour numerical results. Section III A describes how we found the parameters for our procedure, while important timecorrelation functions to measure the e�ciency of our algorithm are de�ned and presented in Sec. III B, resulting inour conclusion (Sec. III C). II. MODEL AND ALGORITHMA. Kremer-Grest Model and Langevin DynamicsThe Kremer-Grest model [6] is one of several o�-lattice models for polymer melts which are commonly known as\bead-spring" models. All particles have purely repulsive Lennard-Jones cores of the formULJ(r) = 4� ���r �12 � ��r �6 + 14� r � 21=6�;ULJ(r) = 0 r � 21=6�; (7)where � and �, as well as the bead mass, are set to unity such that time is in Lennard-Jones units. The FENEattraction between the neighboring monomers on the chains is given byUch(r) = �k2R20 ln�1� r2R20� ; (8)where R0 = 1:5 is the maximum extension of the nonlinear spring, and k = 30 is the spring constant. The springconstant is set to be strong enough to prohibit two polymer chains from crossing each other. We consider a systemof M chains of length N in a cubic box with periodic boundary conditions at constant volume with density � = 0:85.We have simulated an NVT ensemble of this system through the use of Langevin (stochastic) dynamics [6,11], �xingthe temperature at kBT = 1:0 where kB denotes Boltzmann's constant. This involves the addition of a random forceand a friction term, resulting in the following equations of motion in terms of particle positions ~ri and momenta ~pi:_~pi = ~Fi � 
mi ~pi + ~fi;_~ri = ~pimi ; (9)where ~Fi is the force due to the interactions with other monomers, mi the particle mass, 
 the friction constant, and~fi the stochastic force which satis�es the standard 
uctuation-dissipation relationhfi�(t)fj�(t0)i = 2
kBT�ij����(t� t0) (10)(i. e. uncorrelated with respect to both particle indices i and Cartesian indices �). These equations were solved usingthe standard velocity Verlet integrator [11,48], with friction coe�cient 
 = 0:5 and time step �t = 0:0125.Both static and dynamic properties of this model are very well known [6,11]. In particular, its slow Rouse- orreptation-like dynamics serves as a reference for the speedup obtained from our new Monte Carlo procedure.B. Parallel TemperingWe have performed parallel tempering by connecting a series of systems to the Kremer-Grest potential usingsuccessively softer repulsive core potentials. The n systems are simulated in parallel, and each system is on a separateprocessor of a massively parallel system (Cray T3E). Once an initial locally equilibrated con�guration (in real andmomentum space) is obtained for each of the systems, the potentials are allowed to switch between systems through4



Metropolis Monte Carlo steps, as described above. It should be noted that the kinetic energies cancel out in theMetropolis criterion. The swaps are implemented in a checkerboard fashion, where either the odd-even pairs or theeven-odd pairs are tried. Between these swaps each system is run for a few stochastic dynamics steps; it is knownthat this procedure is quite e�cient for equilibrating local degrees of freedom. For example, if we were to use eightprocessors we would �rst attempt to switch the systems 1 � 2, 3 � 4, 5 � 6, and 7 � 8, then run some stochasticdynamics, then attempt the switches 2�3, 4�5, and 6�7, then run more stochastic dynamics before attempting the�rst set of switches again. Figure 1 shows how this aspect of the algorithm is implemented. A reasonable duration forthe Langevin runs between the swaps is obtained from studying the potential energy relaxation, as described later.In order to achieve large acceptance rates for the swaps it is necessary to choose the form of the \softened core"potential such that the bond length b and the chain sti�ness C1 are approximately maintained. The core repulsionof the neighbors and next-nearest neighbors on chains were thus kept intact, while all other repulsive Lennard-Jonespotentials were replaced by the following \softened core" potentialUSC(r) = A�Br2 r � rt;USC(r) = 4� ���r �12 � ��r �6 + 14� rt � r � 21=6�;USC(r) = 0 r � 21=6�; (11)where A and B are �xed by the continuity of U(r) and dUdr leaving rt as the only free parameter. For the Kremer-Grest potential rt = 0, and rt is successively larger for each softer potential until the �nal potential in the series hasrt = rc = 21=6�, the cuto� radius, which is the case for phantom chains. A graph of such a family of potentials isshown in Fig. 2. We will refer to the ratio rt=rc as the \soft-core parameter". Observing Fig. 2 it becomes quiteapparent why our tempering parameter is a superior choice to temperature for the Kremer-Grest model. Temperingin temperature would be the equivalent of altering the potential by a constant multiple. No matter how high atemperature reached the r�12 divergence of the core would not be alleviated.C. Pivot and Translation MovesWhen we reach systems with extremely soft repulsive core potentials then large scale motions within the systemswill have observable transition probabilities. We must ensure that these large scale motions through phase space aresuch that only the parts of the potential which have been softened are a�ected. Thus the large scale motions shouldnot a�ect any bond lengths or angles within the polymers. Large scale moves that ful�ll this criterion are pivot andtranslation moves.The pivot move involves rotating part of the polymer around the axis of a given bond. As shown in Fig. 3, all ofthe interactions which have not been softened are unchanged in this move. The translation move involves taking theentire polymer and shifting it a random distance in a random direction. It is in reaching systems where these kinds ofmoves are possible before returning to the Kremer-Grest Hamiltonian where we expect our algorithm to pay o�. Wehave implemented the pivot and translation moves together in a single move where the whole chain is simultaneouslytranslated and every bond is rotated, thus relaxing all the degrees of freedom of the chain with the exception of thebond lengths and angles which are relaxed by the Langevin dynamics. We attempt these moves also quite frequently,as discussed later in the paper. D. End-BridgingIn order to compare our algorithm with an established Monte Carlo method for equilibrating dense polymer systems,we have also implemented an end-bridging procedure combined with Langevin dynamics. End-bridging, developed byTheodorou et al. [46,47], is a very e�cient algorithm; however, it gains its speed only by giving up monodispersity.Instead a �xed number of monomers and a �xed number of chains is simulated, whose length however is allowed to
uctuate within prede�ned limits. In practice, these limits are de�ned by allowing all chain lengths between N(1�f)and N(1 + f), where f is typically of order 1=2. The algorithm involves allowing bonds within polymers to breakand reattach to the ends of di�erent polymers. It was originally devised for atomistic simulations with �xed bondlengths and involved an intricate procedure. Implementing this algorithm on the Kremer-Grest model, however, isfar simpler since our bond lengths are able to 
uctuate. The end of a chain searches for a possible chain to bridgeto. This search is performed by �nding all the monomers within the cuto� radius that are not on the same chain asthe chain end in question. One out of these is selected at random. If a possible end-bridge is found then the move5



is accepted according to a Metropolis function where the Boltzmann factor is multiplied with a weight factor. Thisweight factor is given by the number of monomers which the end could possibly bridge to divided by the number ofmonomers the newly created end could bridge back to. This is necessary to satisfy detailed balance, i. e. to correctfor the di�erent probabilities to select the original reaction and the back reaction. A diagram of how end-bridgingworks for the Kremer-Grest model is shown in Fig. 4. In our implementation we run the Langevin dynamics for 10LJ time units, followed by nbr bridging attempts, where nbr is 20 times the number of chains.III. RESULTS AND DISCUSSIONA. Construction of Simulation ProcedureWe �rst tested the algorithm with a system of 20 chains of length 60. For further simulation parameters (� = 0:85,kBT = 1:0, etc., which were not varied), see Sec. II A. The e�ect of softening the potential is clearly seen in thestandard pair correlation function g(r), which is the probability to �nd a particle pair with distance r, normalizedby the ideal gas value. This function is shown in Fig. 5, excluding the nearest and next-nearest neighbors on thepolymer chains where the core repulsions are maintained at full strength. Compared to the fully repulsive system,there is a considerable probability for very short distances as soon as rt=rc>�0:95, re
ecting the ability of chains topass through each other. This removes the topological constraints for chains of arbitrary length. Thus even withoutpivot moves the dynamics would not be slower than Rouse relaxation.Furthermore, we measured the single-chain static structure factor S(q) = N�1 DjPi exp(i~q � ~ri)j2E for both theKremer-Grest model and the phantom chains as shown in Fig. 6. As expected, the Kremer-Grest model reproducesthe random walk exponent � = 0:5, observed from the decay S(q) / q�2. The result for the phantom chains is verysimilar to the Kremer-Grest model, indicating that the overall structure of the chain does not change very much aswe soften the repulsive core potentials. This in turn means that no major chain rearrangements are necessary alongthe thermodynamic path, such that the transitions should be quite easy.Nevertheless, it turned out that for our number of monomers one needs of the order of 102 (due to computerrestrictions we used 128) systems in order to connect from the fully repulsive potential to the phantom chain limit,requiring that the swap acceptance rates are of order 1=2. The soft-core parameters were adjusted by hand, in essencevia a trial-and-error procedure. It was found that the rt step size to the next softer potential had to be reduceddrastically as the phantom chain limit was approached.A graph of the resulting transition probabilities for each of the 128 potentials for both 20 chains of length 60, and1200 purely repulsive Lennard-Jones particles is shown in Fig. 7. The �rst potential with a softened core was chosenat rt=rc = 0:74. From then on, we picked further rt values with uniform spacing; however, occasionally this spacinghad to be reduced along the path, in order to prevent the transition rates from dropping too strongly. This procedurethus introduced a number of steps in the rt spacing, as shown in the inset of Fig. 7. These steps in turn give riseto jumps in the transition rates, as clearly seen in Fig. 7. Furthermore, there are very rapid oscillations, which webelieve to be a consequence of the checkerboard algorithm.Comparing the low molecular weight case with the polymer system, one observes that in the regime of small rt=rc =0 : : : 0:95, where the pair correlation function exhibits clear core repulsion (see Fig. 5) the transition probabilitiesincrease with increasing chain length. In the intermediate regime the transition probabilities are roughly independentof chain length and as the limit of phantom chains is approached, rt=rc>�0:99, the transition probability drops o�drastically with increasing chain length.We believe this phenomenon can be explained as follows. The transition probability is governed by the overlap inthe energy distributions. The degree of this overlap is dependent on the di�erence between the mean energies andthe width of the energy distributions. In the low soft-core parameter regime the dominant factor is the di�erencein average energy, since large interaction energies are present. As chain length increases, the fraction of interactionswhich belong to nearest or next-nearest neighbors along a chain also increases. As these interactions are not softened,the di�erence in mean energy between adjacent potentials is reduced upon increasing the degree of polymerization.Thus the overlap, and the transition probability, is raised. Conversely, as the limit of phantom chains is approached theinteraction energies involved become very weak, and the behavior rather becomes entropy-driven. Since polymerizationreduces the translational entropy, one should expect that also the variation of the free energy with rt is decreasedupon polymerization. As the width of the energy distributions should be directly related to the \speci�c heat", i. e.the second derivative of the free energy with respect to rt (which can be viewed as the equivalent of temperature forour system) one expects an entropic narrowing of the distributions, while the mean values remain largely una�ected.Thus the overlap and the transition rate is reduced. 6



We feel that an analytical relationship between the chain length and the transition probability in the phantomchain limit can probably be developed, maybe by a perturbation expansion around the ideal gas of random walks. Ifthis is so then, from a determination of a set of soft-core parameters which have a constant transition probability fora certain number of Lennard-Jones particles, a general relationship could be developed which would provide a set ofsoft-core parameters for an arbitrary number of chains of an arbitrary length. The development of such a procedureis however beyond the scope of this paper.From measuring the time autocorrelation function of the potential energy for the untempered system (i. e. withoutswaps between potentials), shown in Fig. 8, we have found that the correlations decay very quickly after only a fewtime steps of Langevin dynamics and then cross over to a much slower decay. Our interpretation of the very fastinitial decay is that it is a direct consequence of the local bond oscillations, which happen on roughly this time scale.This is also in accord with the observation that it occurs independently of the degree of softening, see Fig. 8, sincethe potentials between bond neighbors remained unchanged for all potentials. Conversely, the long-time behavior isquite strongly a�ected by the softening, again in agreement with the expectation that the function should decay muchfaster for a softer system. Furthermore, the energy-energy autocorrelation function is independent of chain length, asexpected.These results suggest that it is most e�cient to attempt the switches frequently, on the time scale of the bondoscillations. We thus constructed the following algorithm: On every system we perform the large scale chain reorien-tation attempt on enough chains so that attempts are made to move at least 5% of the monomers. This is followed by4 Langevin dynamics steps, after which the Hamiltonian swaps (either even-odd or odd-even) are performed. Thenthe procedure is repeated. For reasons of simplicity, we have applied the identical moves to all systems. It shouldbe stated, in the interest of future development of this method, that this condition is however not necessary. Anyalgorithm which leaves the Boltzmann distributions of the di�erent systems invariant will be valid. For our algorithm,however, as currently implemented, not to attempt the large-scale moves on the hard systems would only generate idleCPU time since the processors all have to wait for the slowest system to �nish before attempting the next swap. Afurther optimization could however involve eliminating the large-scale moves on the hard systems, and replacing themby more Langevin steps. By �ne-tuning this one should be able to reduce synchronization overhead to a minimum.We also found that as the soft-core parameter approaches the phantom chain limit local bond oscillations can becomeunstable. This can be easily remedied by increasing the friction in the Langevin dynamics as the soft-core parameterincreases. B. Correlation FunctionsAn appropriate way to benchmark the program is to determine the CPU time needed per chain relaxed. Since everysystem periodically passes through the Hamiltonian with the full Lennard-Jones repulsive hard core potential, eachsystem can be seen as a Kremer-Grest model which is sampled every time this Hamiltonian happens to lie on it. Usefulsingle-chain quantities to measure are the normalized end-to-end vector autocorrelation function, D~R(t) � ~R(0)E = 
R2�with ~R = ~rN � ~r1 and the autocorrelation function of the lowest �ve Rouse modes, D ~Xp(t) � ~Xp(0)E with p = 1; : : : ; 5and [8] ~Xp = p2N�1=2 NXi=1 ~ri cos hp�N (i� 1=2)i : (12)These quantities must be measured in such a way that only correlations between con�gurations where the Kremer-Grest Hamiltonian is present are counted. Thus we de�ne the following procedure to measure autocorrelation func-tions: C(t) = Pt0 u(t0 + t)u(t0)�(U(t0 + t); U0)�(U(t0); U0)Pt0 �(U(t0 + t); U0)�(U(t0); U0) ; (13)where u(t) is the quantity whose autocorrelation function is determined, U0 is the Kremer-Grest potential, and U(t)the potential at time t. The Kronecker �(U(t); U0) vanishes unless the potential is U0 where it is unity.Figure 9 displays the normalized end-to-end vector autocorrelation function for (i) end-bridging with degree ofpolydispersity set to 10 and 20 percent of the chain length, (ii) our parallel tempering procedure, and (iii) standardLangevin (Rouse-like) dynamics, for our system of 20 chains of length N = 60. It is seen that end-bridging can achievebetter e�ciency in the relaxation of ~R, but only if the polydispersity exceeds 10%, which must be considered a large7



value if one is mainly interested in the properties of an approximately monodisperse sample. Furthermore, it is mostlikely that the end-to-end vector does not describe the slowest relaxation in the system for this type of algorithm.Since for the end-bridging algorithm what constitutes a polymer chain becomes an ill de�ned quantity, what actuallydoes become the slowest mode is unclear. It is probably a collective quantity like the stress or similar; however, sincethe 
uctuations in such quantities are hard to measure with good statistical accuracy, due to lack of self-averaging,we did not study this point further.The parallel tempering procedure turns out to be somewhat faster than plain Rouse relaxation, in particular inthe long-time limit. In terms of integrated autocorrelation time the speedup amounts to roughly 10 % with thepivot moves present and 30 % without. The reason why performing pivot moves actually slows the simulation downis explained by Figs. 10 and 11, which show the normalized end-to-end vector autocorrelation function and theautocorrelation of the �rst Rouse mode (in terms of \physical" time, not CPU time). The parallel tempering alonealready needs such a long time for traversing Hamiltonian space from the ideal gas to the full repulsive interactionthat on this time scale the chains are already fully relaxed. After a \di�usive loop" through Hamiltonian space thecon�guration is thus already fully decorrelated, even without pivot moves. Therefore the pivot moves just generateadditional CPU overhead and cause a slowdown.In Fig. 12 the autocorrelation of the lowest �ve Rouse modes is shown as a function of the Rouse scaling variablet sin2(p�=2N), such that for pure Rouse dynamics all curves would collapse onto a single line. As is known from oldersimulations [6,8], N = 60 is already slightly in the crossover regime to reptation, where ultimately the lower modesare slowed down. Nevertheless, N = 60 is still too short for this e�ect to become visible, such that Rouse behaviorfor the case of pure Langevin dynamics can still be assumed. Our tempering procedure, on the other hand, producesa disproportionate acceleration of the lower modes. They are the only modes which are slow enough to be able tocapitalize on the excursions to the softer interactions. They �rst relax exponentially in accord with the pure Rousedynamics of the hard system, while at later times the decay is signi�cantly steeper.We were also able to obtain results, shown in Fig. 13, for a system of 32 chains of length 200, using 256 Hamiltonians.Limitations in the CPU time available to us have prevented us from performing a comparison between simulations withand without pivot moves, and from measuring the correlation function until full decay. Nevertheless, our preliminarydata clearly show a steep drop o� in the correlation functions, which is much more pronounced than for the case ofN = 60. These data were obtained for the case with pivot moves; we believe that they actually did help to acceleratethe equilibration of this system. The data for pure Langevin dynamics without tempering were taken from Ref. [49].From an approximate �t to our data we see a speedup (in terms of integrated autocorrelation time for the �rst Rousemode) of greater than a factor of eight. C. ConclusionsOur results indicate that parallel excluded volume tempering combined with large-scale chain moves is a viableroute to speeding up simulations of dense polymer systems. It is expected that the method will become more andmore useful as the chain length increases, as indicated from our preliminary results for chain length 200, in particularwhen compared to the results for shorter chains. For our initial attempt, which is most likely not the optimal choice ofall simulation parameters, it seems that N = 60 is rather close to the crossover length, while N = 200 is signi�cantlyabove. Even more dramatic speedups are expected for more complicated molecular architectures like stars. Theseissues will be the subject of future investigations. Current trends in the development of computational facilitiesindicate that over the next decade we will see an increase in the availability of massively parallel computers with moreand more processors running at approximately the speed of today's processors. With the advent of such facilities weexpect the full potential of this algorithm to be realized.There are several directions in which this algorithm can be further developed. Through the development of an ana-lytical understanding of the e�ect of chain length on transition probabilities as the phantom chain limit is approachedone could realize a general scheme to generate an optimal set of transfer radii for a particular system. Another possibledevelopment is performing the parallel excluded volume tempering by only softening a limited set of interactions inthe Hamiltonian, if the original system is based upon a more �ne grained or even atomistic model. In such models itis quite typical that a particular term in the Hamiltonian creates a signi�cantly greater energy barrier than any otherterm. Since such \hard" interactions pertain only to a subset of the overall system, the e�ective system size V onwhich the tempering acts is reduced. This results in a smaller number of necessary processors.One could also consider the softening of only a sub-volume of the system, for example a single polymer or all sitesin a certain region of the simulation box. However, such approaches need careful testing, since one must expect thatthe softening perturbation is not strictly local, due to long-range elastic stresses. Combining parallel excluded volumetempering with CCB may also yield a more e�cient algorithm.8



In its current form our algorithm should be seen as complementary to the \hyperparallel tempering" algorithmof dePablo et al. [29]. Both approaches are geared at constraint softening (via the density in the \hyperparalleltempering", via direct manipulation of the interaction in our case), combined with non-local chain moves (chaingrowing vs. pivot moves). Chain insertion becomes feasible then, and thus both methods are, in principle, well suitedfor calculating phase equilibria. The results presented in Ref. [29] for the gas-liquid transition of dense polymer systemslook very encouraging. At the present stage, it seems an open question which algorithm (or perhaps a combination)will prove the most feasible and successful for such problems, in particular when dealing with very dense systems.ACKNOWLEDGMENTSWe thank J. J. de Pablo, R. Everaers, and A. Khokhlov for helpful suggestions and stimulating discussions. A.B. thanks D. Theodorou and V. I. Mavrantzas for hospitality at the Institute of Chemical Engineering and HighTemperature Chemical Processes, FORTH, Patras, Greece, where part of this work was done. This research wassupported by the EU TMR network \NEWRUP", contract ERB-FMRX-CT98-0176.
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1FIG. 1. Schematic representation of our parallelization scheme. The double arrows represent attempted switches and thethick line represents the path through the Hamiltonians followed by one of the systems.
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FIG. 2. A set of successively softer repulsive core potentials. In the simulation we connect the system with the purelyrepulsive Lennard-Jones potential, shown as the solid line, through a series of such softened core repulsion potentials to thelimit of phantom chains (U = 0).
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FIG. 3. Schematic representation of our implementation of pivot moves: Neither the nearest neighbor nor the next-nearestneighbor distances on the polymer chain are a�ected. As a result none of the potential interactions which are kept at fullstrength are a�ected.
FIG. 4. End-bridging move for the Kremer-Grest model. If the end-bridging move in question involves an energy change �Ethen the probability of the move is given by P = min(1;We��E) where W is a weight factor given by the ratio between thenumber of possible monomers the initial end can bridge to and the number of monomers the newly created end could bridgeback to.
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FIG. 5. Pair correlation function of an N = 60 polymer system at density � = 0:85 for several values of rt=rc, excludingnearest and next-nearest neighbor pairs along the chain backbone. Note that starting at about rt=rc = 0:95 the chains aree�ectively able to pass through each other.
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FIG. 6. Single-chain static structure factor for both the Kremer-Grest model (chain length N = 60, density � = 0:85) andphantom chains where the nearest and next-nearest neighbor interaction along the chain was left intact. The similarity in thestatic structure factor indicates that the large scale structure of the chains is nearly invariant as the repulsive core potentialsare softened. The straight line represents a slope of �2 corresponding to � = 0:5.
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FIG. 7. Probability that a system would transfer to the next softer potential, as a function of its own potential index, whichincreases with softness. Although the low molecular weight 
uid and the polymer system have the same density � = 0:85 andtemperature kBT = 1:0, there are marked di�erences in behavior, as discussed in the text. The inset graph shows the steps insoft core parameter values for each of the potentials.
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FIG. 10. Normalized end-to-end vector autocorrelation function, for chain length N = 60 at density � = 0:85, using ourparallel tempering algorithm with and without pivot moves.
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