
Corre
tions to S
aling in the Hydrodynami
 Properties of Dilute Polymer SolutionsBurkhard D�unweg�, Dirk Reith, Martin Steinhauser, and Kurt KremerMax{Plan
k{Institut f�ur Polymerfors
hungA
kermannweg 10, D{55128 Mainz, Germany(May 14, 2002)We dis
uss the hydrodynami
 radius RH of polymer 
hains in good solvent, and show that theleading order 
orre
tion to the asymptoti
 law RH / N� (N degree of polymerization, � � 0:59)is an \analyti
" term of order N�(1��), whi
h is dire
tly related to the dis
retization of the 
haininto a �nite number of beads. This result is further 
orroborated by exa
t 
al
ulations for Gaussian
hains, and extensive numeri
al simulations of di�erent models of good{solvent 
hains, where we �nda value of 1:591 � 0:007 for the asymptoti
 universal ratio RG=RH , RG being the 
hain's gyrationradius. For � 
hains the data apparently extrapolate to RG=RH � 1:44, whi
h is di�erent fromthe Gaussian value 1:5045, but in a

ordan
e with previous simulations. We also show that theexperimentally observed deviations of the initial de
ay rate in dynami
 light s
attering from theasymptoti
 Benmouna{Ak
asu value 
an partly be understood by similar arguments.I. INTRODUCTION AND SUMMARYIt is well{known that the average size R of an iso-lated 
exible un
harged polymer 
hain in good solvent isasymptoti
ally proportional to N� , where N is the de-gree of polymerization, and � � 0:58771. This law holdsfor any measure of the 
hain size, the most popular ofwhi
h are the mean square end{to{end distan
e,
R2E� = 
r21N� ; (1)the mean square radius of gyration,
R2G� = 12N2 Xij 
r2ij� ; (2)and the hydrodynami
 radius� 1RH � = 1N2 Xi 6=j � 1rij� : (3)In these equations, we have assumed that the 
hain is
omposed of N monomers (i. e. N�1 bonds) at positions~ri, i = 1; : : : ; N , and rij = j~ri � ~rj j. Experimentally, thegyration radius is determined from small{angle s
atteringexperiments; for small wave numbers q the single{
hainstati
 stru
ture fa
tor behaves like2S(q) = 1N Xij hexp [i~q � ~rij ℄i= N �1� q23 
R2G�+O(q4)� : (4)Conversely, the hydrodynami
 radius is determined viasmall{angle dynami
 light s
attering experiments, wherethe dynami
 stru
ture fa
tor

S(q; t) = 1N Xij hexp [i~q � (~ri(t)� ~rj(0))℄i (5)is measured. In the small q limit, it de
ays likeS(q; t)S(q; 0) = exp ��Dq2t� ; (6)where D is the 
hain di�usion 
onstant, whi
h, withinthe framework of Kirkwood{Zimm theory2 is related toRH via D = D0N + kBT6�� � 1RH � ; (7)where D0 is the monomer di�usion 
onstant (usually this
ontribution is negle
ted), kB is Boltzmann's 
onstant, Tthe temperature and � the solvent vis
osity. In prin
iple,it is possible to obtain RH , as a stati
 quantity, also frompurely stati
 s
attering, as is seen from the relation� 1RH � = 2�N Z 10 dq (S(q)� 1) ; (8)but for te
hni
al reasons, this has so far not been appliedin experiments.When analyzing data for the 
hain size, one has totake into a

ount that the law R / N� holds only in theasymptoti
 limit N ! 1, while for �nite 
hain lengthsdeviations o

ur. This is parti
ularly important for 
om-puter simulations, where data with high statisti
al a

u-ra
y 
an be obtained. For this reason, 
orre
tions to s
al-ing have been worked out in great detail, and exploitedin high{resolution numeri
al studies, for the end{to{enddistan
e and the gyration radius, where the relation�
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R2E� = AN2� �1 + BN� + : : :� (9)(and analogously for RG) holds3. Here A and B are non{universal amplitudes, while � is a universal 
orre
tion{to{s
aling exponent, whose value is diÆ
ult to determinebeyond the a

ura
y � � 0:5 (� � 0:56 a

ording to Ref.1, � � 0:43 a

ording to Ref. 4). The omitted terms arefurther powers N���1, N���2, . . . , as well as N��2 ,N��2�1, . . . (i. e. there are further larger 
orre
tion{to{s
aling exponents), plus so{
alled \analyti
" terms N�1,N�2, . . . 3. The important point to noti
e is that the \an-alyti
" 
orre
tions will arise even for a Gaussian 
hain,and are due to the fa
t that the 
hain 
onsists of a �nitenumber of beads. This will be demonstrated expli
itlyin Se
. II A. Conversely, the \non{analyti
" 
orre
tionsare due to the fa
t that, in the language of renormaliza-tion group (RG) theory, the 
hain's Hamiltonian is notidenti
al to the �xed point Hamiltonian. The exponent� is related to the largest sub{leading eigenvalue of theRG transformation at the �xed point. In �rst order � ex-pansion its value is5 � = �! with 1=� = 2� �=4+O(�2)and ! = � + O(�2), where � = 4� d and d is the spatialdimension. Higher{order 
al
ulations6 have resulted in� = �! = 0:588� 0:82 = 0:482. We adopt here the 
on-vention (whi
h we view as quite natural) to distinguishthe terms by their di�erent origins, and 
all 
orre
tionterms \analyti
" 
orre
tions if they are present even inthe Gaussian limit, while we 
all \non{analyti
" 
orre
-tions those terms whi
h o

ur ex
lusively for ex
luded{volume 
hains. As we will see in Se
. II B, \analyti
"
orre
tions de�ned in this way do not ne
essarily implyinteger powers of N .As for the hydrodynami
 radius of self{avoiding walks(SAWs), there is no high{resolution numeri
al studyavailable, and 
orre
tions to s
aling have not yet beendealt with systemati
ally. This is somewhat unfortunate,sin
e the 
orre
tions are unusually large for RH , and ofexperimental relevan
e. For a good solvent 
hain, one ex-pe
ts again N�� et
. terms, plus \analyti
" 
orre
tions.It is the main purpose of the present paper to show thatthe leading{order term of these latter 
orre
tions is nowgiven by� 1RH � = AN� �1� BN1�� + : : :� ; (10)where B is usually positive. We will show in Se
s. II Band IIC that this form is a straightforward 
onsequen
eof dis
retizing the 
hain into beads. As 1 � � � 0:41,this will, for long 
hains, ultimately dominate over theN�� term, where the exponent is (a

ording to Refs. 1,4 and 6) slightly larger. Nevertheless, the exponents areso 
lose that in most 
ases one will observe 
ontributionsfrom both terms. On the other hand, it is a well{knownempiri
al fa
t that for many experimental systems, aswell as for most 
omputer models, the 
orre
tions to s
al-ing of the gyration radius are quite weak, su
h that the

N�� term should have a rather small amplitude. One
ould therefore expe
t that the 
orresponding amplitudeof the N�� 
ontribution in RH is also quite small. Thenthe most likely 
andidate for explaining the experimentaland numeri
al observation that RH is usually subje
t tovery large 
orre
tions to s
aling5 would a
tually be the\analyti
" N�(1��) term.For a Gaussian 
hain we are able to solve the problemexa
tly, see Se
. II A:� bRH � = 83 � 6��1=2N�1=2 �1�BN�1=2 + : : :� ; (11)with B = �(3=4)�(1=2) � 1:095266 (here � is Riemann'szeta fun
tion), and b denoting the root mean square bondlength. As � = 1=2 for a Gaussian 
hain, this form is 
on-sistent with Eq. 10.The diÆ
ulties in observing the asymptoti
 N� s
alingof RH have a long history. Adam and Delsanti7;8 per-formed dynami
 light s
attering experiments and foundan e�e
tive power law RH / N0:55. This is quite typi
al,and has been found in many other experiments, too9{11,although an exponent of 0:6112 has been reported as well.A redu
tion of the e�e
tive exponent is indeed expe
ted,as seen from Eq. 10, and is also observed in BrownianDynami
s simulations13. As a 
aveat, note that a s
at-tering experiment does not measure RH , but rather thedi�usion 
onstant D. This quantity has an additionalD0=N 
ontribution (Eq. 7), whi
h is of the same orderas the leading 
orre
tion of Eq. 10. Therefore, the 
or-re
tions in D are weaker than those in RH . Nevertheless,the D0=N term is typi
ally not large enough to fully 
om-pensate the 
orre
tions in RH . This is easily seen for theGaussian 
ase from Eqs. 7 and 11: The monomer di�u-sion 
onstant D0 
an be written as D0 = kBT=(6��a),whi
h de�nes a monomer Stokes radius a. ThusDD0 = N�1 (12)+ ab �3:6853N�1=2 � 4:0364N�1 + : : :� :Sin
e a should be of the order of the bond length b, onesees that a large N�1 
ontribution remains.A �rst attempt to explain the experimental observationis due to Weill and des Cloizeaux14. They 
onje
turedthat �eff = 0:55 is due to non{perfe
t solvent quality,and a 
rossover between good solvent behavior (� � 0:6,large length s
ales) and � solvent (� = 0:5, small lengths
ales). In parti
ular, they pointed out that the averag-ing over 1=r assigns a very large statisti
al weight to thesmall distan
es. Although this latter argument is true,and generally a

epted as the basi
 origin for the slow
onvergen
e of RH , the explanation in terms of solventquality has turned out to be in
orre
t. In Ref. 15 it wasdemonstrated that RH should not be mu
h more sus-
eptible to solvent quality e�e
ts than RE or RG | theenhan
ed sensitivity of RH to the small distan
es is bal-an
ed by the fa
t that RE and RG are more sensitive to2



the de
reased swelling of the 
hain near its ends: A SAWis inhomogeneous, i. e. 
r2ij� depends on the position ofthe ij bond on the 
hain, and is systemati
ally larger inthe interior, as has been shown both numeri
ally15;16 andanalyti
ally5;15.Furthermore, S
h�afer and Baumg�artner15 performed adetailed RG 
al
ulation and predi
ted in one{loop orderfor the universal amplitude ratio�1 = limN!1 �(N) = limN!1 RG(N)RH(N)� 1:06� 83p� � 1:06� 1:5045 � 1:595; (13)here 8=(3p�) is the exa
t random walk (RW) value.Other RG studies resulted in �1 = 1:56217 (this valuewas later revised to 1.51, see Ref. 18) and �1 = 1:6219,while a semi{empiri
al relation based on �tting the dis-tribution fun
tion of internal distan
es to light s
atter-ing data yields �1 = 1:595512;18. A value of �1 � 1:6was also found in Brownian Dynami
s simulations13.From Eq. 10 it is 
lear that � should be subje
t to anN�(1��) 
orre
tion for �nite 
hain length; nevertheless,experiments have so far not reported a systemati
 de-penden
e on mole
ular weight. Typi
ally, values around� � 1:511;12, or � � 1:6 / � � 1:3 for di�erent solvents10are found in the good{solvent regime. In view of the in-a

ura
ies of the experiments (RG typi
ally has an errorof 5%10) the inability to observe a systemati
 behaviorin N is not very surprising.In order to 
ontribute to the resolution of these ques-tions, we have performed 
omputer simulations of verydi�erent models of polymer 
hains, both for SAWs andfor � 
hains, and 
al
ulated RG and RH , as outlined inSe
. III. To provide a 
omplete and well{
onverged dataset represents the se
ond main goal of our paper. Toour knowledge, our results are the most a

urate dataobtained on RH so far. Con
erning RG, however, ourdata are less a

urate than those of Li et al.1, whi
hwe still view as the most pre
ise numeri
al study on theSAW problem so far. Therefore we have taken their val-ues for the exponents � and � for our �ts. We �nd�1 = 1:591�0:007 for good{solvent 
hains, in very goodagreement with Ref. 15. (Note that our error estimate isprobably overly optimisti
, sin
e it only in
ludes statis-ti
al errors and 
ompletely negle
ts systemati
 errors.)Theoreti
al and numeri
al investigations on 
orre
-tions to s
aling in RH have �rst fo
used on the RW
ase. The work by Guttman et al.20{22 showed by an-alyti
al 
al
ulation that a Gaussian 
hain should obeyEq. 11. The prefa
tor of the 
orre
tion was �rst20 de-termined only approximately, B � 1:125, while later22 itwas given exa
tly in terms of an integral. Furthermore,Monte Carlo (MC) simulations of latti
e 
hains at the� point revealed that in this 
ase the ratio RG=RH ap-parently does not 
onverge to its Gaussian value 1:5045,but rather to roughly 1:4. Our simulations (see Se
. III)�nd a similar behavior (�1 � 1:44). We believe that this


an be explained qualitatively from RG arguments5 asfollows: The asymptoti
 behavior is expe
ted to be gov-erned by the Gaussian �xed point, and thus �1, as a uni-versal amplitude ratio, is expe
ted to assume the Gaus-sian value. However, the numeri
al extrapolation willonly produ
e this value if all relevant 
orre
tion terms,i. e. the analyti
 N�1=2 term, plus the non{analyti
 
or-re
tions, are 
onsistently taken into a

ount. Neither thedata analysis by Guttman et al.20;21, nor ours, ful�ll thisrequirement, as both just �t to Eq. 10 with � = 1=2,and thus are expe
ted to produ
e substantial systemati
errors in �1. To do this in a better way is pra
ti
ally im-possible, sin
e (i) our � data have insuÆ
ient statisti
ala

ura
y to allow for additional �t parameters, (ii) thepre
ise form of the 
orre
tion terms is unknown for RH(in 
ontrast to RE and RG, for whi
h the leading{orderterms have been 
al
ulated by tri
riti
al �eld theory23,with the interesting feature that they are universal), and(iii) the non{analyti
 
orre
tions vary extremely slowly(logarithmi
ally) withN , su
h that either one would needunrealisti
ally long 
hains to ensure dominan
e of theleading orders, or an expansion up to unrealisti
ally highorder. These problems have been elu
idated in quitesome detail for RE and RG23, explaining previous dif-�
ulties in the interpretation of highly a

urate MC dataon � 
hains24. In this 
ontext, it should be mentionedthat experiments25;26 typi
ally �nd a value of � = 1:3,i. e. a similar redu
tion as in the good solvent 
ase.Later, MC data were taken of ex
luded{volume (EV)
hains with SAW statisti
s. S
h�afer and Baumg�artner15used 
hains of up to 161 monomers, with an EV strengthparti
ularly 
lose to the SAW �xed point, su
h that poor{solvent e�e
ts 
an be ruled out. The inhomogeneousswelling was demonstrated, and the RH data were �ttedwith Eq. 10. This was done with an empiri
al 
orre
tion{to{s
aling exponent of 1=2 instead of 1��. The same ev-iden
e was shown in the simulation data by Batoulis andKremer27 of 
hains of length of up to N � 400. Ladd andFrenkel28 simulated 
hains of length of up to N = 1025and were able to des
ribe their RH data via Eq. 10, withA = 3:84 and B = 1:06, but without detailed justi�
a-tion of their use of the 
orre
t 1 � � exponent. S
h�aferand Baumg�artner15 
on
luded from both their analyti-
al studies and their simulation data that not the solventquality, but rather the 
hain's mi
rostru
ture is responsi-ble for the slow 
onvergen
e. Our reasoning (Se
s. II A{IIC), whi
h is similar to the one by Guttman et al.20{22,exa
tly supports this pi
ture: The 
orre
tions are due tothe fa
t that the 
hain is dis
retized into beads, or, inother words, to the fa
t that there is a lower length s
ale
uto� for the fri
tional properties. However, the notion of\sti�ness", whi
h is often used in this 
ontext15, is, in ourview, somewhat misleading: As outlined in Se
. II D, weexpe
t a large lo
al 
hain sti�ness to de
rease the 
orre
-tion until it ultimately even 
hanges its sign. The same
on
lusion has been found by Ak
asu and Guttman22 forsti� 
hains without ex
luded volume.3



In the 
ontext of dynami
 light s
attering of dilutepolymer solutions there is yet another unresolved puz-zle. As Ak
asu et al. have shown29, the initial de
ayrate of the dynami
 stru
ture fa
tor,
(q) = ddt S(q; t)S(q; 0) ����t=0 ; (14)
an be written as
(q) = Pij D~q � $Dij � ~q exp(i~q � ~rij)EPij hexp(i~q � ~rij)i ; (15)where $Dij is the di�usion tensor. Equation 15 is arigorous result, the only assumption being that the
hain dynami
s 
an be des
ribed by Kirkwood's di�usionequation2. Usually, $Dij is taken as the Oseen tensor,$Dij = D0Æij 1$+ (1� Æij) kBT8��rij (1$+ r̂ij 
 r̂ij); (16)where r̂ij 
 r̂ij denotes the tensor produ
t of the unitve
tor in ~rij dire
tion with itself. In this 
ase, Eq. 15 isjust the q > 0 generalization of Eq. 7. It 
an then beshown2;30 that for q in the s
aling regimeR�1G � q � b�1(b denoting the bond length), or, stri
tly spoken, in thelimit qb! 0, qRG !1, the relation
(q) = C kBT� q3 (17)holds, where the numeri
al 
onstant C only depends on
hain statisti
s: C = 0:0625 for RW statisti
s (� = 1=2)and C = 0:0788 for SAWs (� = 0:6). This has beentested by light s
attering experiments both for goodsolvents9;12;31{33 and for � solvents26;31. In both 
asesthe relation is veri�ed with reasonable a

ura
y, but witha prefa
tor C whi
h is systemati
ally smaller than thetheoreti
al predi
tion. The reasons for this shift are not
lear; an attempt by a generalized theory whi
h intro-du
es draining34 so far had only limited su

ess35. In Se
.II E we show that the deviation 
an partly be explainedby the fa
t that in reality neither qb = 0 nor qRG = 1holds. Taking these nonidealities 
rudely into a

ount,we �nd a shift in the same dire
tion, whi
h is howeversmaller than the experimental one. Nevertheless, we be-lieve that this third main result is of dire
t relevan
e forthe analysis of experimental data. There are also someindi
ations from Mole
ular Dynami
s simulations36 thatthe des
ription in terms of the Kirkwood theory is insuf-�
ient on these length and time s
ales.II. ANALYTICAL THEORYA. Hydrodynami
 Radius of a Gaussian ChainFor a Gaussian 
hain with root mean square bondlength b, we have


r2ij� = b2 ji� jj (18)and 
r�1ij � = 61=2��1=2b�1 ji� jj�1=2 ; (19)and hen
e
R2E� = b2 (N � 1) = b2N �1� 1N � (20)and 
R2G� = b2N2 Xi<j (j � i) = b2N2 N�1Xn=1 n(N � n)= 16b2N �1� 1N2� ; (21)where we have used elementary summation formulae. Forthe hydrodynami
 radius, we �nd analogously
R�1H � =r 6� 2bN2 N�1Xn=1 n�1=2(N � n): (22)A

ording to the Euler{Ma
laurin formula (see AppendixA), Eq. A9, the sums 
an be expanded asN�1Xn=1 n�1=2 = 2N1=2 � 12N�1=2 + � �12�+O(N�3=2);N�1Xn=1 n+1=2 = 23N3=2 � 12N1=2+ � ��12�+O(N�1=2): (23)Hen
e,N�1Xn=1 n�1=2(N � n) = 43N3=2 +N� �12�+O(N0) (24)and
R�1H � =r 6� 83bN�1=2 ��1 + 34� �12�N�1=2 +O(N�3=2)� ; (25)whi
h is the result anti
ipated in Eq. 11.4



B. Hydrodynami
 Radius of a Good Solvent ChainFor a linear SAW, the main diÆ
ulty is the fa
t that,unlike for a RW, 
r2ij� and 
r�1ij � do not5;15;16 just dependon ji� jj, but rather on the positions relative to the endsas well. In order to obtain the leading{order analyti
 
or-re
tions due to dis
retization, we 
an restri
t the dis
us-sion to the leading{order s
ale{invariant behavior, i. e.we 
an assume that the SAW is stri
tly s
ale invariantwith the exponent �, with no non{analyti
 
orre
tions.If we would in
lude the latter, they would just generatefurther additive terms in our expressions. In what fol-lows, we therefore omit them, for the sake of simpli�ednotation, but keep in mind that they have to be added atthe end in order to obtain the full expressions. We thusassume the relations�G (�x; �y) = �2��G (x; y) ; (26)�H (�x; �y) = ����H (x; y) ; (27)where we have introdu
ed the notation�G (i; j) = 
r2ij� ; (28)�H (i; j) = 
r�1ij � : (29)The de�nitions of RG and RH lead us to study the sum�(N) = NXn=2 n�1Xm=1�(m;n) (30)for � = �G and � = �H , respe
tively, by means of theEuler{Ma
laurin expansion of Appendix A. Treating theinner sum �rst, we �ndn�1Xm=1�(m;n) = 
onst. + '(n) (31)with the formal expansion'(n) = Z n1 dx�(x; n) + 112 ddx�(x; n)����x=n + : : : ; (32)sin
e �(n; n) vanishes. Note also that the 
onstant in Eq.31 does not depend on n, hen
e�(N) = (N � 1)
onst. + NXn=2'(n)= (N � 1)
onst. + Z N+12 dy'(y)� 12'(N + 1) + 
onst. + : : : : (33)Inserting Eq. 32, we �nd
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FIG. 1. S(q) as de�ned in Eq. 4, for a 
hain of lengthN = 64, for model C (see Se
. III), demonstrating the q�1=�de
ay, followed by os
illations around unity. The dashed lineis the simpli�ed stru
ture fa
tor of Eq. 54.�(N) = Z N+12 dy Z y1 dx�(x; y)+ Z N+12 dy 112 ddx�(x; y)����x=y� 12 Z N+11 dx�(x;N + 1)+ N
onst.+ 
onst. + : : : : (34)After transformation to the redu
ed variables u = x=Nand v = y=N , and exploiting the s
aling behavior of �, itis possible to determine the order of ea
h term. For thegyration radius, we �nd O(N2+2�), O(N2�), O(N1+2�),O(N1), O(N0), respe
tively, for the �ve terms in or-der of their appearan
e. Conversely, for 
R�1H � the dif-ferent s
aling behavior of � implies O(N2��), O(N��),O(N1��), O(N1), O(N0) for the 
orresponding orders.For 
R2G� the leading order is O(N2+2� ), while the nextsub{leading order is O(N1+2�), resulting in a leading or-der 
orre
tion of O(N�1). For 
R�1H �, the leading orderis O(N2��), followed by the O(N1) term. Thus the 
or-re
tion to s
aling for RH has order O(N�(1��)). Thisproves Eq. 10. Of 
ourse, this 
onsideration does notprove that the amplitude B in Eq. 10 is positive; how-ever, this is expe
ted from the result for Gaussian 
hains.C. Alternative DerivationEquation 10 
an also be derived in a more heuristi
way, starting from Eq. 8. Figure 1 shows the typi
al be-havior of S(q): For wave numbers q with R�1G � q � b�1the stru
ture fa
tor exhibits a power{law de
ay q�1=�whi
h indi
ates the 
hain's fra
tal geometry, while forlarger q it os
illates around unity. We therefore 
an in-trodu
e a 
uto� wavenumber q0 from whi
h on there is no5



further 
ontribution to the integral, i. e. q0 is the small-est of all the q̂'s with the property R 1̂q dq(S(q)� 1) = 0.Hen
e, 1RH = 2�N Z q00 dqS(q)� 2q0�N : (35)It is physi
ally 
lear that for a 
exible 
hain q0 must beroughly (2�)=b, apart from a numeri
al prefa
tor of orderunity. Moreover, the fra
tal q�1=� de
ay of S(q) roughlyextends up to q0, at whi
h point S(q) � 1 is rea
hed. Wenow introdu
e a modi�ed stru
ture fa
tor ~S(q), whi
h isidenti
al to S(q) up to q = q0, but extends the q�1=�de
ay up to q =1. In this latter regime, we have~S(q) = �� qq0��1=� ; (36)where � is a numeri
al prefa
tor of order unity. Thereforewe 
an write1RH = 2�N Z 10 dq ~S(q)� 2�N Z 1q0 dq ~S(q)� 2q0�N : (37)Evaluating the se
ond integral, and writing ~S(q) in s
al-ing form, ~S(q) = Ns(qRG) (38)(here we have again assumed stri
t s
ale invarian
e, i. e.absen
e of non{analyti
 
orre
tions to s
aling, for thesame reason as outlined at the beginning of the previoussubse
tion), one �ndsRGRH = 2� Z 10 dxs(x) � 2� �� �1� � + 1� q0RGN ; (39)i. e. again a negative 
orre
tion of order O(N�(1��)).D. E�e
t of Chain Sti�nessThe advantage of the approa
h of the previous sub-se
tion is that it 
an be easily generalized to study thein
uen
e of lo
al stru
ture, sin
e it is well{known howthis is re
e
ted in S(q). For a lo
ally sti� 
hain with apersisten
e length large 
ompared to the bond length b,one expe
ts that q0 is roughly un
hanged with respe
tto the 
exible 
ase. However, the q�1=� de
ay does nolonger extend down to q � q0, but only to q � q1, whereq1 is a 
rossover wave number, whose inverse is a typi
allength s
ale below whi
h sti�ness e�e
ts are important.With ~S(q) being again the 
ontinuation of the q�1=� de-
ay up to q =1, we have1RH = 2�N Z 10 dq ~S(q)� 2�N Z 1q1 dq ~S(q)+ 2�N Z q0q1 dqS(q)� 2q0�N : (40)

We now assume~S(q) = �q0q1 � qq1��1=� (41)for q > q1, and S(q) = �� qq0��1 (42)for q1 < q < q0. Here, � and � denote prefa
tors of orderunity, and the q�1 de
ay results from the lo
al stret
h-ing. Evaluating the integrals, and using Eq. 38, one thus�nds RGRH = 2� Z 10 dxs(x) (43)� 2� �� �1� � + 1� � ln q0q1� q0RGN :In order to 
ompare with the 
exible 
ase, we still haveto take into a

ount that sti�ness tends to in
rease thegyration radius, by roughly a fa
tor of (q0=q1)1�� :RGRH = 2� Z 10 dxs(x) (44)� 2� �q0q1�1�� �� �1� � + 1� � ln q0q1� q0R(0)GN ;where R(0)G denotes the gyration radius in the 
exible
ase.The prefa
tor of the 
orre
tion term hen
e depends onthe sti�ness parameter q0=q1 in a non{trivial way; forsmall q0=q1 both an in
rease and a de
rease are possible,depending on the parameters. For suÆ
iently large sti�-ness one always obtains a de
rease of the 
orre
tion, andultimately even a 
hange of its sign.E. Initial De
ay RateIn this subse
tion, we are 
on
erned with the initialde
ay rate 
(q), see Eq. 15. Splitting the sum in the nu-merator into diagonal and o�{diagonal terms, one �nds
(q) = D0q2S(q) (45)+ 1NS(q)Xi 6=j D~q � $Dij � ~q exp(i~q � ~rij)E :Following Refs. 2, 37, we use the Fourier representationof the Oseen tensor for the o�{diagonal elements,$Dij = kBT� 1(2�)3 Z d3k 1$� k̂ 
 k̂k2 exp(i~k � ~rij); (46)6



to �nd
(q) = D0q2S(q) + 1S(q) kBT� 1(2�)3 Z d3k�q2 � (k̂ � ~q)2k2 �S(~k + ~q)� 1� : (47)We now fo
us attention on the dimensionless quantityC(q) = �q3kBT 
(q)= 16�qaS(q) + 1S(q) 1(2�)3 Z d3k�1� (k̂ � q̂)2qk2 �S(~k + ~q)� 1� ; (48)where we again have expressed the monomer di�usion
onstant D0 in terms of a Stokes radius a. After trans-forming to the dimensionless integration variable~x = ~k + ~qq (49)and performing the angular integration, one has2;37C(q) = 16�qaS(q) (50)+ 1S(q) 1(2�)2 Z 10 dxf(x) (S(qx)� 1)with f(x) = x2 �1 + x22x ln ����1 + x1� x ����� 1� : (51)This fun
tion 
an be expanded asf(x) = 1Xn=0� 12n+ 1 + 12n+ 3�x2n+4 (52)for x < 1, andf(x) = 1Xn=0� 12n+ 1 + 12n+ 3�x�2n (53)for x > 1.In order to make further progress, we have to spe
-ify the stru
ture fa
tor S(q). This shall be done by themost simplisti
 model whi
h takes into a

ount both �-nite bead size and �nite 
hain length (see also Fig. 1):S(q) =8<: N q < 2�a N��� qa2� ��1=� 2�a N�� < q < 2�a1 q > 2�a : (54)We now 
al
ulate C(q) in the s
aling regime R�1G � q �a�1. De�ning the x values where S(qx) 
hanges its be-havior as

x1 = 2�qaN� � 1; (55)x2 = 2�qa � 1; (56)we 
an write (qa)�1 = x2=(2�), S(q)�1 = x�1=�2 ,N=S(q) = x�1=�1 ; hen
eC(q) = 112�2x1�1=�2+ 1(2�)2x�1=�1 Z x10 dxf(x)+ 1(2�)2 Z x2x1 dxf(x)x�1=�� 1(2�)2x�1=�2 Z x20 dxf(x): (57)Sin
e x1 � 1 and x2 � 1, we 
an writeZ x10 dxf(x) � 415x51; (58)Z x20 dxf(x) � 43x2; (59)where we have taken just the leading{order terms of theexpansions of f ; this results inC(q) � 112�2x1�1=�2+ 115�2x5�1=�1+ 1(2�)2 Z x2x1 dxf(x)x�1=�� 13�2x1�1=�2 : (60)In the asymptoti
 limit qRG ! 1, i. e. x1 ! 0, andqa ! 0, i. e. x2 ! 1, this obviously 
onverges to theasymptoti
 valueCas = 1(2�)2 Z 10 dxf(x)x�1=�= � 1=16 = 0:0625 � = 1=2p3=(7�) � 0:0788 � = 3=5 : (61)Fo
using now on the 
orre
tion, i. e. �C(q) = C(q)�Cas,we �nd �C(q) � 112�2x1�1=�2+ 115�2x5�1=�1� 1(2�)2 Z x10 dxf(x)x�1=�� 1(2�)2 Z 1x2 dxf(x)x�1=�� 13�2x1�1=�2 ; (62)7



taking again the leading{order terms for the remainingintegrals results in�C(q) � � 112�2 3 + �1� � x1�1=�2� 115�2 15� � 1x5�1=�1 : (63)One thus sees that both �nite 
hain length and �nite beadsize have the tenden
y to de
rease C, as observed in theexperiments. The latter e�e
t is 
learly more important,as x1 enters only via a relatively high power. Furtherinsight is gained by numeri
al evaluation of the shift forreasonable parameter values.Tsunashima et al.12 performed their experiments withpolyisoprene 
hains of size RG = 210nm. Typi
al s
at-tering wavenumbers in their plateau regime were givenby qRG = 4 : : : 8; the experimental observation in thisregime was C � 0:06, i. e. a shift of �C � �2 � 10�2.In what follows, we 
onsider the value qRG � 6. Thusx2 = 2�qRG RGa � 500; (64)where we have estimated the monomer size a as0:45nm38. Inserting this into Eq. 63, we �nd for thex2 
ontribution a value of �C � �1 � 10�3, i. e. oneorder of magnitude smaller than the experimental value.It is not 
ompletely 
lear if a more thorough treat-ment of the integral would fully a

ount for the devia-tion; our guess is that it would probably not. Mole
ularDynami
s data36 seem to rather indi
ate that for typi
alsystems (i. e. on not yet asymptoti
 length s
ales) the
oupling between polymer and solvent is more 
omplexthan the simple Kirkwood des
ription. Nevertheless, we
onsider our result as important for the interpretationof experimental data: There is obviously a substantial
ontribution to �C whi
h stems from the �nite beadsize, and whi
h is only weakly q{dependent. A plateau{like shape of C(q) alone apparently does not guaranteeasymptoti
 behavior. Clearly more work has to be doneto fully resolve the puzzle, but we believe our 
onsider-ations show that theories whi
h negle
t the in
uen
e of�nite bead size (and, to a lesser degree, of �nite 
hainlength) are simply not a

urate enough to des
ribe ex-perimental data even of rather long 
hains.III. NUMERICAL RESULTSIn our numeri
al studies, we have used three di�erentpolymer 
hain models, whi
h we will denote as model A,B, and C.Model A is a bead{spring model in the 
ontinuum. Nmonomers are 
onne
ted via an anharmoni
 (\�nitely ex-tensible nonlinear elasti
") spring potential,

UFENE = 8><>: � 12kR20 ln"1�� rR0�2# r < R01 r � R0 ;(65)where we use the standard parameters39 k = 30, R0 = 1:5in dimensionless units. Between all monomers there is anadditional non{bonded potentialULJ
os = 8>>>>><>>>>>: 4"�1r�12 ��1r�6 + 14#� �; r � 21=612� �
os(�r2 + �)� 1� ; 21=6 � r � 1:50; r � 1:5; (66)where � and � are determined as the solutions of thelinear set of equations21=3�+ � = � (67)2:25�+ � = 2�; (68)i. e. � = 3:1730728678 and � = �0:85622864544. Thispotential has originally been 
onstru
ted to simulate am-phiphili
 systems40. The parameter � serves to 
ontrolthe strength of the attra
tive intera
tion and is variedinstead of the temperature, whi
h is �xed at kBT = 1.For suÆ
iently strong �, the 
hain assumes a 
ollapsedstate, while � = 0 
orresponds to good solvent. We useda 
ombination of sto
hasti
 dynami
s39 and the pivotalgorithm3. Applying standard methods39 on data of
hains of length of up to N = 2000, we lo
ated the �point at � = 0:65� 0:02. In the good solvent limit, andat � = 0:65, we also ran an N = 5000 
hain.Model B is a mesos
opi
 model for an aqueous solu-tion of the sodium salt of poly (a
ryli
 a
id) (PAA),whose input parameters have been derived from an ex-tensive atomisti
 simulation of an aqueous PAA solu-tion (T = 333:15 K and p = 1 atm) in the highly di-luted regime, su
h that the ion 
on
entration (numberof 
harges on the 
hain, plus 
ounterions) is 0:4 mol/l41.From this simulation, stru
tural averages like the distri-butions of bond angles or radial distribution fun
tionsbetween monomers were extra
ted. We mapped this sys-tem to the mesos
ale by repla
ing one repeating unit (i. e.one monomer) by one bead. As 
enter of the 
oarse{grained (CG) beads, the monomer 
enter of mass (ex-
luding the sodium ion) was 
hosen. Bonded as wellas non{bonded terms were parameterized by systemat-i
ally varying the intera
tions until the stru
ture of theatomisti
 model was reprodu
ed42. This also allowed usto negle
t all expli
it water mole
ules and sodium ions(ne
essarily present in the parent atomisti
 simulation)in subsequent CG simulations. Their e�e
t on the PAA
hain 
onformation is, however, impli
itly present in themodel. This means that a system of roughly 104 atoms
ould be redu
ed to a system whi
h 
onsists of only 23\super atoms". As in model A, we used both sto
hasti
8
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RHFIG. 3. Model A: Same as Fig. 2, but for good solvent
ondition � = 0.dynami
s and pivot Monte Carlo moves. The �nalfor
e �eld was utilized to 
al
ulate RG, RH and otherstati
 properties like the stru
ture fa
tor for PAA strandsof length 8 to 3155 repeating units11. The numeri
al re-sults agree well with light s
attering data on dilute PAAsolutions with 
orresponding mean molar weights. Inparti
ular, the hydrodynami
 radii of six di�erent PAA{salt samples with mole
ular weights in the range from18100 to 296600 g/mol were measured. For four sam-ples, the molar masses MW and the radii of gyration RGwere measured as well. The PAA samples were of poly-dispersityDP between 1:5 and 1:8 and diluted in aqueousNaCl{
ontaining solution (0:1� 1 mol/l)11.Finally, model C is the SAW on the fa
e{
entered 
ubi
latti
e, whi
h we prefer over the simple 
ubi
 for reasonsof in
reased lo
al 
exibility, whi
h in turn means prox-imity to the SAW �xed point. Units of length are de�nedin su
h a way that the bond length is p2. The 
hains oflength N = 64; 128; : : :32768 were generated by using adimerization pro
edure3. Up to N = 8192 the statisti
alsample always 
onsisted of M = 1024 
hains, while
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FIG. 4. Model A: RG=RH as a fun
tion of the s
aling vari-able N�1=2, at � 
ondition � = 0:65. The line results fromthe 
ombined �ts of RG and RH .

0 0.05 0.1 0.15 0.2 0.25
N

−(1 − ν)

1

1.2

1.4

1.6

1.8

R
G
/R

H

FIG. 5. Model A: RG=RH as a fun
tion of the s
aling vari-able N�(1��), at good solvent 
ondition � = 0. The lineresults from the 
ombined �ts of RG and RH .M = 1085 forN = 16284 andM = 296 forN = 32768.In what follows, we outline our RG and RH data forthese three models. Figures 2 and 3 summarize our re-sults for model A at � 
ondition � = 0:65 (Fig. 2)and at good solvent 
ondition � = 0 (Fig. 3), respe
-tively. For the � 
hains, we obtained very good �tswith the fun
tions 
R2G� = 0:2834N � 0:53 and 
R�1H � =2:710N�1=2 � 3:74N�1, while for the good solvent datathe analogous �ts are 
R2G� = 0:2706N1:1754� 0:32N0:62and 
R�1H � = 3:131N�0:5877 � 3:04N�1. These �t fun
-tions are also shown in Figs. 2 and 3. The ratio� = RG=RH , as it results from these data, is shown in thesubsequent Figs. 4 and 5 for � and good solvent 
ondi-tions, respe
tively. It should be noted that the numeri
alresolution (for ea
h of our models) is 
learly by far not
ompetitive with the study by Li et al.1. For this reason,we did not attempt to determine the exponents from ourdata, but rather used the values for � and � from Ref.1. We did not in
lude an N�� term in the �t for RH9
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FIG. 6. Model B: S
aling behavior of poly (a
ryli
 a
id)as measured by light s
attering experiments and 
omputersimulations with a 
oarse{grained model: (a) Radius of gy-ration RG, (b) hydrodynami
 radius RH , (
) dimensionlessratio RG=RH .in the SAW 
ase, although su
h a term is expe
ted tobe present. The reason is that our model A data are tooina

urate to allow for su
h a three{parameter �t in astable way. Similarly, we ignored the non{analyti
 
or-re
tions to s
aling in the � 
ase, for essentially the samereason, as has been dis
ussed in some more detail in Se
.I. Taking the statisti
al ina

ura
ies of the data, and ofthe resulting �t parameters into a

ount, we obtain forthe asymptoti
 amplitude ratio � = RG=RH the values� = 1:44�0:01 at the � point, and � = 1:63�0:01 in theex
luded{volume 
ase. The a
tual error in � is expe
tedto be signi�
antly larger, sin
e neither the un
ertaintiesin the exponents and in the lo
ation of the � point, norsystemati
 errors due to higher{order 
orre
tions to s
al-ing have been taken into a

ount. This is parti
ularlyapparent in the � 
ase, where one expe
ts in the asymp-toti
 long{
hain limit rather the Gaussian value 1:5045,but also obvious in the SAW 
ase, where the results onthe longer 
hains of model C yield a 
onsiderably smallervalue for �.The most interesting aspe
t of model B is that it 
losely
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FIG. 7. Model C: 
R2G� =(AN2�) as a fun
tion of N��,where we use � = 0:56, and A = 0:3341 from the (also shown)�t 
R2G� = AN1:1754 +BN0:62.resembles a real system, and a quantitative 
omparisonwith experiments is possible11. In Fig. 6 we show simu-lation results for RG, RH , and their ratio. The data aretaken as published in Ref. 11. For the ratio, experimentalresults are also in
luded. The s
aling N�(1��), and theextrapolation to � = 1:61 � 0:02 is ni
ely borne out bythe simulation data. The experiments are too ina

urateto demonstrate a 
lear systemati
 trend. In spite of this,an extrapolation yields � � 1:5� 1:6, whi
h means thatthe theoreti
al 
al
ulations are supported by data of areal 
hemi
al system.Our model C data (SAW) 
omprise the largest rangeof 
hain lengths of our three models, 
ombined with pre-
ise estimates of statisti
al errors, whi
h allows a moredetailed data analysis. For our RG data, we obtained the�t 
R2G� = AN1:1754+BN0:62 with A = 0:3341�0:0023,B = �0:20�0:05, where we again use the exponents fromRef. 1. The deviation �2 (sum of the residuals squares,normalized by the varian
es) has the value �2 = 9:4 (10data points). The 
orresponding quality of �t Q, whi
his the probability to observe the measured �2 value, ora larger one, is Q = 0:31. Our data, in a representationwhi
h emphasizes the 
orre
tions to s
aling, are shown inFig. 7. It is seen that these are indeed weak, highlightingthe diÆ
ulties in determining an a

urate value for the
orre
tion{to{s
aling exponent.Turning to our RH data from model C, we �rst did anonlinear two{parameter �t 
R�1H � = AN��eff , result-ing in �eff = 0:55. However, this �t is very poor, witha least{square sum �2 = 433. Conversely, a linear two{parameter �t 
R�1H � = AN�0:5877+BN�1 yields a rathergood value �2 = 11:8 (Q = 0:16), with A = 2:732�0:005,B = �3:10 � 0:06, demonstrating also numeri
ally thatRH data should be interpreted in terms of 
orre
tions tos
aling, instead of an e�e
tive exponent. A
tually, oneshould expe
t the presen
e of an additional 
orre
tion oforder N��, � � 0:56. Sin
e this 
orre
tion tends to de-
rease RG (see Fig. 7), it should also de
rease RH , i. e.in
rease 
R�1H �, or weaken the analyti
 N�(1��)10
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R�1H � =(AN��) as a fun
tion ofN�(1��), where we use A = 2:753 from the �t
R�1H � = AN�0:5877 + BN�1 + CN�1:15, whi
h is shown aswell.
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FIG. 10. Model C: RG=RH as a fun
tion of the s
aling vari-able N�(1��). The line results from the 
ombined �ts of RGand RH .

term. Thus, in a regression 
R�1H � = AN�0:5877 +BN��, where we keep � �xed, one should obtain thebest �t for a value of � slightly smaller than unity.This is indeed what we observe, as seen from Fig. 8,where we plot the quality Q of su
h a �t as a fun
-tion of �. This �gure also 
learly rules out a sin-gle 
orre
tion to s
aling with an exponent of 1=2 oreven larger. We thus attempted a three{parameter �t
R�1H � = AN�0:5877+BN�1+CN�1:15 to also take theN�� term into a

ount. The result of this �t, whi
hseems to be reasonably stable, is A = 2:753 � 0:008,B = �4:3 � 0:4, C = 2:2 � 0:7, with �2 = 5:0, anda very good quality Q = 0:66. We thus use this �t todemonstrate the 
orre
tions to s
aling of 
R�1H � in Fig.9, where the presen
e of the N�� term shows up in aslight 
urvature. Finally, we also used this �t, 
ombinedwith the 
orresponding one for RG (see Fig. 7), to de-s
ribe the data on the ratio � = RG=RH , as shown inFig. 10, where the asymptoti
 value is 1:591 � 0:007.Again we feel that the real un
ertainty is larger, due tola
k of 
ontrol of the systemati
 errors. We also 
he
kedthat both the quality of �t, and the value of � did not
hange signi�
antly when we redu
ed the exponent � toits theoreti
al value6 � = 0:482.To summarize, we have 
olle
ted our most importantnumeri
al results, the extrapolated � values, in Table I.Model RG=RHA (SAW) 1:63 � 0:01B (SAW) 1:61 � 0:02C (SAW) 1:591 � 0:007A (�) 1:44 � 0:01TABLE I. Asymptoti
 universal ratio RG=RH as estimatedby numeri
al simulations of various models (see text). Errorbars take into a

ount statisti
al un
ertainties only, while sys-temati
 errors in the extrapolation pro
edure are negle
ted.

11
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ial support.APPENDIX A: EULER{MACLAURIN FORMULAQuite usually, sums are approximated via the 
orre-sponding integrals. The Euler{Ma
laurin formula43;44,whi
h we outline here for the 
onvenien
e of the reader,
onstru
ts a systemati
 asymptoti
 expansion aroundthat approximation. De�ning a di�eren
e operator �via �f(x) = f(x+ 1)� f(x); (A1)one obviously has�F (N) = f(N) (A2)for F (N) = N�1Xn=n0 f(n); (A3)and thus F (N) = ��1f(N) + 
onst.: (A4)On the other hand,� = exp� ddx�� 1 (A5)or ��1 = � ddx��1� ddx��exp� ddx�� 1��1= Z dx 1Xk=0 Bkk! � ddx�k ; (A6)where Bk are the Bernoulli numbers de�ned via the Tay-lor expansion of x=(ex � 1): B0 = 1, B1 = �1=2,B2 = 1=6, B4 = �1=30, . . . , B3 = B5 = B7 = : : : = 0.Hen
e,��1 = Z dx� 12 + 112 ddx � 1720 � ddx�3 + : : : (A7)and thus

N�1Xn=n0 f(n) = Z Nn0 dxf(x)� 12f(N) + 
onst.+ 112 ddxf(x)����x=N � 1720 d3dx3 f(x)����x=N+ : : : ; (A8)where the \integration" 
onstant is determined via (per-haps numeri
al) 
omparison of both sides. For a powerlaw with q < �1 one thus �nds from the de�nition of theRiemann zeta fun
tionN�1Xn=1 nq = Nq+1q + 1 � 12Nq + �(�q) + 112qNq�1� 1720q(q � 1)(q � 2)Nq�3 + : : : : (A9)By analyti
 
ontinuation with respe
t to q, this resultholds for general q43.
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