
Corretions to Saling in the Hydrodynami Properties of Dilute Polymer SolutionsBurkhard D�unweg�, Dirk Reith, Martin Steinhauser, and Kurt KremerMax{Plank{Institut f�ur PolymerforshungAkermannweg 10, D{55128 Mainz, Germany(May 14, 2002)We disuss the hydrodynami radius RH of polymer hains in good solvent, and show that theleading order orretion to the asymptoti law RH / N� (N degree of polymerization, � � 0:59)is an \analyti" term of order N�(1��), whih is diretly related to the disretization of the haininto a �nite number of beads. This result is further orroborated by exat alulations for Gaussianhains, and extensive numerial simulations of di�erent models of good{solvent hains, where we �nda value of 1:591 � 0:007 for the asymptoti universal ratio RG=RH , RG being the hain's gyrationradius. For � hains the data apparently extrapolate to RG=RH � 1:44, whih is di�erent fromthe Gaussian value 1:5045, but in aordane with previous simulations. We also show that theexperimentally observed deviations of the initial deay rate in dynami light sattering from theasymptoti Benmouna{Akasu value an partly be understood by similar arguments.I. INTRODUCTION AND SUMMARYIt is well{known that the average size R of an iso-lated exible unharged polymer hain in good solvent isasymptotially proportional to N� , where N is the de-gree of polymerization, and � � 0:58771. This law holdsfor any measure of the hain size, the most popular ofwhih are the mean square end{to{end distane,
R2E� = 
r21N� ; (1)the mean square radius of gyration,
R2G� = 12N2 Xij 
r2ij� ; (2)and the hydrodynami radius� 1RH � = 1N2 Xi 6=j � 1rij� : (3)In these equations, we have assumed that the hain isomposed of N monomers (i. e. N�1 bonds) at positions~ri, i = 1; : : : ; N , and rij = j~ri � ~rj j. Experimentally, thegyration radius is determined from small{angle satteringexperiments; for small wave numbers q the single{hainstati struture fator behaves like2S(q) = 1N Xij hexp [i~q � ~rij ℄i= N �1� q23 
R2G�+O(q4)� : (4)Conversely, the hydrodynami radius is determined viasmall{angle dynami light sattering experiments, wherethe dynami struture fator

S(q; t) = 1N Xij hexp [i~q � (~ri(t)� ~rj(0))℄i (5)is measured. In the small q limit, it deays likeS(q; t)S(q; 0) = exp ��Dq2t� ; (6)where D is the hain di�usion onstant, whih, withinthe framework of Kirkwood{Zimm theory2 is related toRH via D = D0N + kBT6�� � 1RH � ; (7)where D0 is the monomer di�usion onstant (usually thisontribution is negleted), kB is Boltzmann's onstant, Tthe temperature and � the solvent visosity. In priniple,it is possible to obtain RH , as a stati quantity, also frompurely stati sattering, as is seen from the relation� 1RH � = 2�N Z 10 dq (S(q)� 1) ; (8)but for tehnial reasons, this has so far not been appliedin experiments.When analyzing data for the hain size, one has totake into aount that the law R / N� holds only in theasymptoti limit N ! 1, while for �nite hain lengthsdeviations our. This is partiularly important for om-puter simulations, where data with high statistial au-ray an be obtained. For this reason, orretions to sal-ing have been worked out in great detail, and exploitedin high{resolution numerial studies, for the end{to{enddistane and the gyration radius, where the relation�orresponding author, Eletroni Mail: duenweg�mpip-mainz.mpg.de1




R2E� = AN2� �1 + BN� + : : :� (9)(and analogously for RG) holds3. Here A and B are non{universal amplitudes, while � is a universal orretion{to{saling exponent, whose value is diÆult to determinebeyond the auray � � 0:5 (� � 0:56 aording to Ref.1, � � 0:43 aording to Ref. 4). The omitted terms arefurther powers N���1, N���2, . . . , as well as N��2 ,N��2�1, . . . (i. e. there are further larger orretion{to{saling exponents), plus so{alled \analyti" terms N�1,N�2, . . . 3. The important point to notie is that the \an-alyti" orretions will arise even for a Gaussian hain,and are due to the fat that the hain onsists of a �nitenumber of beads. This will be demonstrated expliitlyin Se. II A. Conversely, the \non{analyti" orretionsare due to the fat that, in the language of renormaliza-tion group (RG) theory, the hain's Hamiltonian is notidential to the �xed point Hamiltonian. The exponent� is related to the largest sub{leading eigenvalue of theRG transformation at the �xed point. In �rst order � ex-pansion its value is5 � = �! with 1=� = 2� �=4+O(�2)and ! = � + O(�2), where � = 4� d and d is the spatialdimension. Higher{order alulations6 have resulted in� = �! = 0:588� 0:82 = 0:482. We adopt here the on-vention (whih we view as quite natural) to distinguishthe terms by their di�erent origins, and all orretionterms \analyti" orretions if they are present even inthe Gaussian limit, while we all \non{analyti" orre-tions those terms whih our exlusively for exluded{volume hains. As we will see in Se. II B, \analyti"orretions de�ned in this way do not neessarily implyinteger powers of N .As for the hydrodynami radius of self{avoiding walks(SAWs), there is no high{resolution numerial studyavailable, and orretions to saling have not yet beendealt with systematially. This is somewhat unfortunate,sine the orretions are unusually large for RH , and ofexperimental relevane. For a good solvent hain, one ex-pets again N�� et. terms, plus \analyti" orretions.It is the main purpose of the present paper to show thatthe leading{order term of these latter orretions is nowgiven by� 1RH � = AN� �1� BN1�� + : : :� ; (10)where B is usually positive. We will show in Ses. II Band IIC that this form is a straightforward onsequeneof disretizing the hain into beads. As 1 � � � 0:41,this will, for long hains, ultimately dominate over theN�� term, where the exponent is (aording to Refs. 1,4 and 6) slightly larger. Nevertheless, the exponents areso lose that in most ases one will observe ontributionsfrom both terms. On the other hand, it is a well{knownempirial fat that for many experimental systems, aswell as for most omputer models, the orretions to sal-ing of the gyration radius are quite weak, suh that the

N�� term should have a rather small amplitude. Oneould therefore expet that the orresponding amplitudeof the N�� ontribution in RH is also quite small. Thenthe most likely andidate for explaining the experimentaland numerial observation that RH is usually subjet tovery large orretions to saling5 would atually be the\analyti" N�(1��) term.For a Gaussian hain we are able to solve the problemexatly, see Se. II A:� bRH � = 83 � 6��1=2N�1=2 �1�BN�1=2 + : : :� ; (11)with B = �(3=4)�(1=2) � 1:095266 (here � is Riemann'szeta funtion), and b denoting the root mean square bondlength. As � = 1=2 for a Gaussian hain, this form is on-sistent with Eq. 10.The diÆulties in observing the asymptoti N� salingof RH have a long history. Adam and Delsanti7;8 per-formed dynami light sattering experiments and foundan e�etive power law RH / N0:55. This is quite typial,and has been found in many other experiments, too9{11,although an exponent of 0:6112 has been reported as well.A redution of the e�etive exponent is indeed expeted,as seen from Eq. 10, and is also observed in BrownianDynamis simulations13. As a aveat, note that a sat-tering experiment does not measure RH , but rather thedi�usion onstant D. This quantity has an additionalD0=N ontribution (Eq. 7), whih is of the same orderas the leading orretion of Eq. 10. Therefore, the or-retions in D are weaker than those in RH . Nevertheless,the D0=N term is typially not large enough to fully om-pensate the orretions in RH . This is easily seen for theGaussian ase from Eqs. 7 and 11: The monomer di�u-sion onstant D0 an be written as D0 = kBT=(6��a),whih de�nes a monomer Stokes radius a. ThusDD0 = N�1 (12)+ ab �3:6853N�1=2 � 4:0364N�1 + : : :� :Sine a should be of the order of the bond length b, onesees that a large N�1 ontribution remains.A �rst attempt to explain the experimental observationis due to Weill and des Cloizeaux14. They onjeturedthat �eff = 0:55 is due to non{perfet solvent quality,and a rossover between good solvent behavior (� � 0:6,large length sales) and � solvent (� = 0:5, small lengthsales). In partiular, they pointed out that the averag-ing over 1=r assigns a very large statistial weight to thesmall distanes. Although this latter argument is true,and generally aepted as the basi origin for the slowonvergene of RH , the explanation in terms of solventquality has turned out to be inorret. In Ref. 15 it wasdemonstrated that RH should not be muh more sus-eptible to solvent quality e�ets than RE or RG | theenhaned sensitivity of RH to the small distanes is bal-aned by the fat that RE and RG are more sensitive to2



the dereased swelling of the hain near its ends: A SAWis inhomogeneous, i. e. 
r2ij� depends on the position ofthe ij bond on the hain, and is systematially larger inthe interior, as has been shown both numerially15;16 andanalytially5;15.Furthermore, Sh�afer and Baumg�artner15 performed adetailed RG alulation and predited in one{loop orderfor the universal amplitude ratio�1 = limN!1 �(N) = limN!1 RG(N)RH(N)� 1:06� 83p� � 1:06� 1:5045 � 1:595; (13)here 8=(3p�) is the exat random walk (RW) value.Other RG studies resulted in �1 = 1:56217 (this valuewas later revised to 1.51, see Ref. 18) and �1 = 1:6219,while a semi{empirial relation based on �tting the dis-tribution funtion of internal distanes to light satter-ing data yields �1 = 1:595512;18. A value of �1 � 1:6was also found in Brownian Dynamis simulations13.From Eq. 10 it is lear that � should be subjet to anN�(1��) orretion for �nite hain length; nevertheless,experiments have so far not reported a systemati de-pendene on moleular weight. Typially, values around� � 1:511;12, or � � 1:6 / � � 1:3 for di�erent solvents10are found in the good{solvent regime. In view of the in-auraies of the experiments (RG typially has an errorof 5%10) the inability to observe a systemati behaviorin N is not very surprising.In order to ontribute to the resolution of these ques-tions, we have performed omputer simulations of verydi�erent models of polymer hains, both for SAWs andfor � hains, and alulated RG and RH , as outlined inSe. III. To provide a omplete and well{onverged dataset represents the seond main goal of our paper. Toour knowledge, our results are the most aurate dataobtained on RH so far. Conerning RG, however, ourdata are less aurate than those of Li et al.1, whihwe still view as the most preise numerial study on theSAW problem so far. Therefore we have taken their val-ues for the exponents � and � for our �ts. We �nd�1 = 1:591�0:007 for good{solvent hains, in very goodagreement with Ref. 15. (Note that our error estimate isprobably overly optimisti, sine it only inludes statis-tial errors and ompletely neglets systemati errors.)Theoretial and numerial investigations on orre-tions to saling in RH have �rst foused on the RWase. The work by Guttman et al.20{22 showed by an-alytial alulation that a Gaussian hain should obeyEq. 11. The prefator of the orretion was �rst20 de-termined only approximately, B � 1:125, while later22 itwas given exatly in terms of an integral. Furthermore,Monte Carlo (MC) simulations of lattie hains at the� point revealed that in this ase the ratio RG=RH ap-parently does not onverge to its Gaussian value 1:5045,but rather to roughly 1:4. Our simulations (see Se. III)�nd a similar behavior (�1 � 1:44). We believe that this

an be explained qualitatively from RG arguments5 asfollows: The asymptoti behavior is expeted to be gov-erned by the Gaussian �xed point, and thus �1, as a uni-versal amplitude ratio, is expeted to assume the Gaus-sian value. However, the numerial extrapolation willonly produe this value if all relevant orretion terms,i. e. the analyti N�1=2 term, plus the non{analyti or-retions, are onsistently taken into aount. Neither thedata analysis by Guttman et al.20;21, nor ours, ful�ll thisrequirement, as both just �t to Eq. 10 with � = 1=2,and thus are expeted to produe substantial systematierrors in �1. To do this in a better way is pratially im-possible, sine (i) our � data have insuÆient statistialauray to allow for additional �t parameters, (ii) thepreise form of the orretion terms is unknown for RH(in ontrast to RE and RG, for whih the leading{orderterms have been alulated by triritial �eld theory23,with the interesting feature that they are universal), and(iii) the non{analyti orretions vary extremely slowly(logarithmially) withN , suh that either one would needunrealistially long hains to ensure dominane of theleading orders, or an expansion up to unrealistially highorder. These problems have been eluidated in quitesome detail for RE and RG23, explaining previous dif-�ulties in the interpretation of highly aurate MC dataon � hains24. In this ontext, it should be mentionedthat experiments25;26 typially �nd a value of � = 1:3,i. e. a similar redution as in the good solvent ase.Later, MC data were taken of exluded{volume (EV)hains with SAW statistis. Sh�afer and Baumg�artner15used hains of up to 161 monomers, with an EV strengthpartiularly lose to the SAW �xed point, suh that poor{solvent e�ets an be ruled out. The inhomogeneousswelling was demonstrated, and the RH data were �ttedwith Eq. 10. This was done with an empirial orretion{to{saling exponent of 1=2 instead of 1��. The same ev-idene was shown in the simulation data by Batoulis andKremer27 of hains of length of up to N � 400. Ladd andFrenkel28 simulated hains of length of up to N = 1025and were able to desribe their RH data via Eq. 10, withA = 3:84 and B = 1:06, but without detailed justi�a-tion of their use of the orret 1 � � exponent. Sh�aferand Baumg�artner15 onluded from both their analyti-al studies and their simulation data that not the solventquality, but rather the hain's mirostruture is responsi-ble for the slow onvergene. Our reasoning (Ses. II A{IIC), whih is similar to the one by Guttman et al.20{22,exatly supports this piture: The orretions are due tothe fat that the hain is disretized into beads, or, inother words, to the fat that there is a lower length saleuto� for the fritional properties. However, the notion of\sti�ness", whih is often used in this ontext15, is, in ourview, somewhat misleading: As outlined in Se. II D, weexpet a large loal hain sti�ness to derease the orre-tion until it ultimately even hanges its sign. The sameonlusion has been found by Akasu and Guttman22 forsti� hains without exluded volume.3



In the ontext of dynami light sattering of dilutepolymer solutions there is yet another unresolved puz-zle. As Akasu et al. have shown29, the initial deayrate of the dynami struture fator,
(q) = ddt S(q; t)S(q; 0) ����t=0 ; (14)an be written as
(q) = Pij D~q � $Dij � ~q exp(i~q � ~rij)EPij hexp(i~q � ~rij)i ; (15)where $Dij is the di�usion tensor. Equation 15 is arigorous result, the only assumption being that thehain dynamis an be desribed by Kirkwood's di�usionequation2. Usually, $Dij is taken as the Oseen tensor,$Dij = D0Æij 1$+ (1� Æij) kBT8��rij (1$+ r̂ij 
 r̂ij); (16)where r̂ij 
 r̂ij denotes the tensor produt of the unitvetor in ~rij diretion with itself. In this ase, Eq. 15 isjust the q > 0 generalization of Eq. 7. It an then beshown2;30 that for q in the saling regimeR�1G � q � b�1(b denoting the bond length), or, stritly spoken, in thelimit qb! 0, qRG !1, the relation
(q) = C kBT� q3 (17)holds, where the numerial onstant C only depends onhain statistis: C = 0:0625 for RW statistis (� = 1=2)and C = 0:0788 for SAWs (� = 0:6). This has beentested by light sattering experiments both for goodsolvents9;12;31{33 and for � solvents26;31. In both asesthe relation is veri�ed with reasonable auray, but witha prefator C whih is systematially smaller than thetheoretial predition. The reasons for this shift are notlear; an attempt by a generalized theory whih intro-dues draining34 so far had only limited suess35. In Se.II E we show that the deviation an partly be explainedby the fat that in reality neither qb = 0 nor qRG = 1holds. Taking these nonidealities rudely into aount,we �nd a shift in the same diretion, whih is howeversmaller than the experimental one. Nevertheless, we be-lieve that this third main result is of diret relevane forthe analysis of experimental data. There are also someindiations from Moleular Dynamis simulations36 thatthe desription in terms of the Kirkwood theory is insuf-�ient on these length and time sales.II. ANALYTICAL THEORYA. Hydrodynami Radius of a Gaussian ChainFor a Gaussian hain with root mean square bondlength b, we have


r2ij� = b2 ji� jj (18)and 
r�1ij � = 61=2��1=2b�1 ji� jj�1=2 ; (19)and hene
R2E� = b2 (N � 1) = b2N �1� 1N � (20)and 
R2G� = b2N2 Xi<j (j � i) = b2N2 N�1Xn=1 n(N � n)= 16b2N �1� 1N2� ; (21)where we have used elementary summation formulae. Forthe hydrodynami radius, we �nd analogously
R�1H � =r 6� 2bN2 N�1Xn=1 n�1=2(N � n): (22)Aording to the Euler{Malaurin formula (see AppendixA), Eq. A9, the sums an be expanded asN�1Xn=1 n�1=2 = 2N1=2 � 12N�1=2 + � �12�+O(N�3=2);N�1Xn=1 n+1=2 = 23N3=2 � 12N1=2+ � ��12�+O(N�1=2): (23)Hene,N�1Xn=1 n�1=2(N � n) = 43N3=2 +N� �12�+O(N0) (24)and
R�1H � =r 6� 83bN�1=2 ��1 + 34� �12�N�1=2 +O(N�3=2)� ; (25)whih is the result antiipated in Eq. 11.4



B. Hydrodynami Radius of a Good Solvent ChainFor a linear SAW, the main diÆulty is the fat that,unlike for a RW, 
r2ij� and 
r�1ij � do not5;15;16 just dependon ji� jj, but rather on the positions relative to the endsas well. In order to obtain the leading{order analyti or-retions due to disretization, we an restrit the disus-sion to the leading{order sale{invariant behavior, i. e.we an assume that the SAW is stritly sale invariantwith the exponent �, with no non{analyti orretions.If we would inlude the latter, they would just generatefurther additive terms in our expressions. In what fol-lows, we therefore omit them, for the sake of simpli�ednotation, but keep in mind that they have to be added atthe end in order to obtain the full expressions. We thusassume the relations�G (�x; �y) = �2��G (x; y) ; (26)�H (�x; �y) = ����H (x; y) ; (27)where we have introdued the notation�G (i; j) = 
r2ij� ; (28)�H (i; j) = 
r�1ij � : (29)The de�nitions of RG and RH lead us to study the sum�(N) = NXn=2 n�1Xm=1�(m;n) (30)for � = �G and � = �H , respetively, by means of theEuler{Malaurin expansion of Appendix A. Treating theinner sum �rst, we �ndn�1Xm=1�(m;n) = onst. + '(n) (31)with the formal expansion'(n) = Z n1 dx�(x; n) + 112 ddx�(x; n)����x=n + : : : ; (32)sine �(n; n) vanishes. Note also that the onstant in Eq.31 does not depend on n, hene�(N) = (N � 1)onst. + NXn=2'(n)= (N � 1)onst. + Z N+12 dy'(y)� 12'(N + 1) + onst. + : : : : (33)Inserting Eq. 32, we �nd
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FIG. 1. S(q) as de�ned in Eq. 4, for a hain of lengthN = 64, for model C (see Se. III), demonstrating the q�1=�deay, followed by osillations around unity. The dashed lineis the simpli�ed struture fator of Eq. 54.�(N) = Z N+12 dy Z y1 dx�(x; y)+ Z N+12 dy 112 ddx�(x; y)����x=y� 12 Z N+11 dx�(x;N + 1)+ Nonst.+ onst. + : : : : (34)After transformation to the redued variables u = x=Nand v = y=N , and exploiting the saling behavior of �, itis possible to determine the order of eah term. For thegyration radius, we �nd O(N2+2�), O(N2�), O(N1+2�),O(N1), O(N0), respetively, for the �ve terms in or-der of their appearane. Conversely, for 
R�1H � the dif-ferent saling behavior of � implies O(N2��), O(N��),O(N1��), O(N1), O(N0) for the orresponding orders.For 
R2G� the leading order is O(N2+2� ), while the nextsub{leading order is O(N1+2�), resulting in a leading or-der orretion of O(N�1). For 
R�1H �, the leading orderis O(N2��), followed by the O(N1) term. Thus the or-retion to saling for RH has order O(N�(1��)). Thisproves Eq. 10. Of ourse, this onsideration does notprove that the amplitude B in Eq. 10 is positive; how-ever, this is expeted from the result for Gaussian hains.C. Alternative DerivationEquation 10 an also be derived in a more heuristiway, starting from Eq. 8. Figure 1 shows the typial be-havior of S(q): For wave numbers q with R�1G � q � b�1the struture fator exhibits a power{law deay q�1=�whih indiates the hain's fratal geometry, while forlarger q it osillates around unity. We therefore an in-trodue a uto� wavenumber q0 from whih on there is no5



further ontribution to the integral, i. e. q0 is the small-est of all the q̂'s with the property R 1̂q dq(S(q)� 1) = 0.Hene, 1RH = 2�N Z q00 dqS(q)� 2q0�N : (35)It is physially lear that for a exible hain q0 must beroughly (2�)=b, apart from a numerial prefator of orderunity. Moreover, the fratal q�1=� deay of S(q) roughlyextends up to q0, at whih point S(q) � 1 is reahed. Wenow introdue a modi�ed struture fator ~S(q), whih isidential to S(q) up to q = q0, but extends the q�1=�deay up to q =1. In this latter regime, we have~S(q) = �� qq0��1=� ; (36)where � is a numerial prefator of order unity. Thereforewe an write1RH = 2�N Z 10 dq ~S(q)� 2�N Z 1q0 dq ~S(q)� 2q0�N : (37)Evaluating the seond integral, and writing ~S(q) in sal-ing form, ~S(q) = Ns(qRG) (38)(here we have again assumed strit sale invariane, i. e.absene of non{analyti orretions to saling, for thesame reason as outlined at the beginning of the previoussubsetion), one �ndsRGRH = 2� Z 10 dxs(x) � 2� �� �1� � + 1� q0RGN ; (39)i. e. again a negative orretion of order O(N�(1��)).D. E�et of Chain Sti�nessThe advantage of the approah of the previous sub-setion is that it an be easily generalized to study theinuene of loal struture, sine it is well{known howthis is reeted in S(q). For a loally sti� hain with apersistene length large ompared to the bond length b,one expets that q0 is roughly unhanged with respetto the exible ase. However, the q�1=� deay does nolonger extend down to q � q0, but only to q � q1, whereq1 is a rossover wave number, whose inverse is a typiallength sale below whih sti�ness e�ets are important.With ~S(q) being again the ontinuation of the q�1=� de-ay up to q =1, we have1RH = 2�N Z 10 dq ~S(q)� 2�N Z 1q1 dq ~S(q)+ 2�N Z q0q1 dqS(q)� 2q0�N : (40)

We now assume~S(q) = �q0q1 � qq1��1=� (41)for q > q1, and S(q) = �� qq0��1 (42)for q1 < q < q0. Here, � and � denote prefators of orderunity, and the q�1 deay results from the loal streth-ing. Evaluating the integrals, and using Eq. 38, one thus�nds RGRH = 2� Z 10 dxs(x) (43)� 2� �� �1� � + 1� � ln q0q1� q0RGN :In order to ompare with the exible ase, we still haveto take into aount that sti�ness tends to inrease thegyration radius, by roughly a fator of (q0=q1)1�� :RGRH = 2� Z 10 dxs(x) (44)� 2� �q0q1�1�� �� �1� � + 1� � ln q0q1� q0R(0)GN ;where R(0)G denotes the gyration radius in the exiblease.The prefator of the orretion term hene depends onthe sti�ness parameter q0=q1 in a non{trivial way; forsmall q0=q1 both an inrease and a derease are possible,depending on the parameters. For suÆiently large sti�-ness one always obtains a derease of the orretion, andultimately even a hange of its sign.E. Initial Deay RateIn this subsetion, we are onerned with the initialdeay rate 
(q), see Eq. 15. Splitting the sum in the nu-merator into diagonal and o�{diagonal terms, one �nds
(q) = D0q2S(q) (45)+ 1NS(q)Xi 6=j D~q � $Dij � ~q exp(i~q � ~rij)E :Following Refs. 2, 37, we use the Fourier representationof the Oseen tensor for the o�{diagonal elements,$Dij = kBT� 1(2�)3 Z d3k 1$� k̂ 
 k̂k2 exp(i~k � ~rij); (46)6



to �nd
(q) = D0q2S(q) + 1S(q) kBT� 1(2�)3 Z d3k�q2 � (k̂ � ~q)2k2 �S(~k + ~q)� 1� : (47)We now fous attention on the dimensionless quantityC(q) = �q3kBT 
(q)= 16�qaS(q) + 1S(q) 1(2�)3 Z d3k�1� (k̂ � q̂)2qk2 �S(~k + ~q)� 1� ; (48)where we again have expressed the monomer di�usiononstant D0 in terms of a Stokes radius a. After trans-forming to the dimensionless integration variable~x = ~k + ~qq (49)and performing the angular integration, one has2;37C(q) = 16�qaS(q) (50)+ 1S(q) 1(2�)2 Z 10 dxf(x) (S(qx)� 1)with f(x) = x2 �1 + x22x ln ����1 + x1� x ����� 1� : (51)This funtion an be expanded asf(x) = 1Xn=0� 12n+ 1 + 12n+ 3�x2n+4 (52)for x < 1, andf(x) = 1Xn=0� 12n+ 1 + 12n+ 3�x�2n (53)for x > 1.In order to make further progress, we have to spe-ify the struture fator S(q). This shall be done by themost simplisti model whih takes into aount both �-nite bead size and �nite hain length (see also Fig. 1):S(q) =8<: N q < 2�a N��� qa2� ��1=� 2�a N�� < q < 2�a1 q > 2�a : (54)We now alulate C(q) in the saling regime R�1G � q �a�1. De�ning the x values where S(qx) hanges its be-havior as

x1 = 2�qaN� � 1; (55)x2 = 2�qa � 1; (56)we an write (qa)�1 = x2=(2�), S(q)�1 = x�1=�2 ,N=S(q) = x�1=�1 ; heneC(q) = 112�2x1�1=�2+ 1(2�)2x�1=�1 Z x10 dxf(x)+ 1(2�)2 Z x2x1 dxf(x)x�1=�� 1(2�)2x�1=�2 Z x20 dxf(x): (57)Sine x1 � 1 and x2 � 1, we an writeZ x10 dxf(x) � 415x51; (58)Z x20 dxf(x) � 43x2; (59)where we have taken just the leading{order terms of theexpansions of f ; this results inC(q) � 112�2x1�1=�2+ 115�2x5�1=�1+ 1(2�)2 Z x2x1 dxf(x)x�1=�� 13�2x1�1=�2 : (60)In the asymptoti limit qRG ! 1, i. e. x1 ! 0, andqa ! 0, i. e. x2 ! 1, this obviously onverges to theasymptoti valueCas = 1(2�)2 Z 10 dxf(x)x�1=�= � 1=16 = 0:0625 � = 1=2p3=(7�) � 0:0788 � = 3=5 : (61)Fousing now on the orretion, i. e. �C(q) = C(q)�Cas,we �nd �C(q) � 112�2x1�1=�2+ 115�2x5�1=�1� 1(2�)2 Z x10 dxf(x)x�1=�� 1(2�)2 Z 1x2 dxf(x)x�1=�� 13�2x1�1=�2 ; (62)7



taking again the leading{order terms for the remainingintegrals results in�C(q) � � 112�2 3 + �1� � x1�1=�2� 115�2 15� � 1x5�1=�1 : (63)One thus sees that both �nite hain length and �nite beadsize have the tendeny to derease C, as observed in theexperiments. The latter e�et is learly more important,as x1 enters only via a relatively high power. Furtherinsight is gained by numerial evaluation of the shift forreasonable parameter values.Tsunashima et al.12 performed their experiments withpolyisoprene hains of size RG = 210nm. Typial sat-tering wavenumbers in their plateau regime were givenby qRG = 4 : : : 8; the experimental observation in thisregime was C � 0:06, i. e. a shift of �C � �2 � 10�2.In what follows, we onsider the value qRG � 6. Thusx2 = 2�qRG RGa � 500; (64)where we have estimated the monomer size a as0:45nm38. Inserting this into Eq. 63, we �nd for thex2 ontribution a value of �C � �1 � 10�3, i. e. oneorder of magnitude smaller than the experimental value.It is not ompletely lear if a more thorough treat-ment of the integral would fully aount for the devia-tion; our guess is that it would probably not. MoleularDynamis data36 seem to rather indiate that for typialsystems (i. e. on not yet asymptoti length sales) theoupling between polymer and solvent is more omplexthan the simple Kirkwood desription. Nevertheless, weonsider our result as important for the interpretationof experimental data: There is obviously a substantialontribution to �C whih stems from the �nite beadsize, and whih is only weakly q{dependent. A plateau{like shape of C(q) alone apparently does not guaranteeasymptoti behavior. Clearly more work has to be doneto fully resolve the puzzle, but we believe our onsider-ations show that theories whih neglet the inuene of�nite bead size (and, to a lesser degree, of �nite hainlength) are simply not aurate enough to desribe ex-perimental data even of rather long hains.III. NUMERICAL RESULTSIn our numerial studies, we have used three di�erentpolymer hain models, whih we will denote as model A,B, and C.Model A is a bead{spring model in the ontinuum. Nmonomers are onneted via an anharmoni (\�nitely ex-tensible nonlinear elasti") spring potential,

UFENE = 8><>: � 12kR20 ln"1�� rR0�2# r < R01 r � R0 ;(65)where we use the standard parameters39 k = 30, R0 = 1:5in dimensionless units. Between all monomers there is anadditional non{bonded potentialULJos = 8>>>>><>>>>>: 4"�1r�12 ��1r�6 + 14#� �; r � 21=612� �os(�r2 + �)� 1� ; 21=6 � r � 1:50; r � 1:5; (66)where � and � are determined as the solutions of thelinear set of equations21=3�+ � = � (67)2:25�+ � = 2�; (68)i. e. � = 3:1730728678 and � = �0:85622864544. Thispotential has originally been onstruted to simulate am-phiphili systems40. The parameter � serves to ontrolthe strength of the attrative interation and is variedinstead of the temperature, whih is �xed at kBT = 1.For suÆiently strong �, the hain assumes a ollapsedstate, while � = 0 orresponds to good solvent. We useda ombination of stohasti dynamis39 and the pivotalgorithm3. Applying standard methods39 on data ofhains of length of up to N = 2000, we loated the �point at � = 0:65� 0:02. In the good solvent limit, andat � = 0:65, we also ran an N = 5000 hain.Model B is a mesosopi model for an aqueous solu-tion of the sodium salt of poly (aryli aid) (PAA),whose input parameters have been derived from an ex-tensive atomisti simulation of an aqueous PAA solu-tion (T = 333:15 K and p = 1 atm) in the highly di-luted regime, suh that the ion onentration (numberof harges on the hain, plus ounterions) is 0:4 mol/l41.From this simulation, strutural averages like the distri-butions of bond angles or radial distribution funtionsbetween monomers were extrated. We mapped this sys-tem to the mesosale by replaing one repeating unit (i. e.one monomer) by one bead. As enter of the oarse{grained (CG) beads, the monomer enter of mass (ex-luding the sodium ion) was hosen. Bonded as wellas non{bonded terms were parameterized by systemat-ially varying the interations until the struture of theatomisti model was reprodued42. This also allowed usto neglet all expliit water moleules and sodium ions(neessarily present in the parent atomisti simulation)in subsequent CG simulations. Their e�et on the PAAhain onformation is, however, impliitly present in themodel. This means that a system of roughly 104 atomsould be redued to a system whih onsists of only 23\super atoms". As in model A, we used both stohasti8
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FIG. 5. Model A: RG=RH as a funtion of the saling vari-able N�(1��), at good solvent ondition � = 0. The lineresults from the ombined �ts of RG and RH .M = 1085 forN = 16284 andM = 296 forN = 32768.In what follows, we outline our RG and RH data forthese three models. Figures 2 and 3 summarize our re-sults for model A at � ondition � = 0:65 (Fig. 2)and at good solvent ondition � = 0 (Fig. 3), respe-tively. For the � hains, we obtained very good �tswith the funtions 
R2G� = 0:2834N � 0:53 and 
R�1H � =2:710N�1=2 � 3:74N�1, while for the good solvent datathe analogous �ts are 
R2G� = 0:2706N1:1754� 0:32N0:62and 
R�1H � = 3:131N�0:5877 � 3:04N�1. These �t fun-tions are also shown in Figs. 2 and 3. The ratio� = RG=RH , as it results from these data, is shown in thesubsequent Figs. 4 and 5 for � and good solvent ondi-tions, respetively. It should be noted that the numerialresolution (for eah of our models) is learly by far notompetitive with the study by Li et al.1. For this reason,we did not attempt to determine the exponents from ourdata, but rather used the values for � and � from Ref.1. We did not inlude an N�� term in the �t for RH9
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FIG. 6. Model B: Saling behavior of poly (aryli aid)as measured by light sattering experiments and omputersimulations with a oarse{grained model: (a) Radius of gy-ration RG, (b) hydrodynami radius RH , () dimensionlessratio RG=RH .in the SAW ase, although suh a term is expeted tobe present. The reason is that our model A data are tooinaurate to allow for suh a three{parameter �t in astable way. Similarly, we ignored the non{analyti or-retions to saling in the � ase, for essentially the samereason, as has been disussed in some more detail in Se.I. Taking the statistial inauraies of the data, and ofthe resulting �t parameters into aount, we obtain forthe asymptoti amplitude ratio � = RG=RH the values� = 1:44�0:01 at the � point, and � = 1:63�0:01 in theexluded{volume ase. The atual error in � is expetedto be signi�antly larger, sine neither the unertaintiesin the exponents and in the loation of the � point, norsystemati errors due to higher{order orretions to sal-ing have been taken into aount. This is partiularlyapparent in the � ase, where one expets in the asymp-toti long{hain limit rather the Gaussian value 1:5045,but also obvious in the SAW ase, where the results onthe longer hains of model C yield a onsiderably smallervalue for �.The most interesting aspet of model B is that it losely
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FIG. 7. Model C: 
R2G� =(AN2�) as a funtion of N��,where we use � = 0:56, and A = 0:3341 from the (also shown)�t 
R2G� = AN1:1754 +BN0:62.resembles a real system, and a quantitative omparisonwith experiments is possible11. In Fig. 6 we show simu-lation results for RG, RH , and their ratio. The data aretaken as published in Ref. 11. For the ratio, experimentalresults are also inluded. The saling N�(1��), and theextrapolation to � = 1:61 � 0:02 is niely borne out bythe simulation data. The experiments are too inaurateto demonstrate a lear systemati trend. In spite of this,an extrapolation yields � � 1:5� 1:6, whih means thatthe theoretial alulations are supported by data of areal hemial system.Our model C data (SAW) omprise the largest rangeof hain lengths of our three models, ombined with pre-ise estimates of statistial errors, whih allows a moredetailed data analysis. For our RG data, we obtained the�t 
R2G� = AN1:1754+BN0:62 with A = 0:3341�0:0023,B = �0:20�0:05, where we again use the exponents fromRef. 1. The deviation �2 (sum of the residuals squares,normalized by the varianes) has the value �2 = 9:4 (10data points). The orresponding quality of �t Q, whihis the probability to observe the measured �2 value, ora larger one, is Q = 0:31. Our data, in a representationwhih emphasizes the orretions to saling, are shown inFig. 7. It is seen that these are indeed weak, highlightingthe diÆulties in determining an aurate value for theorretion{to{saling exponent.Turning to our RH data from model C, we �rst did anonlinear two{parameter �t 
R�1H � = AN��eff , result-ing in �eff = 0:55. However, this �t is very poor, witha least{square sum �2 = 433. Conversely, a linear two{parameter �t 
R�1H � = AN�0:5877+BN�1 yields a rathergood value �2 = 11:8 (Q = 0:16), with A = 2:732�0:005,B = �3:10 � 0:06, demonstrating also numerially thatRH data should be interpreted in terms of orretions tosaling, instead of an e�etive exponent. Atually, oneshould expet the presene of an additional orretion oforder N��, � � 0:56. Sine this orretion tends to de-rease RG (see Fig. 7), it should also derease RH , i. e.inrease 
R�1H �, or weaken the analyti N�(1��)10
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term. Thus, in a regression 
R�1H � = AN�0:5877 +BN��, where we keep � �xed, one should obtain thebest �t for a value of � slightly smaller than unity.This is indeed what we observe, as seen from Fig. 8,where we plot the quality Q of suh a �t as a fun-tion of �. This �gure also learly rules out a sin-gle orretion to saling with an exponent of 1=2 oreven larger. We thus attempted a three{parameter �t
R�1H � = AN�0:5877+BN�1+CN�1:15 to also take theN�� term into aount. The result of this �t, whihseems to be reasonably stable, is A = 2:753 � 0:008,B = �4:3 � 0:4, C = 2:2 � 0:7, with �2 = 5:0, anda very good quality Q = 0:66. We thus use this �t todemonstrate the orretions to saling of 
R�1H � in Fig.9, where the presene of the N�� term shows up in aslight urvature. Finally, we also used this �t, ombinedwith the orresponding one for RG (see Fig. 7), to de-sribe the data on the ratio � = RG=RH , as shown inFig. 10, where the asymptoti value is 1:591 � 0:007.Again we feel that the real unertainty is larger, due tolak of ontrol of the systemati errors. We also hekedthat both the quality of �t, and the value of � did nothange signi�antly when we redued the exponent � toits theoretial value6 � = 0:482.To summarize, we have olleted our most importantnumerial results, the extrapolated � values, in Table I.Model RG=RHA (SAW) 1:63 � 0:01B (SAW) 1:61 � 0:02C (SAW) 1:591 � 0:007A (�) 1:44 � 0:01TABLE I. Asymptoti universal ratio RG=RH as estimatedby numerial simulations of various models (see text). Errorbars take into aount statistial unertainties only, while sys-temati errors in the extrapolation proedure are negleted.

11



ACKNOWLEDGMENTSStimulating disussions with J. Horbah, A. J. C.Ladd, J. J. de Pablo, and S. Wiegand are gratefully a-knowledged. We thank L. Sh�afer, A. Z. Akasu and Y.Tsunashima for useful remarks and hints to the litera-ture, G. Besold for a ritial reading of the manusript,and DSM and the BMBF Competene Center in Materi-als Simulations for �nanial support.APPENDIX A: EULER{MACLAURIN FORMULAQuite usually, sums are approximated via the orre-sponding integrals. The Euler{Malaurin formula43;44,whih we outline here for the onveniene of the reader,onstruts a systemati asymptoti expansion aroundthat approximation. De�ning a di�erene operator �via �f(x) = f(x+ 1)� f(x); (A1)one obviously has�F (N) = f(N) (A2)for F (N) = N�1Xn=n0 f(n); (A3)and thus F (N) = ��1f(N) + onst.: (A4)On the other hand,� = exp� ddx�� 1 (A5)or ��1 = � ddx��1� ddx��exp� ddx�� 1��1= Z dx 1Xk=0 Bkk! � ddx�k ; (A6)where Bk are the Bernoulli numbers de�ned via the Tay-lor expansion of x=(ex � 1): B0 = 1, B1 = �1=2,B2 = 1=6, B4 = �1=30, . . . , B3 = B5 = B7 = : : : = 0.Hene,��1 = Z dx� 12 + 112 ddx � 1720 � ddx�3 + : : : (A7)and thus

N�1Xn=n0 f(n) = Z Nn0 dxf(x)� 12f(N) + onst.+ 112 ddxf(x)����x=N � 1720 d3dx3 f(x)����x=N+ : : : ; (A8)where the \integration" onstant is determined via (per-haps numerial) omparison of both sides. For a powerlaw with q < �1 one thus �nds from the de�nition of theRiemann zeta funtionN�1Xn=1 nq = Nq+1q + 1 � 12Nq + �(�q) + 112qNq�1� 1720q(q � 1)(q � 2)Nq�3 + : : : : (A9)By analyti ontinuation with respet to q, this resultholds for general q43.
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