Computer Simulations of Systems
with Hydrodynamic Interactions:
The Coupled Molecular Dynamics —
Lattice Boltzmann Approach

Burkhard Diinweg

Max Planck Institute for Polymer Research
Ackermannweg 10
55128 Mainz
Germany
E-mail: duenweg@mpip-mainz.mpg.de

In soft-matter systems where Brownian constituents areersed in a solvent, both thermal
fluctuations and hydrodynamic interactions are import@he article outlines a general scheme
to simulate such systems by coupling Molecular DynamicghfeBrownian particles to a lattice
Boltzmann algorithm for the solvent. As an application, teenputer simulation of colloidal
electrophoresis is briefly discussed.

1 Introduction

Remark:The present contribution intends to just give a very briefreiew over the subject
matter. The author has recently, together with A. J. C. Laditien a 76—page review
article!, to which the interested reader is referred. Detailed eilans and derivations,
as well as an extended reference list, can be found there. —

Many soft-matter systems are comprised of Brownian pegicthmersed in a solvent.
Prototypical examples are colloidal dispersions and pelysolutions, where the latter, in
contrast to the former, are characterized by non-trivierimal degrees of freedom (here:
the many possible conformations of the macromolecule)diorental for these systems is
the separation of length and time scales between “largeland Brownian particles, and
“small and fast” solvent particles. “Mesoscopic” simutetts focus on the range of length
and time scales which are, on the one hand, too small to alldegeription just in terms of
continuum mechanics of the overall system, but, on the dtaed, large enough to allow
the replacement of the solvent by a hydrodynamic continutihis latter approximation
is much less severe than one would assume at first glancéleddtolecular Dynamics
simulations have shown that hydrodynamics works as sooheakehgth scale exceeds a
few particle diameters, and the time scale a few collisiores.

To simulate such systems consistently, one has to take ¢atuat that the length and
time scales are so small that thermal fluctuations cannoegiecated. The “Boltzmann
number” Bo (a term invented by us) is a useful parameter for quantifyiogy important
fluctuations are. Given a certain spatial resolutioffior example, the lattice spacing of
a grid which is used to simulate the fluid dynamics), we may @asiselves how many
solvent particlesV,, correspond to the scabe On average, this is given by, = pb®/m,,
wherep is the mass density and, the mass of a solvent particle (and we assume a three—



dimensional system). The relative importance of fluctuetiis then given by

m 1/2
_ar—1/2 P
It should be noted that for an ideal gas, where the occupataistics is Poissoniai3o is

just the relative statistical inaccuracy of the randomataig V,,. In soft-matter systems,

is usually small enough such thBb is no longer negligible.

Furthermorehydrodynamic interactionsiust be modeled. In essence, this term refers
to dynamic correlations between the Brownian particlesdiated by fast momentum
transport through the solvent. The separation of time sced@ be quantified in terms
of the so—called Schmidt number

Nkin

Sc= D (2
wheren:, = n/p is the kinematic viscosity (ratio of dynamic shear visgpgitnd mass
densityp) of the fluid, measuring how quickly momentum propagatefsisiifely through
the solvent, and is the diffusion constant of the particles. Typically, inende fluidSc ~
102...10? for the solvent particles, while for large Brownian pae&bc is even much
larger. Finally, we may also often assume that the solvemadycs is in the creeping—flow
regime, i. e. that the Reynolds number

l
Re = Y
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whereu denotes the velocity of the flow aridts typical size, is small. This is certainly
true as long as the system is not driven strongly out of theeopailibrium.

These considerations lead to the natural (but, in our opjmot always correct) con-
clusion that the method of choice to simulate such systemsaignian Dynamics Here
the Brownian particles are displaced under the influenceuxdigbe—particle forces, hydro-
dynamic drag forces (calculated from the particle pos#tjpand stochastic forces repre-
senting the thermal noise. However, the technical probterds this efficiently for a large
numberN of Brownian particles are substantial. The calculatiorefdrag forces involves
the evaluation of the hydrodynamic Green'’s function, whiepends on the boundary con-
ditions, and has an intrinsically long—range nature (sbahall particles interact with each
other). Furthermore, these drag terms also determine tinelations in the stochastic dis-
placements, such that the generation of the stochastis texmlves the calculation of the
matrix square root of &V x 3N matrix. Recently, there has been substantial progresein th
development of fast algorithrfishowever, currently there are only few groups who master
these advanced and complicated techniques. Apart fropthieisipplicability is somewhat
limited, since the Green'’s function must be re—calculate@&ch new boundary condition,
and its validity is questionable if the system is put undeorgy nonequilibrium conditions
like, e. g., a turbulent flow — it should be noted that the Gig&mction is calculated for
low—Re hydrodynamics.

Therefore, many soft-matter researchers have rather chsealternative approach,
which is to simulate the system including the solvent degiefreedom, with explicit
momentum transport. The advantage of this is a simple dlgoriwhich scales linearly
with the number of Brownian particles, and is easily patialidle, due to its locality. The
disadvantage, however, is that one needs to simulate marg degrees of freedom than



those in which one is genuinely interestedandto do this on the short inertial time scales
in which one is not interested either. It is clear that suclagproach involves essentially
Molecular Dynamics (MD) for the Brownian particles.

Many ways are possible how to simulate the solvent degres@efiom, and how to
couple them to the MD part. It is just the universality of hgdynamics that allows us to
invent many models which all will produce the correct phgsithe requirements are rather
weak — the solvent model has to just be compatible with Na8akes hydrodynamics
on the macroscopic scale. Particle methods include DissgpRarticle Dynamics (DPD)
and Multi—Particle Collision Dynamics (MPCH)while lattice methods involve the direct
solution of the Navier—Stokes equation on a lattice, ordatBoltzmann (LB). The latter
is a method with which we have made quite good experiencé,ibderms of efficiency
and versatility. The efficiency comes from the inherent edsaemory management for
a lattice model, combined with ease of parallelization,cliiiomes from the high degree
of locality: Essentially an LB algorithm just shifts poptitns on a lattice, combined with
collisions, which however only happen locally on a singltéide site. The coupling to the
Brownian particles (simulated via MD) can either be donebdandary conditions, or via
an interpolation function that introduceslssipativecoupling between particles and fluid.
In this article, we will focus on the latter method.

2 Coupling Scheme

As long as we view LB as just a solver for the Navier—Stokes&iqu, we may write down
the equations of motion for the coupled system as follows:
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Oip + Oaja = 0, (6)
Otjo+ 0p7hly = OpaprsOyus + [l + Dol . (7)

Here, 7;, p; andm, are the positions, momenta, and masses of the Browniarclearti
respectively. The forces; acting on the particles are conservatiegi( e. coming from
the interparticle potential), dissipativé)( and fluctuating ). The equations of motion for
the fluid have been written in tensor notation, where Gredkxas denote Cartesian com-
ponents, and the Einstein summation convention is usedfifBhequation describes mass
conservation; the mass flwii, wherei is the flow velocity, is identical to the momentum
density;. The last equation describes the time evolution of the flusdhmantum density.
In the absence of particles, the fluid momentum is conservéik part is described via
the stress tensor, which in turn is decomposed into the comises Euler stressfﬁ, the

dissipative stresg,s~s0,us, and the fluctuating stres:gﬁ. The influence of the particles

is described via an external force dengﬁy
The coupling to a particléis introduced via an interpolation procedure where first the
flow velocities from the surrounding sites are averaged tovgield the flow velocity right



at the position of. In the continuum limit, this is written as
&= () = [ AR, (®)
whereA(7, 7;) is a weight function with compact support, satisfying
/d?’FA(F,Fi) =1. 9)

Secondly, each particle is assigned a phenomenologicébfni coefficientl’;, and this
allows us to calculate the friction force on parti¢ie

Fi— -, (ﬁ - u) | (10)

A Langevin noise ternﬁf is added to the particle equation of motion, in order to com-
pensate the dissipative losses that come fﬁﬁn ﬁif satisfies the standard fluctuation—
dissipation relation

(FL) =0, (11)
(FL (0 Ff (t)) = 2kpTTi01560s0 (¢ 1), (12)

whereT is is the absolute temperature akhd the Boltzmann constant. While the con-
servative forcesﬁi‘f conserve the total momentum of the particle system, as dt refsu
Newton’s third law, the dissipative and fluctuating terd¥ @nd #') do not. The associ-
ated momentum transfer must therefore have come from tlte fiie overall momentum
must be conserved, however. This means that the force teteriremthe Navier—Stokes
equation must just balance these forces. One easily sedhehzhoice

e ==Y (Bt + F) A ) (13)
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satisfies this criterion. It should be noted that we usesdmeweight function to interpo-
late the forces back onto the fluid; this is necessary tofgdtie fluctuation—dissipation
theorem for the overall system, i. e. to simulate a well-a@&fioonstant—-temperature en-
semble. The detailed proof of the thermodynamic consigtefithe procedure can be
found in Ref. 1.

We still need to specify the remaining terms in the Navieok8¢ equation. The vis-
cosity tensor.s~s describes an isotropic Newtonian fluid:

2
Nagys =1 (6(!7/665 + 6&56571 - géaﬁé'ﬁ) + nv5a66757 (14)

with shear and bulk viscositiesandn,. This tensor also appears in the covariance matrix
of the fluctuating (Langevin) stres'%{ﬁ:

<a-§5> -0, (15)

<U£B (7. t) o s (ﬂ,t/)> = 25T agysd (F—7) 8 (t— ') . (16)



Finally, the Euler stress
775[, = pbapg + puaus a7

describes the equation of state of the flyidq the thermodynamic pressure), and convec-
tive momentum transport.

3 Low Mach Number Physics

At this point an important simplification can be made. Theagiun of state only matters
for flow velocitiesu that are comparable with the speed of soupd. e. for which the
Mach number
Ma=2 (18)
Cs

is large. In the low Mach number regime, the flow may be comsidl@s effectively in-
compressible (although no incompressibility constraritiposed in the algorithm). The
Mach number should not be confused with the Reynolds numbewhich rather mea-
sures whether inertial effects are important. Now it tunatstbat essentially all soft—-matter
applications “live” in the low-A/a regime. Furthermore, large/a is anyways inaccessi-
ble to the LB algorithm, since it provides only a finite setattice velocities — and these
essentially determine the value @f In other words, the LB algorithm simply cannot re-
alistically represent flows whose velocity is not small camgal toc,. For this reason, the
details of the equation of state do not matter, and therefoeechooses the system that is
by far the easiest — the ideal gas. Here the equation of siatedystem at temperatufe
may be written as

kpT = m,c? (19)

s*

In the D3Q19 model (the most popular standard LB model inethdienensions, using
nineteen lattice velocities, see below) it turns out thatdpeed of sound is given by

162
2 [ —

Cs = 3 hQa (20)
whereb is the lattice spacing ankl the time step. Therefore the Boltzmann number can
also be written as

1/2 2\ 1/2
3kgTh
Bo= (T} (2B 0 ) (21)
pb3 pb°

4 Lattice Boltzmann 1: Statistical Mechanics

The lattice Boltzmann algorithm starts from a regular grithvgites* and lattice spacing
b, plus a time steph. We then introduce a small set of velocitiéssuch that;h connects
two nearby lattice sites on the grid. In the D3Q19 model, #tice is simple cubic, and
the nineteen velocities correspond to the six nearest aatvéwnext—nearest neighbors,
plus a zero velocity. On each lattice sitat timet, there are nineteen populationgr, t).



Each population is interpreted as the mass density comeéapgto velocityc;. The total
mass and momentum density are therefore given by

j(Fa t) = Z ng (Fv t)gia (23)

such that the flow velocity is obtained via= ]’/p. The number of “lattice Boltzmann
particles” which correspond te; is given by

3

Ly (24)
myp I

wherem,, is the mass of a lattice Boltzmann particle, anthe corresponding mass density.
It should be noted that is a measure of the thermal fluctuations in the system, since,
according to Eq. 21, one hdo? = u/p.

If we now assume a “velocity bin/'to be in thermal contact with a large reservoir of
particles, the probability density fo;; is Poissonian. Furthermore, if we assume that the
“velocity bins” are statistically independent, but takéoimccount that mass and momen-
tum density are fixed (these variables are conserved qigsrdiiring an LB collision step
and should therefore be handled like conserved quantitiagmicrocanonical ensemble),
we find

vt R
P ({vi}) x (H I/Zi!e 1>5<MZVi—p>5<uZVici—j> . (25)
for the probability density of the variables. This must be viewed as the statistics which
describes the local (single—site) equilibrium under thedition of fixed values of the hy-
drodynamic variablep andj. The parametep; is the mean occupation imposed by the
reservoir, and we assume that it is given by

v =a"L, (26)
I

wherea® > 0 is a weight factor corresponding to the neighbor shell witbesic; .
From normalization and cubic symmetry we know that the lomsleovelocity moments
of the weights must have the form

D ati=1, (27)

S aten =0, (29)

S aes — 7250 (29)

Z c:cicmciﬁcw =0, (30)
Z a“ CiaCipCinCis = K4 0apys + 04 (Japdys + dayds + 6asdsy) , (31)
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whereo,, 04, k4 are yet undetermined constants, whilg;, s is unity if all four indexes
are the same and zero otherwise.

Employing Stirling’s formula for the factorial, it is stigtitforward to find the set of
populations:;? which maximizesP under the constraints of givenand;. Up to second
order inu (low Mach number!) the solution is given by

eq __ ci 1_’_’&61_*_ (’Jal)2 U2 (32)
i = pa o9 20% 209 |-
The low—order moments of the equilibrium populations aenthiven by
> it =p, (33)
anqcm = Ja, (34)
Z nSlcinCip = pciap + puats. (35)

K2

The first two equations are just the imposed constraintdevthe last one (meaning that
the second moment is just the hydrodynamic Euler stresgwslfrom imposing two
additional conditions, which is to choose the weigfftssuch that they satisfy, = 0 and
o4 = o03. From the Chapman—Enskog analysis of the LB dynamics (deapit follows
that the asymptotic behavior in the limit of large length amde scales is compatible
with the Navier—Stokes equation only if Eq. 35 holds, and thiturn is only possible
if the abovementioned isotropy conditions are satisfiedyelioer with the normalization
condition, we thus obtain a set of three equations fordhe Therefore at least three
neighbor shells are needed to satisfy these conditionsthasds the reason for choosing
a nineteen-velocity model. For D3Q19, one thus obtafns= 1/3 for the zero velocity,
1/18 for the nearest neighbors, ah@36 for the next—nearest neighbors. Furthermore, one
findsc? = o9 = (1/3)b?/h2.

For the fluctuations around the most probable populatighs

n; " =n; —ni, (36)

we employ a saddle—point approximation and approximdig zero. This yields

neq\2

P ({n;“}) ocexp <— > %) b <Z n?eq> 5 <Zannq> . (37

i A

We now introduce normalized fluctuations via

neq

n
Al = —— (38)
Vv ppas

and transform to normalized “modes” (symmetry—adapteshlircombinations of the;,
see Ref. 1)n;“? via an orthonormal transformatian;:

M = epnf, (39)
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k=0,...,18, and obtain

P ({my}) x exp —% Zmi ) (40)
k>4

It should be noted that the modes number zero to three havedxetided; they are just
the conserved mass and momentum densities.

5 Lattice Boltzmann 2: Stochastic Collisions

A collision step consists of re-arranging the setipbn a given lattice site such that both
mass and momentum are conserved. Since the algorithm sbiouldate thermal fluctu-
ations, this should be done in a way that is (i) stochastic(@ndonsistent with the de-
veloped statistical-mechanical model. This is straigitéwdly imposed by requiring that
the collision is nothing but a Monte Carlo procedure, whekéoate Carlo step transforms
the pre—collisional set of populations,, to the post—collisional one,r. Consistency with
statistical mechanics can be achieved by requiring thdtflitrete Carlo update satisfies the
condition of detailed balance. Most easily this is done im&of the normalized modes
mmy, which we update according to the rule ¥ 4)

my = e + /1 — virg. (41)

Here thew, are relaxation parameters withl < v < 1, and ther, are statistically
independent Gaussian random numbers with zero mean andaniaihce. Mass and mo-
mentum are automatically conserved since the correspgnaiales are not updated. Com-
parison with Eq. 40 shows that the procedure indeed doesfysdgtailed balance. The
parameters; can in principle be chosen at will; however, they should bmgatible with
symmetry. For example, mode number four corresponds touhestress, with a relax-
ation parametet;,, while modes number five to nine correspond to the five shessssts,
which form a symmetry multiplett. Therefore one must chopse- ... = v9 = v,. For
the remaining kinetic modes one often usgs= 0 for simplicity, but this is not necessary.

6 Lattice Boltzmann 3: Chapman—Enskog Expansion

The actual LB algorithm now consists of alternating caliisand streaming steps, as sum-
marized in the LB equation (LBE):

n(F+ Gh,t +h) =ni(F,t) = ni (7, t) + A {ni(7, 1) }. (42)

The populations are first re—arranged on the lattice site;igtdescribed by the so—called
“collision operator"A;. The resulting post—collisional population$ are then propagated
to the neighboring sites, as expressed by the left hand $itliee @ quation. After that, the
next collision step is done, etc.. The collision step mayude momentum transfer as a
result of external forces (for details, see Ref. 1); apannfithat, it is just given by the
update procedure outlined in the previous section.



A convenient way to find the dynamic behavior of the algoritamlarge length and
time scales is a multi—-time—scale analysis. One introdac&oarse—grained ruler” by
transforming from the original coordinat&$o new coordinateg; via

= €T, (43)

wheree is a dimensionless parameter with< ¢ < 1. The rationale behind this is the
fact that any “reasonable” value for the scalewill automatically forcer to be large. In
other words: By considering the limit— 0 we automatically focus our attention on large
length scales. The same is done for the time; however, hematielucetwo scales via

t = et (44)
and
ty = €2t. (45)

The reason for this is that one needs to consider both waesptienomena, which happen
on thet; time scale (i. e. the real time is moderately large), andiditfe processes (where
the real time iverylarge). We now write the LB variables as a functiorroft; , t» instead
of 7, t. Since changing at fixed; changes”and thusn;, we must take into account that
the LB variables depend an

ni =n\ + ent + 0l 4 0(e¥). (46)

The same is true for the collision operator:
A, =AY 1Al + 2AP 1 0. (47)
In terms of the new variables, the LBE is written as
n; (71 + eGih, t1 + eh, to + €h) — ny(F1, t, ) = A, (48)

Now, one systematically Taylor—expands the equation uprdera?. Sorting by order
yields a hierarchy of LBEs of which one takes the zeroth,,fastd second velocity mo-
ment. Systematic analysis of this set of moment equatiargi@tails, see Ref. 1) shows
that the LB procedure, as it has been developed in the pregections, indeed yields the
fluctuating Navier—Stokes equations in the asymptotie 0 limit — however only for
low Mach numbers; in the high Mach number regime, where terhasderu?/c? can no
longer be neglected, the dynamics definitely deviates fravidi—Stokes.

In particular, this analysis shows that the zeroth—ordgugations must be identified
with n;?, and that it isnecessaryhat this “encodes” the Euler stress via suitably chosen
weightsa©. Furthermore, one finds explicit expressions for the visiess

hpc? 1+,
= £ 49
i  prt (49)
hpc® 1 +
o = PCs T (50)
3 1—’7b
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Figure 1. (From Ref. 5) Velocity autocorrelation functiohaosingle colloidal sphere, normalized by the initial
value, in thermal equilibrium. The velocity is here definadlze center—of-mass velocity of the particles which
form the sphere<v2>, i. e. thet = 0 value of the unnormalized function, is therefore given ey dlquipartition
theorem of statistical mechanics. For larger times, théasarparticles become more and more coupled to the
fluid inside the sphere, and thus the effective mass of thersphcreases. This is the reason for the first initial
decay before a plateau is reached. After that, the functimayk according to the famotis3/2 long—-time tail.
Finally, the particle becomes coupled to the whole fluid i Whole simulation box and the behavior becomes
dominated by this finite—size effect. For comparison, theréicalso shows the decay of the colloid velocity in a
deterministiccomputer experiment, where the noise amplitude for botipéntcle dynamics and the LB degrees
of freedom has been set to zero, and the particle was “kicket= 0. This function has been normalized by
the initial value, too. According to linear response theboth curves must coincide, which they do.

7 Example: Dynamics of Charged Colloids

The coupling scheme that has been described in this arsiglarticularly useful for im-
mersed particles with internal degrees of freedom, likeilflexpolymer chains, or mem-
branes. It can also be applied to systems whose immersédgsére “hard” (for example,
colloidal spheres), although the alternative approachdmydl(see Ref. 1) that models the
particles as rigid bodies interacting with the LB fluid viaupalary conditions is probably
slightly more efficient. Nevertheless, for reasons of easgm@m develepment it makes
sense to use the same scheme for both flexible and rigid systemvhat follows, some
results for a colloidal system shall be presented, in orelemonstrate that and how the
method works.

In Ref. 5 we have developed the so—called “raspberry modelafcolloidal sphere.
Since the model is intended for charged systems with exglait and counter) ions, it
should take into account (at least to some degree) the sifegattice between colloids
and ions. Therefore the colloid is, in terms of linear dimiensroughly 6—7 times larger
than the small particles. The LB lattice spacing is choseiastical to the small ion
diameter. This is combined with a linear force interpolatio the nearest neighbor sites.

10



A larger lattice spacing would result in a rather coarse dgtson of the hydrodynamic
interactions, while a yet smaller spacing would result imrgé computational overhead.
In this context, it should be noted that one would obtain kwldfined model with infinite
particle mobility if one would let the lattice spacing tera zero, while sticking to the
nearest—neighbor interpolation schénikhis is due to the fact that the effective long—time
mobility that results from the dissipative coupling is natem by 1/T, but rather by

1 1 1

= — + _—,
Lepgp T gno

(51)

whereo is the range of the interpolation function ap@ numerical prefactor. Therefore,
one needs to keep the range of the interpolation functiosteot which would involve
more and more effort if one would insist én— 0. Within limits, it is of course possible to
compensate the effects of a changerdfy suitably re—adjusting — only the long—time
valuel'.; ¢ is of real physical significance.

In principle, it would therefore be possible to model a cioléd sphere by a particle
which exhibits a suitably chosen excluded—-volume intévador the other (small or large)
particles, plus a suitably adjusted large value of the pakation ranger, which essentially
plays the role of a Stokes radius. However, such a model watldescribe the rotational
degrees of freedom, and these are important. For this reasaather model the colloid as
a large sphere, around which we wrap a two—dimensional mktwfemall particles (same
size as the ions) which are connected via springs. Only tHfaciparticles are coupled
dissipatively to the LB fluid. Figures 1 and 2 show that the sldmbhaves exactly as one
would expect from hydrodynamics and linear response thédgyre 1 shows the particle
velocity autocorrelation function, from which one obtainisi integration, the translational
(or self) diffusion coefficienD":

1 o]
DY = 3 / dt (5(t) - 9(0)) . (52)
0

In an infinite hydrodynamic continuum, Stokes’ law resultghe predictionD® =
kpT/(6mnR) for a sphere of radiu®. Indeed, this is what one finds in that limit. How-
ever, for (cubic) simulation boxes of finite linear dimemsib, the diffusion constant is
systematically smaller, as a result of the hydrodynamirattions with the periodic im-
ages:

kgT kT
DS = — 2.837 .
6mnR 6mnL

(53)

This is an analytic result, where higher—order terms inkhé expansion have been ne-
glected. Figure 2 shows that this prediction is nicely reljpied. Furthermore, the rota-
tional diffusion constant, which can be obtained by intéggathe angular—velocity auto-
correlation function,

1

DF = 3 /OOO dt (&(t) - 3(0)), (54)

exhibits a similarl/L finite size effect; the asymptotic valuesT/(87nR?) is only
reached for infinite system size. As Figure 2 shows, thisiptied is reproduced as well.

11
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Figure 2. (From Ref. 5) TranslationaD€) and rotational D7) diffusion coefficient, normalized by the asymp-
totic infinite—system value, as a function of inverse syssera1/L. The straight line is a fit foD %, while it is
the analytical prediction (see text) férs.

Electrokinetic phenomena can be investigated by suppbicigarge to the central col-
loidal sphere, and by adding ions such that the total systecharge—neutral. We have
studied the electrophoretic mobility, i. e. the responsatexternal electric field:

v

wherew is the colloid drift velocity and the elementary charge. The simplest case is to
simulate just a single colloid with chardée in a cubic box, and to add monovalent
counterions to compensate the colloidal charge (i. e. nhéusalt ions are added). This
corresponds to a system with a finite volume fraction (onémbper box). It should be
noted that one shouldot consider the limit where this system is being put into lamysa
larger boxes: In that case, the ions would simply “evapdrated one would obtain a
trivial value for . that is just given by Stokes’ law.

Usually the mobility is given in dimensionless units: The-salled reduced mobility
lreq 1S Obtained by normalizing with a Stokes mobility, using Bjerrum lengthi g as the
underlying length scale:

Hred = 67—”7[3:“7 (56)
e2
 dmekpT’ (57)
whereg is the fluid’s dielectric constant.

Fortunatelyy is subject to a much smaller finite size effect than the diffusonstant.
This has been checked by simulations, see Fig. 3. The reasdhi$ behavior is the
fact that the electric field does not exert a net force on theallvsystem, due to charge

B
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Figure 3. Reduced electrophoretic mobility as a functiomeérse system size/ L. In order to keep conditions
constant (i. e. constant colloidal volume fraction, andstant ion concentration), the box size was systematically
increased, while at the same time more and more colloidsogight), together with their compensating ions,
were put into the box. Within our resolution, no finite sizéeef could be detected.

neutrality. In other words: The field induces two electricrents in opposite direction.
These currents, in turn, induce hydrodynamic flows. Thesesfldhowever, cancel each
other exactly in leading order. Therefore the hydrodynant&ractions with the periodic
images are weak. This should be contrasted with the diffusimstant, which corresponds
to the response to an external gravitational field. Theratesexert a net force on the
overall system, and hence one obtains a large—scale flowidgdike the inverse distance
from the colloid. Thisl/r flow field is exactly the reason for the' L finite—size effect in
the diffusion constant as shown in Fig. 2.

The electrophoretic mobility may be obtained by either gimgl an electric field, and
measuring the drift velocity, or by Green—Kubo integratiomhere a system in strict ther-
mal equilbrium is studied:

kpTy = % Z zi /OOO dt (7(0) - o (t)) (58)

where the index denotes particle numbérandz; is its valence. Particle number zero is
the colloid whose response to the electric field is consitleFae nonequilibrium approach
is hampered by the fact that, for reasonable electric figldega the response is quite typi-
cally in the nonlinear regime (mainly as a result of chardeuaat stripping). Therefore, one
needs to extrapolate to zero driving. In contrast, the Grabo value isper definition
the linear-response result. Figure 4 shows that the twaappes yield the same result.
Further results that have been obtained with this modelidech study of the concen-
tration dependence @f, both in terms of colloid volume fraction of a salt—free gyst and
in terms of salt concentration at fixed colloid concentmatid/ithout going into further de-
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Figure 4. (From Ref. 6) Reduced electrophoretic mobilitytfe single—colloid system described in the text, as
a function of the colloid’s charg&, comparing nonequilibrium with Green—Kubo integratiorkK(results. The
mobility first increases, since the force is proportionattte charge. However, for largef values it saturates,
indicating that more and more ions condense at the coll@diface, such that the effective charge does not
change. FoeE = 0.2, nonlinear effects lead to an increased mobility, whilé = 0.1 is still in the linear—
response regime, as demonstrated by the comparison wighgthibrium data.

tails, it should just be mentioned that the reduced—mgtikita can be nicely rationalized
in terms of a scaling theofyhich then allows a favorable comparison with experimental
results.

Of course, this is not the only example where the coupled MBapproach has helped
to understand the dynamics of soft matter. Other examptdsde the dynamics of poly-
mers and neutral colloids in both equilibrium and nonedquiilim situations; these have
been outlined in Ref. 1. Further simulations will follow imet future, and it seems that the
method is gaining popularity in the soft-matter community.
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