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In soft–matter systems where Brownian constituents are immersed in a solvent, both thermal
fluctuations and hydrodynamic interactions are important.The article outlines a general scheme
to simulate such systems by coupling Molecular Dynamics forthe Brownian particles to a lattice
Boltzmann algorithm for the solvent. As an application, thecomputer simulation of colloidal
electrophoresis is briefly discussed.

1 Introduction

Remark:The present contribution intends to just give a very brief overview over the subject
matter. The author has recently, together with A. J. C. Ladd,written a 76–page review
article1, to which the interested reader is referred. Detailed explanations and derivations,
as well as an extended reference list, can be found there. —

Many soft–matter systems are comprised of Brownian particles immersed in a solvent.
Prototypical examples are colloidal dispersions and polymer solutions, where the latter, in
contrast to the former, are characterized by non–trivial internal degrees of freedom (here:
the many possible conformations of the macromolecule). Fundamental for these systems is
the separation of length and time scales between “large and slow” Brownian particles, and
“small and fast” solvent particles. “Mesoscopic” simulations focus on the range of length
and time scales which are, on the one hand, too small to allow adescription just in terms of
continuum mechanics of the overall system, but, on the otherhand, large enough to allow
the replacement of the solvent by a hydrodynamic continuum.This latter approximation
is much less severe than one would assume at first glance; detailed Molecular Dynamics
simulations have shown that hydrodynamics works as soon as the length scale exceeds a
few particle diameters, and the time scale a few collision times.

To simulate such systems consistently, one has to take into account that the length and
time scales are so small that thermal fluctuations cannot be neglected. The “Boltzmann
number”Bo (a term invented by us) is a useful parameter for quantifyinghow important
fluctuations are. Given a certain spatial resolutionb (for example, the lattice spacing of
a grid which is used to simulate the fluid dynamics), we may askourselves how many
solvent particlesNp correspond to the scaleb. On average, this is given byNp = ρb3/mp,
whereρ is the mass density andmp the mass of a solvent particle (and we assume a three–
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dimensional system). The relative importance of fluctuations is then given by

Bo = N−1/2
p =

(

mp

ρb3

)1/2

. (1)

It should be noted that for an ideal gas, where the occupationstatistics is Poissonian,Bo is
just the relative statistical inaccuracy of the random variableNp. In soft–matter systems,b
is usually small enough such thatBo is no longer negligible.

Furthermore,hydrodynamic interactionsmust be modeled. In essence, this term refers
to dynamic correlations between the Brownian particles, mediated by fast momentum
transport through the solvent. The separation of time scales can be quantified in terms
of the so–called Schmidt number

Sc =
ηkin

D
, (2)

whereηkin = η/ρ is the kinematic viscosity (ratio of dynamic shear viscosity η and mass
densityρ) of the fluid, measuring how quickly momentum propagates diffusively through
the solvent, andD is the diffusion constant of the particles. Typically, in a dense fluidSc ∼
102 . . . 103 for the solvent particles, while for large Brownian particlesSc is even much
larger. Finally, we may also often assume that the solvent dynamics is in the creeping–flow
regime, i. e. that the Reynolds number

Re =
ul

ηkin
, (3)

whereu denotes the velocity of the flow andl its typical size, is small. This is certainly
true as long as the system is not driven strongly out of thermal equilibrium.

These considerations lead to the natural (but, in our opinion, not always correct) con-
clusion that the method of choice to simulate such systems isBrownian Dynamics2. Here
the Brownian particles are displaced under the influence of particle–particle forces, hydro-
dynamic drag forces (calculated from the particle positions), and stochastic forces repre-
senting the thermal noise. However, the technical problemsto do this efficiently for a large
numberN of Brownian particles are substantial. The calculation of the drag forces involves
the evaluation of the hydrodynamic Green’s function, whichdepends on the boundary con-
ditions, and has an intrinsically long–range nature (such that all particles interact with each
other). Furthermore, these drag terms also determine the correlations in the stochastic dis-
placements, such that the generation of the stochastic terms involves the calculation of the
matrix square root of a3N×3N matrix. Recently, there has been substantial progress in the
development of fast algorithms3; however, currently there are only few groups who master
these advanced and complicated techniques. Apart from this, the applicability is somewhat
limited, since the Green’s function must be re–calculated for each new boundary condition,
and its validity is questionable if the system is put under strong nonequilibrium conditions
like, e. g., a turbulent flow — it should be noted that the Green’s function is calculated for
low–Re hydrodynamics.

Therefore, many soft–matter researchers have rather chosen the alternative approach,
which is to simulate the system including the solvent degrees of freedom, with explicit
momentum transport. The advantage of this is a simple algorithm, which scales linearly
with the number of Brownian particles, and is easily parallelizable, due to its locality. The
disadvantage, however, is that one needs to simulate many more degrees of freedom than
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those in which one is genuinely interested —andto do this on the short inertial time scales
in which one is not interested either. It is clear that such anapproach involves essentially
Molecular Dynamics (MD) for the Brownian particles.

Many ways are possible how to simulate the solvent degrees offreedom, and how to
couple them to the MD part. It is just the universality of hydrodynamics that allows us to
invent many models which all will produce the correct physics. The requirements are rather
weak — the solvent model has to just be compatible with Navier–Stokes hydrodynamics
on the macroscopic scale. Particle methods include Dissipative Particle Dynamics (DPD)
and Multi–Particle Collision Dynamics (MPCD)4, while lattice methods involve the direct
solution of the Navier–Stokes equation on a lattice, or lattice Boltzmann (LB). The latter
is a method with which we have made quite good experience, both in terms of efficiency
and versatility. The efficiency comes from the inherent easeof memory management for
a lattice model, combined with ease of parallelization, which comes from the high degree
of locality: Essentially an LB algorithm just shifts populations on a lattice, combined with
collisions, which however only happen locally on a single lattice site. The coupling to the
Brownian particles (simulated via MD) can either be done viaboundary conditions, or via
an interpolation function that introduces adissipativecoupling between particles and fluid.
In this article, we will focus on the latter method.

2 Coupling Scheme

As long as we view LB as just a solver for the Navier–Stokes equation, we may write down
the equations of motion for the coupled system as follows:

d

dt
~ri =

1

mi
~pi, (4)

d

dt
~pi = ~F c

i + ~F d
i + ~F f

i , (5)

∂tρ + ∂αjα = 0, (6)

∂tjα + ∂βπE
αβ = ∂βηαβγδ∂γuδ + fh

α + ∂βσf
αβ . (7)

Here,~ri, ~pi andmi are the positions, momenta, and masses of the Brownian particles,
respectively. The forces~Fi acting on the particles are conservative (c, i. e. coming from
the interparticle potential), dissipative (d), and fluctuating (f ). The equations of motion for
the fluid have been written in tensor notation, where Greek indexes denote Cartesian com-
ponents, and the Einstein summation convention is used. Thefirst equation describes mass
conservation; the mass fluxρ~u, where~u is the flow velocity, is identical to the momentum
density~j. The last equation describes the time evolution of the fluid momentum density.
In the absence of particles, the fluid momentum is conserved.This part is described via
the stress tensor, which in turn is decomposed into the conservative Euler stressπE

αβ , the

dissipative stressηαβγδ∂γuδ, and the fluctuating stressσf
αβ . The influence of the particles

is described via an external force density~fh.
The coupling to a particlei is introduced via an interpolation procedure where first the

flow velocities from the surrounding sites are averaged overto yield the flow velocity right
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at the position ofi. In the continuum limit, this is written as

~ui ≡ ~u(~ri) =

∫

d3~r ∆(~r, ~ri)~u(~r), (8)

where∆(~r, ~ri) is a weight function with compact support, satisfying
∫

d3~r∆(~r, ~ri) = 1. (9)

Secondly, each particle is assigned a phenomenological friction coefficientΓi, and this
allows us to calculate the friction force on particlei:

~F d
i = −Γi

(

~pi

mi
− ~ui

)

. (10)

A Langevin noise term~F f
i is added to the particle equation of motion, in order to com-

pensate the dissipative losses that come from~F d
i . ~F f

i satisfies the standard fluctuation–
dissipation relation

〈

F f
iα

〉

= 0, (11)
〈

F f
iα (t)F f

jβ (t′)
〉

= 2kBTΓiδijδαβδ (t − t′) , (12)

whereT is is the absolute temperature andkB the Boltzmann constant. While the con-
servative forces~F c

i conserve the total momentum of the particle system, as a result of
Newton’s third law, the dissipative and fluctuating terms (~F d

i and ~F f
i ) do not. The associ-

ated momentum transfer must therefore have come from the fluid. The overall momentum
must be conserved, however. This means that the force term entering the Navier–Stokes
equation must just balance these forces. One easily sees that the choice

~fh(~r) = −
∑

i

(

~F d
i + ~F f

i

)

∆(~r, ~ri) (13)

satisfies this criterion. It should be noted that we use thesameweight function to interpo-
late the forces back onto the fluid; this is necessary to satisfy the fluctuation–dissipation
theorem for the overall system, i. e. to simulate a well–defined constant–temperature en-
semble. The detailed proof of the thermodynamic consistency of the procedure can be
found in Ref. 1.

We still need to specify the remaining terms in the Navier–Stokes equation. The vis-
cosity tensorηαβγδ describes an isotropic Newtonian fluid:

ηαβγδ = η

(

δαγδβδ + δαδδβγ − 2

3
δαβδγδ

)

+ ηvδαβδγδ, (14)

with shear and bulk viscositiesη andηv. This tensor also appears in the covariance matrix
of the fluctuating (Langevin) stressσf

αβ :
〈

σf
αβ

〉

= 0, (15)
〈

σf
αβ (~r, t)σf

γδ (~r′, t′)
〉

= 2kBTηαβγδδ (~r − ~r′) δ (t − t′) . (16)
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Finally, the Euler stress

πE
αβ = pδαβ + ρuαuβ (17)

describes the equation of state of the fluid (p is the thermodynamic pressure), and convec-
tive momentum transport.

3 Low Mach Number Physics

At this point an important simplification can be made. The equation of state only matters
for flow velocitiesu that are comparable with the speed of soundcs, i. e. for which the
Mach number

Ma =
u

cs
(18)

is large. In the low Mach number regime, the flow may be considered as effectively in-
compressible (although no incompressibility constraint is imposed in the algorithm). The
Mach number should not be confused with the Reynolds numberRe, which rather mea-
sures whether inertial effects are important. Now it turns out that essentially all soft–matter
applications “live” in the low–Ma regime. Furthermore, largeMa is anyways inaccessi-
ble to the LB algorithm, since it provides only a finite set of lattice velocities — and these
essentially determine the value ofcs. In other words, the LB algorithm simply cannot re-
alistically represent flows whose velocity is not small compared tocs. For this reason, the
details of the equation of state do not matter, and thereforeone chooses the system that is
by far the easiest — the ideal gas. Here the equation of state for a system at temperatureT
may be written as

kBT = mpc
2
s. (19)

In the D3Q19 model (the most popular standard LB model in three dimensions, using
nineteen lattice velocities, see below) it turns out that the speed of sound is given by

c2
s =

1

3

b2

h2
, (20)

whereb is the lattice spacing andh the time step. Therefore the Boltzmann number can
also be written as

Bo =

(

mp

ρb3

)1/2

=

(

3kBTh2

ρb5

)1/2

. (21)

4 Lattice Boltzmann 1: Statistical Mechanics

The lattice Boltzmann algorithm starts from a regular grid with sites~r and lattice spacing
b, plus a time steph. We then introduce a small set of velocities~ci such that~cih connects
two nearby lattice sites on the grid. In the D3Q19 model, the lattice is simple cubic, and
the nineteen velocities correspond to the six nearest and twelve next–nearest neighbors,
plus a zero velocity. On each lattice site~r at timet, there are nineteen populationsni(~r, t).
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Each population is interpreted as the mass density corresponding to velocity~ci. The total
mass and momentum density are therefore given by

ρ(~r, t) =
∑

i

ni(~r, t), (22)

~j(~r, t) =
∑

i

ni(~r, t)~ci, (23)

such that the flow velocity is obtained via~u = ~j/ρ. The number of “lattice Boltzmann
particles” which correspond toni is given by

νi =
nib

3

mp
≡ ni

µ
, (24)

wheremp is the mass of a lattice Boltzmann particle, andµ the corresponding mass density.
It should be noted thatµ is a measure of the thermal fluctuations in the system, since,
according to Eq. 21, one hasBo2 = µ/ρ.

If we now assume a “velocity bin”i to be in thermal contact with a large reservoir of
particles, the probability density forνi is Poissonian. Furthermore, if we assume that the
“velocity bins” are statistically independent, but take into account that mass and momen-
tum density are fixed (these variables are conserved quantities during an LB collision step
and should therefore be handled like conserved quantities in a microcanonical ensemble),
we find

P ({νi}) ∝
(

∏

i

ν̄νi

i

νi!
e−ν̄i

)

δ

(

µ
∑

i

νi − ρ

)

δ

(

µ
∑

i

νi~ci −~j

)

. (25)

for the probability density of the variablesνi. This must be viewed as the statistics which
describes the local (single–site) equilibrium under the condition of fixed values of the hy-
drodynamic variablesρ and~j. The parameter̄νi is the mean occupation imposed by the
reservoir, and we assume that it is given by

ν̄i = aci
ρ

µ
, (26)

whereaci > 0 is a weight factor corresponding to the neighbor shell with speedci.
From normalization and cubic symmetry we know that the low–order velocity moments

of the weights must have the form
∑

i

aci = 1, (27)

∑

i

aciciα = 0, (28)

∑

i

aciciαciβ = σ2 δαβ , (29)

∑

i

aciciαciβciγ = 0, (30)

∑

i

aciciαciβciγciδ = κ4 δαβγδ + σ4 (δαβδγδ + δαγδβδ + δαδδβγ) , (31)
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whereσ2, σ4, κ4 are yet undetermined constants, whileδαβγδ is unity if all four indexes
are the same and zero otherwise.

Employing Stirling’s formula for the factorial, it is straightforward to find the set of
populationsneq

i which maximizesP under the constraints of givenρ and~j. Up to second
order inu (low Mach number!) the solution is given by

neq
i = ρaci

(

1 +
~u · ~ci

σ2
+

(~u · ~ci)
2

2σ2
2

− u2

2σ2

)

. (32)

The low–order moments of the equilibrium populations are then given by
∑

i

neq
i = ρ, (33)

∑

i

neq
i ciα = jα, (34)

∑

i

neq
i ciαciβ = ρc2

sδαβ + ρuαuβ. (35)

The first two equations are just the imposed constraints, while the last one (meaning that
the second moment is just the hydrodynamic Euler stress) follows from imposing two
additional conditions, which is to choose the weightsaci such that they satisfyκ4 = 0 and
σ4 = σ2

2 . From the Chapman–Enskog analysis of the LB dynamics (see below) it follows
that the asymptotic behavior in the limit of large length andtime scales is compatible
with the Navier–Stokes equation only if Eq. 35 holds, and this in turn is only possible
if the abovementioned isotropy conditions are satisfied. Together with the normalization
condition, we thus obtain a set of three equations for theaci . Therefore at least three
neighbor shells are needed to satisfy these conditions, andthis is the reason for choosing
a nineteen–velocity model. For D3Q19, one thus obtainsaci = 1/3 for the zero velocity,
1/18 for the nearest neighbors, and1/36 for the next–nearest neighbors. Furthermore, one
findsc2

s = σ2 = (1/3)b2/h2.
For the fluctuations around the most probable populationsneq

i ,

nneq
i = ni − neq

i , (36)

we employ a saddle–point approximation and approximateu by zero. This yields

P ({nneq
i }) ∝ exp

(

−
∑

i

(nneq
i )

2

2µρaci

)

δ

(

∑

i

nneq
i

)

δ

(

∑

i

~ci nneq
i

)

. (37)

We now introduce normalized fluctuations via

n̂neq
i =

nneq
i√

µρaci

(38)

and transform to normalized “modes” (symmetry–adapted linear combinations of theni,
see Ref. 1)̂mneq

k via an orthonormal transformation̂eki:

m̂neq
k =

∑

i

êkin̂
neq
i , (39)
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k = 0, . . . , 18, and obtain

P ({mk}) ∝ exp



−1

2

∑

k≥4

m2
k



 . (40)

It should be noted that the modes number zero to three have been excluded; they are just
the conserved mass and momentum densities.

5 Lattice Boltzmann 2: Stochastic Collisions

A collision step consists of re-arranging the set ofni on a given lattice site such that both
mass and momentum are conserved. Since the algorithm shouldsimulate thermal fluctu-
ations, this should be done in a way that is (i) stochastic and(ii) consistent with the de-
veloped statistical–mechanical model. This is straightforwardly imposed by requiring that
the collision is nothing but a Monte Carlo procedure, where aMonte Carlo step transforms
the pre–collisional set of populations,ni, to the post–collisional one,n⋆

i . Consistency with
statistical mechanics can be achieved by requiring that theMonte Carlo update satisfies the
condition of detailed balance. Most easily this is done in terms of the normalized modes
m̂k, which we update according to the rule (k ≥ 4)

m̂⋆
k = γkm̂k +

√

1 − γ2
krk. (41)

Here theγk are relaxation parameters with−1 < γk < 1, and therk are statistically
independent Gaussian random numbers with zero mean and unitvariance. Mass and mo-
mentum are automatically conserved since the corresponding modes are not updated. Com-
parison with Eq. 40 shows that the procedure indeed does satisfy detailed balance. The
parametersγk can in principle be chosen at will; however, they should be compatible with
symmetry. For example, mode number four corresponds to the bulk stress, with a relax-
ation parameterγb, while modes number five to nine correspond to the five shear stresses,
which form a symmetry multiplett. Therefore one must chooseγ5 = . . . = γ9 = γs. For
the remaining kinetic modes one often usesγk = 0 for simplicity, but this is not necessary.

6 Lattice Boltzmann 3: Chapman–Enskog Expansion

The actual LB algorithm now consists of alternating collision and streaming steps, as sum-
marized in the LB equation (LBE):

ni(~r + ~cih, t + h) = n⋆
i (~r, t) = ni(~r, t) + ∆i {ni(~r, t)} . (42)

The populations are first re–arranged on the lattice site; this is described by the so–called
“collision operator”∆i. The resulting post–collisional populationsn⋆

i are then propagated
to the neighboring sites, as expressed by the left hand side of the equation. After that, the
next collision step is done, etc.. The collision step may include momentum transfer as a
result of external forces (for details, see Ref. 1); apart from that, it is just given by the
update procedure outlined in the previous section.
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A convenient way to find the dynamic behavior of the algorithmon large length and
time scales is a multi–time–scale analysis. One introducesa “coarse–grained ruler” by
transforming from the original coordinates~r to new coordinates~r1 via

~r1 = ǫ~r, (43)

whereǫ is a dimensionless parameter with0 < ǫ ≪ 1. The rationale behind this is the
fact that any “reasonable” value for the scaler1 will automatically forcer to be large. In
other words: By considering the limitǫ → 0 we automatically focus our attention on large
length scales. The same is done for the time; however, here weintroducetwoscales via

t1 = ǫt (44)

and

t2 = ǫ2t. (45)

The reason for this is that one needs to consider both wave–like phenomena, which happen
on thet1 time scale (i. e. the real time is moderately large), and diffusive processes (where
the real time isverylarge). We now write the LB variables as a function of~r1, t1, t2 instead
of ~r, t. Since changingǫ at fixed~r1 changes~r and thusni, we must take into account that
the LB variables depend onǫ:

ni = n
(0)
i + ǫn

(1)
i + ǫ2n

(2)
i + O(ǫ3). (46)

The same is true for the collision operator:

∆i = ∆
(0)
i + ǫ∆

(1)
i + ǫ2∆

(2)
i + O(ǫ3). (47)

In terms of the new variables, the LBE is written as

ni(~r1 + ǫ~cih, t1 + ǫh, t2 + ǫ2h) − ni(~r1, t1, t2) = ∆i. (48)

Now, one systematically Taylor–expands the equation up to order ǫ2. Sorting by order
yields a hierarchy of LBEs of which one takes the zeroth, first, and second velocity mo-
ment. Systematic analysis of this set of moment equations (for details, see Ref. 1) shows
that the LB procedure, as it has been developed in the previous sections, indeed yields the
fluctuating Navier–Stokes equations in the asymptoticǫ → 0 limit — however only for
low Mach numbers; in the high Mach number regime, where termsof orderu3/c3

s can no
longer be neglected, the dynamics definitely deviates from Navier–Stokes.

In particular, this analysis shows that the zeroth–order populations must be identified
with neq

i , and that it isnecessarythat this “encodes” the Euler stress via suitably chosen
weightsaci . Furthermore, one finds explicit expressions for the viscosities:

η =
hρc2

s

2

1 + γs

1 − γs
, (49)

ηb =
hρc2

s

3

1 + γb

1 − γb
. (50)
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Figure 1. (From Ref. 5) Velocity autocorrelation function of a single colloidal sphere, normalized by the initial
value, in thermal equilibrium. The velocity is here defined as the center–of–mass velocity of the particles which
form the sphere.

˙

v2
¸

, i. e. thet = 0 value of the unnormalized function, is therefore given by the equipartition
theorem of statistical mechanics. For larger times, the surface particles become more and more coupled to the
fluid inside the sphere, and thus the effective mass of the sphere increases. This is the reason for the first initial
decay before a plateau is reached. After that, the function decays according to the famoust−3/2 long–time tail.
Finally, the particle becomes coupled to the whole fluid in the whole simulation box and the behavior becomes
dominated by this finite–size effect. For comparison, the figure also shows the decay of the colloid velocity in a
deterministiccomputer experiment, where the noise amplitude for both theparticle dynamics and the LB degrees
of freedom has been set to zero, and the particle was “kicked”at t = 0. This function has been normalized by
the initial value, too. According to linear response theory, both curves must coincide, which they do.

7 Example: Dynamics of Charged Colloids

The coupling scheme that has been described in this article is particularly useful for im-
mersed particles with internal degrees of freedom, like flexible polymer chains, or mem-
branes. It can also be applied to systems whose immersed particles are “hard” (for example,
colloidal spheres), although the alternative approach by Ladd (see Ref. 1) that models the
particles as rigid bodies interacting with the LB fluid via boundary conditions is probably
slightly more efficient. Nevertheless, for reasons of easy program develepment it makes
sense to use the same scheme for both flexible and rigid systems. In what follows, some
results for a colloidal system shall be presented, in order to demonstrate that and how the
method works.

In Ref. 5 we have developed the so–called “raspberry model” for a colloidal sphere.
Since the model is intended for charged systems with explicit (salt and counter) ions, it
should take into account (at least to some degree) the size difference between colloids
and ions. Therefore the colloid is, in terms of linear dimension, roughly 6–7 times larger
than the small particles. The LB lattice spacing is chosen asidentical to the small ion
diameter. This is combined with a linear force interpolation to the nearest neighbor sites.
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A larger lattice spacing would result in a rather coarse description of the hydrodynamic
interactions, while a yet smaller spacing would result in a large computational overhead.
In this context, it should be noted that one would obtain an ill–defined model with infinite
particle mobility if one would let the lattice spacing tend to zero, while sticking to the
nearest–neighbor interpolation scheme1. This is due to the fact that the effective long–time
mobility that results from the dissipative coupling is not given by1/Γ, but rather by

1

Γeff
=

1

Γ
+

1

gησ
, (51)

whereσ is the range of the interpolation function andg a numerical prefactor. Therefore,
one needs to keep the range of the interpolation function constant, which would involve
more and more effort if one would insist onb → 0. Within limits, it is of course possible to
compensate the effects of a change ofσ by suitably re–adjustingΓ — only the long–time
valueΓeff is of real physical significance.

In principle, it would therefore be possible to model a colloidal sphere by a particle
which exhibits a suitably chosen excluded–volume interaction for the other (small or large)
particles, plus a suitably adjusted large value of the interpolation rangeσ, which essentially
plays the role of a Stokes radius. However, such a model wouldnot describe the rotational
degrees of freedom, and these are important. For this reason, we rather model the colloid as
a large sphere, around which we wrap a two–dimensional network of small particles (same
size as the ions) which are connected via springs. Only the surface particles are coupled
dissipatively to the LB fluid. Figures 1 and 2 show that the model behaves exactly as one
would expect from hydrodynamics and linear response theory. Figure 1 shows the particle
velocity autocorrelation function, from which one obtains, via integration, the translational
(or self) diffusion coefficientDS :

DS =
1

3

∫ ∞

0

dt 〈~v(t) · ~v(0)〉 . (52)

In an infinite hydrodynamic continuum, Stokes’ law results in the predictionDS =
kBT/(6πηR) for a sphere of radiusR. Indeed, this is what one finds in that limit. How-
ever, for (cubic) simulation boxes of finite linear dimension L, the diffusion constant is
systematically smaller, as a result of the hydrodynamic interactions with the periodic im-
ages:

DS =
kBT

6πηR
− 2.837

kBT

6πηL
. (53)

This is an analytic result, where higher–order terms in theL−1 expansion have been ne-
glected. Figure 2 shows that this prediction is nicely reproduced. Furthermore, the rota-
tional diffusion constant, which can be obtained by integrating the angular–velocity auto-
correlation function,

DR =
1

3

∫ ∞

0

dt 〈~ω(t) · ~ω(0)〉 , (54)

exhibits a similar1/L finite size effect; the asymptotic valuekBT/(8πηR3) is only
reached for infinite system size. As Figure 2 shows, this prediction is reproduced as well.

11



0 0.02 0.04 0.06 0.08 0.1
1/L

0

0.2

0.4

0.6

0.8

1

D
S
/D

0, D
R
/D

0

D
S

D
R

Figure 2. (From Ref. 5) Translational (DS ) and rotational (DR) diffusion coefficient, normalized by the asymp-
totic infinite–system value, as a function of inverse systemsize1/L. The straight line is a fit forDR, while it is
the analytical prediction (see text) forDS .

Electrokinetic phenomena can be investigated by supplyinga charge to the central col-
loidal sphere, and by adding ions such that the total system is charge–neutral. We have
studied the electrophoretic mobility, i. e. the response toan external electric fieldE:

µ =
v

eE
, (55)

wherev is the colloid drift velocity ande the elementary charge. The simplest case is to
simulate just a single colloid with chargeZe in a cubic box, and to addZ monovalent
counterions to compensate the colloidal charge (i. e. no further salt ions are added). This
corresponds to a system with a finite volume fraction (one colloid per box). It should be
noted that one shouldnot consider the limit where this system is being put into largerand
larger boxes: In that case, the ions would simply “evaporate”, and one would obtain a
trivial value forµ that is just given by Stokes’ law.

Usually the mobility is given in dimensionless units: The so–called reduced mobility
µred is obtained by normalizing with a Stokes mobility, using theBjerrum lengthlB as the
underlying length scale:

µred = 6πηlBµ, (56)

lB =
e2

4πεkBT
, (57)

whereε is the fluid’s dielectric constant.
Fortunately,µ is subject to a much smaller finite size effect than the diffusion constant.

This has been checked by simulations, see Fig. 3. The reason for this behavior is the
fact that the electric field does not exert a net force on the overall system, due to charge
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Figure 3. Reduced electrophoretic mobility as a function ofinverse system size1/L. In order to keep conditions
constant (i. e. constant colloidal volume fraction, and constant ion concentration), the box size was systematically
increased, while at the same time more and more colloids (up to eight), together with their compensating ions,
were put into the box. Within our resolution, no finite size effect could be detected.

neutrality. In other words: The field induces two electric currents in opposite direction.
These currents, in turn, induce hydrodynamic flows. These flows, however, cancel each
other exactly in leading order. Therefore the hydrodynamicinteractions with the periodic
images are weak. This should be contrasted with the diffusion constant, which corresponds
to the response to an external gravitational field. The latter doesexert a net force on the
overall system, and hence one obtains a large–scale flow decaying like the inverse distance
from the colloid. This1/r flow field is exactly the reason for the1/L finite–size effect in
the diffusion constant as shown in Fig. 2.

The electrophoretic mobility may be obtained by either applying an electric field, and
measuring the drift velocity, or by Green–Kubo integration6, where a system in strict ther-
mal equilbrium is studied:

kBTµ =
1

3

∑

i

zi

∫ ∞

0

dt 〈~vi(0) · ~v0(t)〉 , (58)

where the indexi denotes particle numberi, andzi is its valence. Particle number zero is
the colloid whose response to the electric field is considered. The nonequilibrium approach
is hampered by the fact that, for reasonable electric field values, the response is quite typi-
cally in the nonlinear regime (mainly as a result of charge–cloud stripping). Therefore, one
needs to extrapolate to zero driving. In contrast, the Green–Kubo value is,per definition,
the linear–response result. Figure 4 shows that the two approaches yield the same result.

Further results that have been obtained with this model include a study of the concen-
tration dependence ofµ, both in terms of colloid volume fraction of a salt–free system, and
in terms of salt concentration at fixed colloid concentration. Without going into further de-
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Figure 4. (From Ref. 6) Reduced electrophoretic mobility for the single–colloid system described in the text, as
a function of the colloid’s chargeZ, comparing nonequilibrium with Green–Kubo integration (GKI) results. The
mobility first increases, since the force is proportional tothe charge. However, for largerZ values it saturates,
indicating that more and more ions condense at the colloid’ssurface, such that the effective charge does not
change. ForeE = 0.2, nonlinear effects lead to an increased mobility, whileeE = 0.1 is still in the linear–
response regime, as demonstrated by the comparison with theequilibrium data.

tails, it should just be mentioned that the reduced–mobility data can be nicely rationalized
in terms of a scaling theory6 which then allows a favorable comparison with experimental
results7.

Of course, this is not the only example where the coupled MD–LB approach has helped
to understand the dynamics of soft matter. Other examples include the dynamics of poly-
mers and neutral colloids in both equilibrium and nonequilibrium situations; these have
been outlined in Ref. 1. Further simulations will follow in the future, and it seems that the
method is gaining popularity in the soft–matter community.
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