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We discuss Dissipative Particle Dynamics as a thermostat to Molecular Dynamics, and highlight
some of its virtues: (i) Universal applicability irrespective of the interatomic potential; (ii) correct
and unscreened reproduction of hydrodynamic correlations; (iii) stabilization of the numerical in-
tegration of the equations of motion, and (iv) the avoidance of a profile bias in boundary—driven
nonequilibrium simulations of shear flow. Numerical results on a repulsive Lennard—Jones fluid

illustrate our arguments.

PACS numbers: 02.70.Ns Molecular dynamics and particle methods

05.10.-a Computational methods in statistical physics and nonlinear dynamics
05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion
05.70.Ln Nonequilibrium and irreversible thermodynamics

I. INTRODUCTION

The natural thermodynamic ensemble of Molecular
Dynamics (MD) simulations [1, 2] is the microcanoni-
cal NV E ensemble (N number of particles, V' volume, E
energy). Nevertheless, in many cases one wants to mod-
ify the equations of motion such that the simulation runs
in the canonical NVT ensemble (T denoting the absolute
temperature), i. e. to apply a so—called “thermostat” to
the system. This may be desirable for various reasons.
(i) In equilibrium situations, some thermodynamic re-
lations (in particular fluctuation relations like e. g. for
the specific heat) are often more straightforward to de-
rive and to evaluate than for NV E. (ii) The thermostat
may tend to stabilize the simulation, such that a larger
time step is permitted. This is true for Langevin—type
stochastic thermostats (see below), and a serious issue if
a very long observation time is required. For example,
when studying the dynamics of dense bead—spring poly-
mer melts, one needs to observe the system over many
millions of steps. Comparing two simulations of (essen-
tially) the same model, where one was run in the NVE
ensemble [3], using the Verlet algorithm [1, 2], while the
other [4] employed a stochastic dynamics (SD) Langevin
thermostat [5], one sees that the NVT ensemble permits
a time step of 0.0127, while stability in the microcanon-
ical ensemble requires a time step as small as 0.0037.
Here 7 denotes the natural time unit derived from the
purely repulsive Lennard-Jones potential to model the
beads [3, 4]. (iil) In Nonequilibrium Molecular Dynamics
(NEMD) simulations [6] of steady states the thermostat
is of paramount importance. The system is driven by an
external force, i. e. energy is pumped into the system
and dissipated into heat. The thermostat is needed to
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remove this heat, just as in an experiment. It is, how-
ever, possible to combine the driving and thermostatting
into one simple algorithm [7, 8], see below.

The present paper deals with one particular thermo-
stat, the method of Dissipative Particle Dynamics (DPD)
[9-20]. It is a modification of the old SD thermostat,
which keeps practically all of its virtues, while avoid-
ing its most severe disadvantage, the lack of momen-
tum conservation and concomitant incorrect reproduc-
tion of hydrodynamics, i. e. unphysical screening of hy-
drodynamic interactions [21]. Actually, DPD was orig-
inally developed in order to simulate fluids on a meso-
scopic scale with correct hydrodynamic interactions. The
idea was to use rather soft particles, which, vaguely spo-
ken, should represent a cluster of atoms. This permits
a large MD time step. Furthermore, a momentum—
conserving stochastic thermostat is added, in order to
model the internal degrees of freedom, which result in
dissipation. While the original formulation [9] violated
the fluctuation—dissipation theorem, the more recent im-
plementations based on the work by Espanol and Warren
[11] satisfy it, and hence produce a well-defined NV T en-
semble. The thermostat thus allows even more increased
time steps. However, it turned out rather soon that run-
ning these soft systems with very large time steps is less
advantageous than originally expected: While the algo-
rithm as such does remain stable, there are substantial
discretization errors involved, such that, e. g., the mea-
sured temperature deviates significantly from the desired
value. There have been many attempts to improve this
situation by implementing more sophisticated integration
schemes; this is currently a rather active field of research
[15-20]. Interestingly enough, the time step issue is a
very different one for hard potentials: In that case, the
mere requirement of stability automatically enforces a
rather small time step, under which condition the accu-
racy of the numerical solution is usually quite acceptable.

Unfortunately, many outlines of DPD discuss these two
aspects (soft particles on the one hand, thermostat on the



other) as one unified method. However, as a matter of
fact, they are completely independent, and thus it is per-
fectly legitimate to use the DPD thermostat also for sim-
ulations with “hard” particles. Such potentials are often
desired in order to take molecular packing effects realisti-
cally into account, e. g. in the formation of mesophases of
low molecular weight amphiphiles, or in the study of en-
tangled polymer systems. Though it was already stated
in Ref. [13] that DPD can be viewed just as a thermostat
to MD, the possibility to apply it to “hard” systems has
not yet been widely exploited (exceptions are, e. g., Refs.
[22, 23]), and apparently its usefulness for such systems is
not yet fully appreciated. The present paper is intended
to fill this gap.

We run a standard MD system with an added DPD
thermostat, thereby being able to afford a substantially
larger time step compared to pure MD, and nevertheless
reproducing hydrodynamic behavior correctly. This lat-
ter statement means, more precisely, that we correctly
reproduce momentum propagation, which is often quite
important in the dynamics of complex fluids. On the
other hand, energy transport is not simulated faithfully,
as the temperature is being kept constant on a local scale.
Formally, this may be viewed as the limit of infinite ther-
mal conductivity, which is not completely unrealistic, as
for many systems the thermal conductivity is quite large.
Furthermore, the “conventional” MD potentials force us
to use a time step which is not too large (actually rather
small in comparison with many DPD simulations of soft
particles), and thus systematic discretization errors are
of negligible importance for our simulations.

We have combined this approach with NEMD of shear
flow, using a slight modification of the boundary—driven
approach of Ref. [8]. We then arrive at an algorithm
which is completely local. For parallelization, we use
domain decomposition via a suitable adaptation of the
method described in detail in Ref. [24].

The remainder of the paper is organized as follows:
In Sec. II we compare existing thermostats and NEMD
schemes and state the arguments why we believe that our
selected combination is useful. Section III discusses our
simulational details, and presents a few test results. In
particular, we study the shear viscosity of a simple liquid,
comparing the SD to the DPD thermostat. Finally, we
conclude in Sec. IV.

II. THERMOSTATS AND NEMD ALGORITHMS

A. Thermostats

There are several well-known MD thermostats which
generate a well-defined NVT ensemble. The Nosé-
Hoover (NH) thermostat [25, 26] is a time-reversible
deterministic scheme in which the system is coupled
to one additional degree of freedom (. In equilibrium,
the equations of motion for an N—particle system in d—

dimensional space are
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where 7; are the particle coordinates, p; the particle mo-
menta, m; the masses, F"l the forces resulting from the in-
teratomic potential, kg the Boltzmann constant, and M
a mass-like parameter which sets the rate how quickly the
system is thermostatted. In equilibrium, the variable  is
Gaussian with zero mean and variance <C2> = kgT/M.
Similarly, from the fluctuations of the kinetic energy
one concludes that ¢ has vanishing mean and variance

<C2> = 2dN(kgT)?/M?>. This results in a typical time
scale for the variation of (:
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Efficient equilibration requires that this matches typical
atomic time scales (“resonance”), i. e. M o N. In turn,
this means that the typical ¢ values scale like N—1/2,
In other words, the dynamics becomes more and more
Newtonian when the system size is increased, and this
means in turn that the method should reproduce hydro-
dynamics correctly if the system is chosen large enough.
On the other hand, this also means that the NH thermo-
stat does not stabilize the numerical integration of the
equations of motion, because it is only based on a global
feedback. Furthermore, the evaluation of the total kinetic
energy involves global communication over all processors
if the system is run on a parallel machine with domain
decomposition. This is another disadvantage of the NH
thermostat which should not be underestimated.

The SD thermostat [5] works quite differently. Here
every particle is coupled to a viscous background and a
stochastic heat bath, such that
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where ( is now a constant friction parameter, while

the stochastic forces f; have zero mean and satisfy the

fluctuation—dissipation theorem

(FRF)) = 2kpTo00a0(t = ¢),  (4)

a and B denoting Cartesian indices. The effect of this al-
gorithm is to thermostat the system on a local scale. Par-
ticles which are too “cold” are given more energy by the
noise term, while too “hot” particles are slowed down by



the friction. Numerical instabilities, which usually arise
from inaccurate calculation of a local collision—like pro-
cess, are thus effectively kept under control, and cannot
propagate. This is the reason why for this scheme a larger
time step is possible than for pure MD. On the other
hand, the algorithm violates Galilean invariance, as the
damping biases the velocities towards the “laboratory”
reference frame. This results in non—conservation of mo-
mentum (the center of mass of the overall system dif-
fuses), and in effective damping of the hydrodynamic cor-
relations, on the length scale of a hydrodynamic screening

length
1/2
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where 7 is the shear viscosity, and n the particle number
density. This is seen quite straightforwardly by noticing
that, in the hydrodynamic picture, the algorithm intro-
duces a friction force per unit volume —(ni, where 4 is
the fluid streaming velocity. The random forces, on the
other hand, are averaged to zero. Thus the term nAi in
the Stokes equation is replaced by nA# — (ni. Setting
this to zero, and replacing A with [~2 yields Eq. 5. For
a more formal derivation, see Ref. [21]. For ¢ — 0 the
screening length diverges, as in this limit purely Newto-
nian dynamics is recovered.

The DPD algorithm is similar in spirit. There is also
local friction and noise, such that the thermostatting and
stabilizing features of SD are retained. As shown in Sec.
ITI, we were able to run the DPD-thermostatted system
with the same large time step as with SD. However, in
contrast to SD, the friction does not dampen the “abso-
lute” velocities of the particles, but rather the velocity
differences of nearby particles. The method is thus sen-
sitive to velocity gradients, as it should, in order to be
consistent with hydrodynamics. Similarly, the stochastic
forces act on pairs of nearby particles, such that Newton’s
third law is strictly fulfilled. The method thus satisfies
the two basic requirements for reproducing hydrodynam-
ics on large length and time scales, locality and momen-
tum conservation. Indeed, it was shown formally that
hydrodynamic behavior is recovered in that limit [12].
Care has to be taken to satisfy the fluctuation—dissipation
theorem to obtain a well-defined temperature. The orig-
inal version of Hoogerbrugge and Koelman [9] did this
incorrectly (it violated Eq. 12, see below); the necessary
modification was introduced by Espafiol and Warren [11].

The DPD equations of motion are given by

H= (6)

b= Fi+ P+ Ff
where F}D denotes the additional damping (or dissipa-

tive) force on particle 7, and ﬁiR the corresponding ran-
dom force. These latter are now based on particle pairs,
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The dissipative force in the formulation of Espafiol and
Warren [11] is given by

Ef = —CwP (rij) (7 - T;5)Fi5 (8)
and the random force by
ﬁllj = UwR(Ti]')ei]’fi]’. (9)

Here, ¥;; = ¢; — ¥; is the relative velocity between par-
ticles ¢ and j, while 7;; denotes the unit vector of the
interatomic axis 7j; = 7 — ;. ( is the friction constant
and o the noise strength. w” and w® are r-dependent
weight functions vanishing for r > r.. 6;; is a Gaussian
white noise variable with 6;; = 0;; and first and second
moments

(0:;;(1)) = 0 (10)
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FP and FE act along the interatomic axis and thus con-
serve the momentum. There is an independent random
function for each pair of particles. In order to satisfy the
fluctuation—dissipation theorem, the relations

0? = 2kpT¢ (11)
and
[w (r)]* = w?(r) (12)

must hold [11]. The usual choice is

wP(r) = [wh(r)]* = {(1 it <
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Another possible choice, which might be computationally
more efficient, would be
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The scheme is thus seen to combine the positive aspects of
the two previous thermostats: Strict Galilean invariance,
and correct hydrodynamics, like NH for large systems,
and numerical stabilization, like SD. We hence believe it
to be the ideal thermostat whenever one studies prob-
lems where hydrodynamics (momentum transport, but
not heat flow) is (or is suspected to be) important.

Yet another approach for thermostatting has been sug-
gested by Andersen [27]. Instead of solving a Langevin
equation, the procedure periodically picks some particle



at random, and assigns a new random velocity from a
Maxwell distribution to it. This procedure generates a
canonical distribution, and, like SD, it does not conserve
the momentum. Unlike SD, however, it does not “smear
out” the thermostatting homogeneously (with respect to
both space and time), but rather generates kicks which
are localized and rather strong (the trajectory is not con-
tinuous in phase space). This is a property which we view
as somewhat disadvantageous compared to SD (and this
is why we do not use it); nevertheless, in many cases the
method has been applied very successfully. The Ander-
sen method is also computationally slightly more efficient
than SD, since only now and then a single particle is in-
volved.

In the same way as DPD can be viewed as the
momentum-—conserving version of SD, one can also devise
a momentum—conserving version of the Andersen ther-
mostat, which works along similar lines as DPD (again,
relative velocities are thermostatted). This idea has been
put forward by Lowe [28]. Concerning the comparison
with DPD, the same comments can be made as for the
comparison SD vs. Andersen.

B. NEMD Algorithms for Shear

A simple way to introduce a shear rate
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with uy, = u, = 0 for simple Couette flow is by modifying
the periodic boundary conditions (Lees—Edwards bound-
ary conditions [29]). A particle that leaves the box in
y direction at the “top” and re—enters at the “bottom”
is displaced appropriately both in position and velocity
space. Furthermore, a thermostat must be added in or-
der to remove the viscous heat; this shall be discussed
below. It should be noticed that this scheme explicitly
breaks the translational invariance in y direction: The
positions where “something happens” to the particles are
well-defined layers in space. Hence, the method can be
viewed as a boundary—driven method. Another popu-
lar approach is to use the so—called SLLOD equations
of motion [6]. This is a homogeneous (or “synthetic”)
method, where the effect of the imposed shear is rather
smeared out homogeneously over the y axis, and a linear
shear profile is enforced (i. e. translational invariance is
re—established).

Boundary—driven and homogeneous methods have
both advantages and disadvantages. The advantage of
a homogeneous method is that there are no corrections
to the bulk behavior by boundary layers, such that rather
small systems can be studied. Homogeneous methods are
therefore very well suited for the efficient calculation of
linear transport coefficients (although some care must be
taken to verify that the simulation is indeed in the lin-
ear regime). The disadvantage is that the linear profile
is enforced, such that the applicability is restricted to

cases where the profile indeed is linear. This, however,
is not always the case. Many complex fluids exhibit the
phenomenon of “shear banding”, where the translational
symmetry in y direction is spontaneously broken as a re-
sult of a hydrodynamic instability. A homogeneous algo-
rithm suppresses the occurence of such instabilities, and
can therefore produce incorrect physics. Conversely, a
boundary—driven method allows the system to choose its
own profile (if the thermostat does so, too), and is hence
able to study such phenomena. It must however be noted
that boundary—driven approaches tend to require larger
systems. Nevertheless, as the emphasis of today’s simu-
lations is more on nonlinear phenomena, we think that
boundary—driven methods are preferrable, and therefore
we will not discuss homogeneous methods any further.

Let us now discuss the thermostat. Sticking to the
“boundary—driven” philosophy, it is obviously the “clean-
est” way to restrict the thermostatting to boundary lay-
ers, too, while the interior of the sample is run with pure
NVE dynamics. This implies cooling of the layers, and
some heat flow from the center (where the viscous heat
is produced) to the layers. A particularly simple and
ingenious way to restrict driving and thermostatting to
boundary layers in one common algorithm has recently
been put forward by F. Miiller—Plathe (for heat trans-
port in Ref. [7], for shear simulations in Ref. [8]). One
regularly selects pairs of particles with the property that
they reside in opposite layers, and that their velocity dif-
fers particularly strongly from the desired velocity of the
layer. Then the velocities are just exchanged. In case
of a multicomponent fluid, one has to take care that the
pairs are selected in a way that the masses are identi-
cal. This obviously conserves momentum and energy,
and hence produces a stable steady state, such that no
additional thermostatting is necessary. Surely enough,
the cooling at the boundaries is indeed observed [8]. The
easiest way to understand this is to notice that viscous
heating is nothing but entropy production, and that the
algorithm actually removes entropy at the layers by ar-
tificially putting in information (in essence, the method
is just a Maxwell demon). The viscosity then results di-
rectly from the ratio between transported momentum (or
applied force) and resulting shear gradient.

A slight technical difficulty arises with this algorithm
when trying to apply it to small systems which are only
weakly sheared. This is particularly true when one at-
tempts to control the shear rate from the outset by a feed-
back procedure which enforces velocity exchanges from
the criterion of the momentary shear being too small or
too large. The simplistic procedure to select within a
layer just the particle whose velocity differs most strongly
from the desired layer velocity may lead to large over-
shoots of the layer velocity after the exchange, since even
a single—particle exchange already may give a momentum
transfer which is significantly too large. This requires to
either correct this in the subsequent step, which results
in undesirable oscillations, or to carefully select the pair
for exchange to reach the desired result. In the latter



case, a rather cumbersome search procedure is necessary.

On the other hand, if the system is thermostatted in
the bulk (in order to stabilize the integration of the equa-
tions of motion, and to enforce a homogeneous temper-
ature profile), it is not necessary to drive the sytem via
a Maxwell demon. This can rather be done by simply
applying a uniform force on all the layer particles, which
is adjusted every single time step to keep the shear rate
strictly constant. It is this latter procedure which we
have implemented in our tests, which we restricted to
a rather small system of only 4096 particles. Here we
used simple periodic boundary conditions in all three di-
rections for a box of size L, x L, x L.. Two thin layers
perpendicular to the y axis, with distance L, /2, were cho-
sen for driving in the +z and —z direction, respectively.
This setup effectively generates two Couette cells with
opposite shear gradients. Compared to Lees—Edwards
boundary conditions, this procedure has the advantage
that the driving occurs only in velocity space, such that
it is quite readily implemented as a modification of a par-
allelized equilibrium simulation. In our case, we used a
straightforward adaptation of the program described in
Ref. [24].

An important issue of thermostatting the system in
the bulk is that one has to make sure that a so—called
profile—unbiased thermostat (PUT, [6]) is applied. For
NH, one defines the so—called “peculiar velocities” &; [6]
as the difference between the actual velocities and the
expected linear profile. These are used to define the ki-
netic temperature in the equation of motion for (. How-
ever, this scheme is a typical example of a profile-biased
thermostat (PBT) [6]. While the procedure is perfectly
legitimate in the linear-response regime (here the profile
is linear anyways), unphysical results must be expected
(and have been observed, see Ref. [6]) in the nonlinear
regime: The PBT prefers the linear profile and thus tends
to suppress the occurrence of hydrodynamic instabilities.
The way out is to use a PUT which does not single out
a prescribed profile but rather lets the system choose its
own. To do this within the framework of NH is possible,
but implies a rather awkward self-consistent procedure
[6].

For SD, a possible choice is to only thermostat the ve-
locities in y and z direction (recall u, = u, = 0 for Cou-
ette flow). This should not pose any problem as long as
one studies simple shear in the linear regime. However,
in the nonlinear regime such a procedure is somewhat
dangerous, as it presupposes a certain symmetry of the
steady state, which may be broken (and usually the kind
of symmetry—breaking is not known in advance). For
simple shear banding, where only the translational invari-
ance in y direction is broken, the procedure is probably
acceptable. The most naive approach, i. e. to just apply
the SD thermostat in all three directions, will fail even in
the linear regime and produce an incorrect apparent vis-
cosity; this is outlined in the Appendix. The same is true
if one thinks of thermostatting the peculiar velocities; in
this case the “friction” term —(¢& would punish any ve-

locity which is not in accord with the prescribed velocity
profile, and actually drive the system in the bulk, which
is clearly not desired.

Conversely, the DPD thermostat, which is based upon
relative velocities, does not presuppose any sort of sym-
metry, and is profile—unbiased by construction.

Taking all these considerations together, we thus ar-
rive at what we believe to be a very suitable algorithm
to study nonlinear effects in shear flow: Use a boundary—
driven method combined with the DPD thermostat. This
results in a simple and easy—to—implement simulation
with a straightforward PUT, which keeps the tempera-
ture profile constant, and, as additional bonus, stabilizes
the integration of the equations of motion. If there is sus-
picion that heat flow might be important, one can instead
avoid thermostatting altogether, and drive the system by
a Maxwell demon.

In order to demonstrate that it is really important to
allow the system to choose the profile of its own liking,
we show in Fig. 1 the configuration of a system of am-
phiphilic molecules, simulated by the model outlined in
Ref. [30], using essentially the algorithm described above
[31]. The system exhibits very strong shear—banding:
While the ordered regions move essentially as “blocks”,
the shear is concentrated in the narrow strips where it is
disordered. More details of this simulation will be pub-
lished elsewhere.

III. SIMULATIONS

The simulations were carried out with a system con-
sisting of 4096 Lennard—Jones (LJ) particles at a density
of p = 0.85 (in standard reduced units where the parti-
cle mass as well as the LJ parameters € and o are set to
unity) in a cubic box with periodic boundary conditions.
The LJ potential was cut off at a separation r, = 2/6
and shifted, so that only its repulsive part is left. The
thermostatting temperature was set to kg7 = 1. For the
thermostats (both SD and DPD) uniform random num-
bers were used, since it has been shown that they are
just as good as Gaussian ones for Langevin simulations
[32]. For the weight functions of the DPD thermostat
we used the standard choice (Eq. 13), and r, = 2'/6
for the cutoff. We integrated the equations of motions
with the velocity Verlet algorithm [1, 2], using a time
step At = 0.01 both for SD and DPD. As already men-
tioned, this is large compared to strict Newtonian MD,
while small compared to DPD simulations with ultra—soft
particles and ultra—large time steps. Therefore, our sim-
ulation was not hampered by the typical large discretiza-
tion errors of large time—step DPD simulations [15-20).
To test this, we measured the temperature in equilibrium
and found it to converge from a high value of kgT = 10
to the simulation temperature kgT = 1 within 400 time
steps for DPD in comparison to somewhat less than 600
for SD, at a damping constant of { = 1. The usual choice
for SD lies in the range 0.5 < ¢ < 1.5; this ensures that



the friction from the algorithm is still rather small com-
pared to the intrinsic friction from the surrounding par-
ticles for these dense systems.

We did not carefully analyze the equilibrium properties
of the fluid, since they are essentially known from previ-
ous simulations: In Ref. [33] the same model was stud-
ied in detail, however at a slightly different state point
(p = 0.864, kpT = 1.2). Taking the results from that
simulation, we know that our fluid is characterized by (i)
a highly structured pair correlation function g(r), (ii) a
large pressure P = 10, (iii) a viscosity n = 2, and simi-
larly (iv) a kinematic viscosity v a2 2, while (v) the parti-
cle diffusion constant D is roughly D ~ 0.07. From this,
one sees that the Schmidt number S¢ = v/D is roughly
Se & 30, which is a reasonable value for real fluids (large
Sc means that diffusive momentum transport is substan-
tially faster than mass transport). For more details, see
Ref. [33].

Concerning computational efficiency, it is obvious that
DPD is somewhat more expensive than SD, since it in-
volves the calculation of velocity differences and of unit
vectors, plus the generation of substantially more ran-
dom numbers. In our simulations we found an average
slowdown of 35%. Note that one could optimize the DPD
procedure further by (i) introducing the simpler weight
function Eq. 14, and (ii) applying friction and noise not
every single time step, but, say, every second or third
step (pushing this idea to its limits, one would arrive at
the Lowe—Andersen [28] thermostat).

In Fig. 2 we compare the apparent viscosity 7.pp,
as obtained from naive SD and from DPD runs, vary-
ing the friction coefficient ( over a substantial range.
The data show on the one hand that for shear rates
4 = 0.001,0.01,0.1 there is not yet a measurable de-
pendence on ¥, and on the other hand that 7,,, is in-
dependent of the friction coefficient only for DPD but
not for SD. In the latter case, there is a sizeable increase
with (, and the physical value 7 is only recovered in the
limit ¢ — 0. The theoretical considerations of the Ap-
pendix explain this increase as a result of hydrodynamic
screening, which gives rise to an inhomogeneous shear
profile which is concentrated around the driving layers,
with thickness of the order of the hydrodynamic screen-
ing length k= = [ (see Eq. 5). The resulting prediction
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is also shown in Fig. 2, using the value 79 = 2. Obviously,
the increase in 1, is much weaker than expected. We
do not fully understand this deviation but believe that
it is some sort of finite size effect. The system has a
thickness of order of 16 atomic layers, and this is probably
not enough to faithfully represent the strongly modified
profile. Indeed, it is reasonable to assume that the atomic
structure of the fluid prohibits a decrease of the screening
length below a value of order of a particle diameter. If
we thus assume l,,;, = 2 Or Kmae = 0.5, we find that

Napp/Mo cannot exceed the value KpmazLy/4 ~ 2, which is
roughly what we observe.

Strictly spoken, for the DPD case a constant 7,y is
not expected either. Rather the theoretical prediction is
[12]

o — 1 4+ 0(¢?). (17)
Mo

The prefactor of the correction term is non—universal,
and can be written as a Green-Kubo integral over the
autocorrelation function of the dissipative stresses. The
important point, however, is that (in contrast to SD)
it is an intensive quantitity, i. e. does mot depend on
the system size L,. Indeed the data of Fig. 2 show no
systematic increase of 74y, within our range of ¢, and
within our error bars. For our system, whose behavior
is dominated by the hard interatomic interactions, the
correction due to the friction is below resolution within
the studied range of ( values.

IV. CONCLUSIONS

Our considerations and test results show that DPD is
a very useful thermostat for MD, which should be used
whenever hydrodynamics (momentum transport) is im-
portant. Unlike SD, it does not screen the hydrodynamic
correlations, and unlike NH, it is completely local. To our
knowledge, it is the first thermostat which avoids profile—
biasing of NEMD simulations in a very natural and sim-
ple way, as it introduces neither an absolute reference
frame (as SD) nor the concept of “peculiar velocities”
(as NH). We think that it is therefore the ideal thermo-
stat for NEMD simulations — with the caveat that its
applicability is of course restricted to phenomena where
energy transport plays no role (for example, it would not
be applicable for studying, say, Rayleigh-Benard convec-
tion). In such cases, strictly Newtonian MD, combined
with a Maxwell demon along the lines of Refs. [7, §]
is most probably the method of choice. These consid-
erations are all in accord with our general belief that
nonlinear phenomena in nonequilibrium systems should
be studied by methods which do not interfere with the
system in the bulk. From this perspective, the main ad-
vantage of DPD compared to just Newtonian MD is the
stabilization of the numerical integraton scheme, which
is also very important, in particular for simulations with
long observation times.
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APPENDIX A: PROFILE BIASING AND
APPARENT VISCOSITY FOR THE LANGEVIN
THERMOSTAT

In the boundary—driven method, the apparent viscosity
is obtained by measuring the average force F' (momen-
tum transfer per unit time) exerted onto the boundary
layers, and normalizing it by their area L,L, and the
shear gradient 4 = du, /Jy:

n= F/(’YLxLz)-

Here we have assumed an L, x L, x L, simulation cell,
and a shear gradient in y direction, while the velocity flow
field is in = direction. This procedure is, by definition,
correct if the underlying dynamics in the bulk is Newto-
nian (i. e. thermostatting occurs only at the boundaries,
t00), and 4 is small enough to exclude nonlinear effects.
An equivalent procedure is obtained by realizing that the
average dissipated energy per unit time and unit volume
is given by 14?2, resulting in a total dissipated power of
anLyLz’yQ. On the other hand, the power put into the
system by external driving is Fu = FyL,. Equating
these expressions, one again obtains Eq. Al.

For a system which is subject to a bulk Langevin ther-
mostat, the apparent viscosity 74pp, as measured by this
procedure, will, in general, differ from the true viscosity
7No. Since the produced velocity profile u(y) will in gen-
eral not be linear, we generalize the above consideration
to yield

L,/2 2
o= L e ()
Japp : —) +P(u .
o Ly ) ALy (u(y))

(A2)
Here we assume that the simulation cell extends from
—L,/2 to +L,/2, while P denotes the average energy
per unit time and unit volume which is dissipated by the
thermostat. Following a general principle of linear non—
equilibrium thermodynamics, we now assume that u will
adjust in such a way that the above energy dissipation
rate will be minimum.

Further progress requires calculation of P.  The
Langevin equation for a single particle with mass m (all
particles are assumed to have identical mass) is written
as

(A1)

d - R -
m Uy = Fi — CU; + fi

where the stochastic forces have zero mean and satisfy
the fluctuation—dissipation theorem

(IO W)) = 2kpTi6a56(t ~ 1),

Therefore the average dissipation power by the friction
term is given by

(A3)

(A4)

Pfr Zn(;(’l_)?),

where n denotes the particle density, to transform from
dissipation per particle to dissipation per unit volume.

(A5)

We now decompose the velocity into the flow velocity and
the peculiar velocity, writing @; = @+¢;, and note that for
weak driving the variance in terms of peculiar velocities
is still given by <c‘f> = 3kpT/m, as in the equilibrium
case. We hence find

Py, =n( [@® + 3kpT/m] . (A6)
Similarly, it is straightforward to show that the ran-
dom displacements in velocity space result in an aver-
age increase of the kinetic energy, resulting in a term
Py = —3nCkpT/m. Therefore, the total dissipative
power per unit volume is

P = nCu? (A7)

where we have assumed that % points in = direction. In
the equilibrium case u = 0, P vanishes, as it should be.
Equation A2 thus becomes

Napp __ 1

+Ly/2 du\? N
= - d — | +nlu” . (A8
o Nolyy? /_Ly/z 1 <dy> ¢ (48)

We now introduce reduced variables A and ¢ by writ-
ing y = L,\/(27) and u = ¥Ly,¢/4, and the screening
parameter k2 = n(/ny (k! is just the hydrodynamic
screening length of the algorithm [21]). This transforms

Eq. A8 to
+ 2
Napp d¢ 1 HLy 2
— = d\ — . (A9
o /777 { <d>\> tor 27 4 ¢ (A9)

We now turn to the minimization of this expression, tak-
ing into account the way in which the simulation is run.
Firstly, we have periodic boundary conditions in all three

spatial directions, which allows us to write the profile in
terms of a Fourier expansion as

d(A) =bo + Z {an sin (An) + by, cos (An)}.

n=1

(A10)

Inserting this expression into Eq. A9, one finds after
some straightforward algebra

M:<RL> 2::

Mo

(a2 +b2) (A11)

with

1, (RLN
C'n—47rn -|-< 4> (A12)

Secondly, the shear is imposed in the layers y = £L, /4,
such that w(L,/4) — u(—L,/4) = YL, /2 or

o0
Za2p+1(_1)p =1
p=0

(A13)



Minimizing the dissipation rate with the constraint Eq.

A13, one finds that all coefficients except ag,as, ... van-
ish. The nonvanishing coefficients are given by
2(—1)P kL, <5Ly>
a = —~=coth [ —= | ; Al4
2p+1 02p+1 4 4 ( )
here we have made use of the relation [34]
— 1 14 L
Z = ——— tanh <u> . (A15)
=0 OQpJ,_l 2 I<.‘,Ly 4

Inserting this solution into Eq. Al1l, and using Eq. A15
again, one finds

2

Napp _ KLy kLy\ _ 1 KLy 4

w1 coth(—4 >—1+3 e + O(k%).
(A16)

The profile can also be obtained as a closed expression by
noticing that the Euler-Lagrange equation corresponding
to the functional Eq. A9 is given by the modified Stokes

equation
rd*¢ 1 (kL,\’
i (T) ¢ (A7)
with solution (between A = —7/2 and +7/2)
sinh (NQLW” )\)
P\ = (A18)

sinh (Niy )

(note that ¢ must be odd, and ¢(7/2) = 1). This implies
cusps at A = £7/2. Tt is straightforward to check that
the Fourier coefficients of this profile are indeed given
by Eq. Al4. One also sees that in the Newtonian limit
k = 0 a sawtooth profile is recovered. It should be noted
that quite analogous considerations have already been
put forward in Ref. [35].

The important point about this reasoning is that the
modifications become arbitrarily large when the system
size L, increases. Indeed, in the limit L, — oo, we just
have

Mapp _ KLy (A19)

Furthermore, one sees from Eq. A18 that the shear is
concentrated in a small layer, whose size is given by
the hydrodynamic screening length x 1. In other words,
the hydrodynamic screening prevents the driving at the
boundaries from having any effect beyond that layer. The
data analysis therefore underestimates the shear gradi-
ent by a factor of order k™' /L,, i. e. overestimates the
viscosity by a factor of order kL,. This is the physical
interpretation of Eq. A19.
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FIG. 1: Shear—banded state of a large system of amphiphilic molecules modeled as 995328 A-B dimers with attractive A-A
and B-B interactions. The particle color is used to distinguish between A and B. Direction of view is the z—direction, i. e.
the direction of the shear velocity. Direction up—down is the y—direction, i. e. the direction of the shear gradient. The system
organizes in lamellae whose normal is oriented in z—direction. The driving occurs at narrow layers at (i) the top / bottom and
(ii) the center of the box. Near these layers, the velocity gradient is essentially zero, and the molecules move as a homogeneous

“block”. The shear gradient is concentrated in small regions located in the middle between the driving layers; in these regions
the system is disordered.
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FIG. 2: Apparent shear viscosity 7.pp as a function of the friction constant ¢ for different shear rates and thermostats, as
indicated in the plot. The line indicates the theoretical prediction, Eq. 16.



