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ular Dynami
s SimulationsThomas Soddemann,� Burkhard D�unweg, and Kurt KremerMax Plan
k Institute for Polymer Resear
h, A
kermannweg 10, D{55128 Mainz, Germany(Dated: July 25, 2003)We dis
uss Dissipative Parti
le Dynami
s as a thermostat to Mole
ular Dynami
s, and highlightsome of its virtues: (i) Universal appli
ability irrespe
tive of the interatomi
 potential; (ii) 
orre
tand uns
reened reprodu
tion of hydrodynami
 
orrelations; (iii) stabilization of the numeri
al in-tegration of the equations of motion, and (iv) the avoidan
e of a pro�le bias in boundary{drivennonequilibrium simulations of shear 
ow. Numeri
al results on a repulsive Lennard{Jones 
uidillustrate our arguments.PACS numbers: 02.70.Ns Mole
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al physi
s and nonlinear dynami
s05.40.-a Flu
tuation phenomena, random pro
esses, noise, and Brownian motion05.70.Ln Nonequilibrium and irreversible thermodynami
sI. INTRODUCTIONThe natural thermodynami
 ensemble of Mole
ularDynami
s (MD) simulations [1, 2℄ is the mi
ro
anoni-
al NV E ensemble (N number of parti
les, V volume, Eenergy). Nevertheless, in many 
ases one wants to mod-ify the equations of motion su
h that the simulation runsin the 
anoni
alNV T ensemble (T denoting the absolutetemperature), i. e. to apply a so{
alled \thermostat" tothe system. This may be desirable for various reasons.(i) In equilibrium situations, some thermodynami
 re-lations (in parti
ular 
u
tuation relations like e. g. forthe spe
i�
 heat) are often more straightforward to de-rive and to evaluate than for NV E. (ii) The thermostatmay tend to stabilize the simulation, su
h that a largertime step is permitted. This is true for Langevin{typesto
hasti
 thermostats (see below), and a serious issue ifa very long observation time is required. For example,when studying the dynami
s of dense bead{spring poly-mer melts, one needs to observe the system over manymillions of steps. Comparing two simulations of (essen-tially) the same model, where one was run in the NV Eensemble [3℄, using the Verlet algorithm [1, 2℄, while theother [4℄ employed a sto
hasti
 dynami
s (SD) Langevinthermostat [5℄, one sees that the NV T ensemble permitsa time step of 0:012� , while stability in the mi
ro
anon-i
al ensemble requires a time step as small as 0:003� .Here � denotes the natural time unit derived from thepurely repulsive Lennard{Jones potential to model thebeads [3, 4℄. (iii) In Nonequilibrium Mole
ular Dynami
s(NEMD) simulations [6℄ of steady states the thermostatis of paramount importan
e. The system is driven by anexternal for
e, i. e. energy is pumped into the systemand dissipated into heat. The thermostat is needed to�present address: Re
henzentrum Gar
hing, Boltzmannstra�e 2,D{85748 Gar
hing, Germany

remove this heat, just as in an experiment. It is, how-ever, possible to 
ombine the driving and thermostattinginto one simple algorithm [7, 8℄, see below.The present paper deals with one parti
ular thermo-stat, the method of Dissipative Parti
le Dynami
s (DPD)[9{20℄. It is a modi�
ation of the old SD thermostat,whi
h keeps pra
ti
ally all of its virtues, while avoid-ing its most severe disadvantage, the la
k of momen-tum 
onservation and 
on
omitant in
orre
t reprodu
-tion of hydrodynami
s, i. e. unphysi
al s
reening of hy-drodynami
 intera
tions [21℄. A
tually, DPD was orig-inally developed in order to simulate 
uids on a meso-s
opi
 s
ale with 
orre
t hydrodynami
 intera
tions. Theidea was to use rather soft parti
les, whi
h, vaguely spo-ken, should represent a 
luster of atoms. This permitsa large MD time step. Furthermore, a momentum{
onserving sto
hasti
 thermostat is added, in order tomodel the internal degrees of freedom, whi
h result indissipation. While the original formulation [9℄ violatedthe 
u
tuation{dissipation theorem, the more re
ent im-plementations based on the work by Espa~nol and Warren[11℄ satisfy it, and hen
e produ
e a well{de�nedNV T en-semble. The thermostat thus allows even more in
reasedtime steps. However, it turned out rather soon that run-ning these soft systems with very large time steps is lessadvantageous than originally expe
ted: While the algo-rithm as su
h does remain stable, there are substantialdis
retization errors involved, su
h that, e. g., the mea-sured temperature deviates signi�
antly from the desiredvalue. There have been many attempts to improve thissituation by implementing more sophisti
ated integrations
hemes; this is 
urrently a rather a
tive �eld of resear
h[15{20℄. Interestingly enough, the time step issue is avery di�erent one for hard potentials: In that 
ase, themere requirement of stability automati
ally enfor
es arather small time step, under whi
h 
ondition the a

u-ra
y of the numeri
al solution is usually quite a

eptable.Unfortunately, many outlines of DPD dis
uss these twoaspe
ts (soft parti
les on the one hand, thermostat on the



2other) as one uni�ed method. However, as a matter offa
t, they are 
ompletely independent, and thus it is per-fe
tly legitimate to use the DPD thermostat also for sim-ulations with \hard" parti
les. Su
h potentials are oftendesired in order to take mole
ular pa
king e�e
ts realisti-
ally into a

ount, e. g. in the formation of mesophases oflow mole
ular weight amphiphiles, or in the study of en-tangled polymer systems. Though it was already statedin Ref. [13℄ that DPD 
an be viewed just as a thermostatto MD, the possibility to apply it to \hard" systems hasnot yet been widely exploited (ex
eptions are, e. g., Refs.[22, 23℄), and apparently its usefulness for su
h systems isnot yet fully appre
iated. The present paper is intendedto �ll this gap.We run a standard MD system with an added DPDthermostat, thereby being able to a�ord a substantiallylarger time step 
ompared to pure MD, and neverthelessreprodu
ing hydrodynami
 behavior 
orre
tly. This lat-ter statement means, more pre
isely, that we 
orre
tlyreprodu
e momentum propagation, whi
h is often quiteimportant in the dynami
s of 
omplex 
uids. On theother hand, energy transport is not simulated faithfully,as the temperature is being kept 
onstant on a lo
al s
ale.Formally, this may be viewed as the limit of in�nite ther-mal 
ondu
tivity, whi
h is not 
ompletely unrealisti
, asfor many systems the thermal 
ondu
tivity is quite large.Furthermore, the \
onventional" MD potentials for
e usto use a time step whi
h is not too large (a
tually rathersmall in 
omparison with many DPD simulations of softparti
les), and thus systemati
 dis
retization errors areof negligible importan
e for our simulations.We have 
ombined this approa
h with NEMD of shear
ow, using a slight modi�
ation of the boundary{drivenapproa
h of Ref. [8℄. We then arrive at an algorithmwhi
h is 
ompletely lo
al. For parallelization, we usedomain de
omposition via a suitable adaptation of themethod des
ribed in detail in Ref. [24℄.The remainder of the paper is organized as follows:In Se
. II we 
ompare existing thermostats and NEMDs
hemes and state the arguments why we believe that oursele
ted 
ombination is useful. Se
tion III dis
usses oursimulational details, and presents a few test results. Inparti
ular, we study the shear vis
osity of a simple liquid,
omparing the SD to the DPD thermostat. Finally, we
on
lude in Se
. IV.II. THERMOSTATS AND NEMD ALGORITHMSA. ThermostatsThere are several well{known MD thermostats whi
hgenerate a well{de�ned NV T ensemble. The Nos�e{Hoover (NH) thermostat [25, 26℄ is a time{reversibledeterministi
 s
heme in whi
h the system is 
oupledto one additional degree of freedom �. In equilibrium,the equations of motion for an N{parti
le system in d{

dimensional spa
e are_~ ir = ~pimi_~ ip = ~Fi � �~pi (1)_� = 1M "Xi ~p2imi � dNkBT# ;where ~ri are the parti
le 
oordinates, ~pi the parti
le mo-menta, mi the masses, ~Fi the for
es resulting from the in-teratomi
 potential, kB the Boltzmann 
onstant, and Ma mass{like parameter whi
h sets the rate how qui
kly thesystem is thermostatted. In equilibrium, the variable � isGaussian with zero mean and varian
e 
�2� = kBT=M .Similarly, from the 
u
tuations of the kineti
 energyone 
on
ludes that _� has vanishing mean and varian
eD _�2E = 2dN(kBT )2=M2. This results in a typi
al times
ale for the variation of �:� = 0� 
�2�D _�2E1A1=2 = � M2dNkBT �1=2 : (2)EÆ
ient equilibration requires that this mat
hes typi
alatomi
 time s
ales (\resonan
e"), i. e. M / N . In turn,this means that the typi
al � values s
ale like N�1=2.In other words, the dynami
s be
omes more and moreNewtonian when the system size is in
reased, and thismeans in turn that the method should reprodu
e hydro-dynami
s 
orre
tly if the system is 
hosen large enough.On the other hand, this also means that the NH thermo-stat does not stabilize the numeri
al integration of theequations of motion, be
ause it is only based on a globalfeedba
k. Furthermore, the evaluation of the total kineti
energy involves global 
ommuni
ation over all pro
essorsif the system is run on a parallel ma
hine with domainde
omposition. This is another disadvantage of the NHthermostat whi
h should not be underestimated.The SD thermostat [5℄ works quite di�erently. Hereevery parti
le is 
oupled to a vis
ous ba
kground and asto
hasti
 heat bath, su
h that_~ ir = ~pimi (3)_~ ip = ~Fi � � ~pimi + ~fi;where � is now a 
onstant fri
tion parameter, whilethe sto
hasti
 for
es ~fi have zero mean and satisfy the
u
tuation{dissipation theoremDf�i (t)f�j (t0)E = 2�kBTÆijÆ��Æ(t� t0); (4)� and � denoting Cartesian indi
es. The e�e
t of this al-gorithm is to thermostat the system on a lo
al s
ale. Par-ti
les whi
h are too \
old" are given more energy by thenoise term, while too \hot" parti
les are slowed down by



3the fri
tion. Numeri
al instabilities, whi
h usually arisefrom ina

urate 
al
ulation of a lo
al 
ollision{like pro-
ess, are thus e�e
tively kept under 
ontrol, and 
annotpropagate. This is the reason why for this s
heme a largertime step is possible than for pure MD. On the otherhand, the algorithm violates Galilean invarian
e, as thedamping biases the velo
ities towards the \laboratory"referen
e frame. This results in non{
onservation of mo-mentum (the 
enter of mass of the overall system dif-fuses), and in e�e
tive damping of the hydrodynami
 
or-relations, on the length s
ale of a hydrodynami
 s
reeninglength l = � �n��1=2 ; (5)where � is the shear vis
osity, and n the parti
le numberdensity. This is seen quite straightforwardly by noti
ingthat, in the hydrodynami
 pi
ture, the algorithm intro-du
es a fri
tion for
e per unit volume ��n~u, where ~u isthe 
uid streaming velo
ity. The random for
es, on theother hand, are averaged to zero. Thus the term ��~u inthe Stokes equation is repla
ed by ��~u � �n~u. Settingthis to zero, and repla
ing � with l�2 yields Eq. 5. Fora more formal derivation, see Ref. [21℄. For � ! 0 thes
reening length diverges, as in this limit purely Newto-nian dynami
s is re
overed.The DPD algorithm is similar in spirit. There is alsolo
al fri
tion and noise, su
h that the thermostatting andstabilizing features of SD are retained. As shown in Se
.III, we were able to run the DPD{thermostatted systemwith the same large time step as with SD. However, in
ontrast to SD, the fri
tion does not dampen the \abso-lute" velo
ities of the parti
les, but rather the velo
itydi�eren
es of nearby parti
les. The method is thus sen-sitive to velo
ity gradients, as it should, in order to be
onsistent with hydrodynami
s. Similarly, the sto
hasti
for
es a
t on pairs of nearby parti
les, su
h that Newton'sthird law is stri
tly ful�lled. The method thus satis�esthe two basi
 requirements for reprodu
ing hydrodynam-i
s on large length and time s
ales, lo
ality and momen-tum 
onservation. Indeed, it was shown formally thathydrodynami
 behavior is re
overed in that limit [12℄.Care has to be taken to satisfy the 
u
tuation{dissipationtheorem to obtain a well{de�ned temperature. The orig-inal version of Hoogerbrugge and Koelman [9℄ did thisin
orre
tly (it violated Eq. 12, see below); the ne
essarymodi�
ation was introdu
ed by Espa~nol and Warren [11℄.The DPD equations of motion are given by_~ ir = ~pimi (6)_~ ip = ~Fi + ~FDi + ~FRi ;where ~FDi denotes the additional damping (or dissipa-tive) for
e on parti
le i, and ~FRi the 
orresponding ran-dom for
e. These latter are now based on parti
le pairs,

i. e. ~FDi = Xj(6=i) ~FDij~FRi = Xj(6=i) ~FRij : (7)The dissipative for
e in the formulation of Espa~nol andWarren [11℄ is given by~FDij = ��wD(rij)(r̂ij � ~vij)r̂ij (8)and the random for
e by~FRij = �wR(rij)�ij r̂ij : (9)Here, ~vij = ~vi � ~vj is the relative velo
ity between par-ti
les i and j, while r̂ij denotes the unit ve
tor of theinteratomi
 axis ~rij = ~ri � ~rj . � is the fri
tion 
onstantand � the noise strength. wD and wR are r-dependentweight fun
tions vanishing for r � r
. �ij is a Gaussianwhite noise variable with �ij = �ji and �rst and se
ondmoments h�ij(t)i = 0 (10)h�ij(t)�kl(t0)i = (ÆikÆjl + ÆilÆjk)Æ(t� t0):~FD and ~FR a
t along the interatomi
 axis and thus 
on-serve the momentum. There is an independent randomfun
tion for ea
h pair of parti
les. In order to satisfy the
u
tuation{dissipation theorem, the relations�2 = 2kBT� (11)and [wR(r)℄2 = wD(r) (12)must hold [11℄. The usual 
hoi
e iswD(r) = [wR(r)℄2 = ((1� r=r
)2 r < r
0 r � r
: (13)Another possible 
hoi
e, whi
h might be 
omputationallymore eÆ
ient, would bewD(r) = wR(r) = (1 r < r
0 r � r
: (14)The s
heme is thus seen to 
ombine the positive aspe
ts ofthe two previous thermostats: Stri
t Galilean invarian
e,and 
orre
t hydrodynami
s, like NH for large systems,and numeri
al stabilization, like SD. We hen
e believe itto be the ideal thermostat whenever one studies prob-lems where hydrodynami
s (momentum transport, butnot heat 
ow) is (or is suspe
ted to be) important.Yet another approa
h for thermostatting has been sug-gested by Andersen [27℄. Instead of solving a Langevinequation, the pro
edure periodi
ally pi
ks some parti
le



4at random, and assigns a new random velo
ity from aMaxwell distribution to it. This pro
edure generates a
anoni
al distribution, and, like SD, it does not 
onservethe momentum. Unlike SD, however, it does not \smearout" the thermostatting homogeneously (with respe
t toboth spa
e and time), but rather generates ki
ks whi
hare lo
alized and rather strong (the traje
tory is not 
on-tinuous in phase spa
e). This is a property whi
h we viewas somewhat disadvantageous 
ompared to SD (and thisis why we do not use it); nevertheless, in many 
ases themethod has been applied very su

essfully. The Ander-sen method is also 
omputationally slightly more eÆ
ientthan SD, sin
e only now and then a single parti
le is in-volved.In the same way as DPD 
an be viewed as themomentum{
onserving version of SD, one 
an also devisea momentum{
onserving version of the Andersen ther-mostat, whi
h works along similar lines as DPD (again,relative velo
ities are thermostatted). This idea has beenput forward by Lowe [28℄. Con
erning the 
omparisonwith DPD, the same 
omments 
an be made as for the
omparison SD vs. Andersen.B. NEMD Algorithms for ShearA simple way to introdu
e a shear rate_
 = �ux�y (15)with uy = uz = 0 for simple Couette 
ow is by modifyingthe periodi
 boundary 
onditions (Lees{Edwards bound-ary 
onditions [29℄). A parti
le that leaves the box iny dire
tion at the \top" and re{enters at the \bottom"is displa
ed appropriately both in position and velo
ityspa
e. Furthermore, a thermostat must be added in or-der to remove the vis
ous heat; this shall be dis
ussedbelow. It should be noti
ed that this s
heme expli
itlybreaks the translational invarian
e in y dire
tion: Thepositions where \something happens" to the parti
les arewell{de�ned layers in spa
e. Hen
e, the method 
an beviewed as a boundary{driven method. Another popu-lar approa
h is to use the so{
alled SLLOD equationsof motion [6℄. This is a homogeneous (or \syntheti
")method, where the e�e
t of the imposed shear is rathersmeared out homogeneously over the y axis, and a linearshear pro�le is enfor
ed (i. e. translational invarian
e isre{established).Boundary{driven and homogeneous methods haveboth advantages and disadvantages. The advantage ofa homogeneous method is that there are no 
orre
tionsto the bulk behavior by boundary layers, su
h that rathersmall systems 
an be studied. Homogeneous methods aretherefore very well suited for the eÆ
ient 
al
ulation oflinear transport 
oeÆ
ients (although some 
are must betaken to verify that the simulation is indeed in the lin-ear regime). The disadvantage is that the linear pro�leis enfor
ed, su
h that the appli
ability is restri
ted to


ases where the pro�le indeed is linear. This, however,is not always the 
ase. Many 
omplex 
uids exhibit thephenomenon of \shear banding", where the translationalsymmetry in y dire
tion is spontaneously broken as a re-sult of a hydrodynami
 instability. A homogeneous algo-rithm suppresses the o

uren
e of su
h instabilities, and
an therefore produ
e in
orre
t physi
s. Conversely, aboundary{driven method allows the system to 
hoose itsown pro�le (if the thermostat does so, too), and is hen
eable to study su
h phenomena. It must however be notedthat boundary{driven approa
hes tend to require largersystems. Nevertheless, as the emphasis of today's simu-lations is more on nonlinear phenomena, we think thatboundary{driven methods are preferrable, and thereforewe will not dis
uss homogeneous methods any further.Let us now dis
uss the thermostat. Sti
king to the\boundary{driven" philosophy, it is obviously the \
lean-est" way to restri
t the thermostatting to boundary lay-ers, too, while the interior of the sample is run with pureNV E dynami
s. This implies 
ooling of the layers, andsome heat 
ow from the 
enter (where the vis
ous heatis produ
ed) to the layers. A parti
ularly simple andingenious way to restri
t driving and thermostatting toboundary layers in one 
ommon algorithm has re
entlybeen put forward by F. M�uller{Plathe (for heat trans-port in Ref. [7℄, for shear simulations in Ref. [8℄). Oneregularly sele
ts pairs of parti
les with the property thatthey reside in opposite layers, and that their velo
ity dif-fers parti
ularly strongly from the desired velo
ity of thelayer. Then the velo
ities are just ex
hanged. In 
aseof a multi
omponent 
uid, one has to take 
are that thepairs are sele
ted in a way that the masses are identi-
al. This obviously 
onserves momentum and energy,and hen
e produ
es a stable steady state, su
h that noadditional thermostatting is ne
essary. Surely enough,the 
ooling at the boundaries is indeed observed [8℄. Theeasiest way to understand this is to noti
e that vis
ousheating is nothing but entropy produ
tion, and that thealgorithm a
tually removes entropy at the layers by ar-ti�
ially putting in information (in essen
e, the methodis just a Maxwell demon). The vis
osity then results di-re
tly from the ratio between transported momentum (orapplied for
e) and resulting shear gradient.A slight te
hni
al diÆ
ulty arises with this algorithmwhen trying to apply it to small systems whi
h are onlyweakly sheared. This is parti
ularly true when one at-tempts to 
ontrol the shear rate from the outset by a feed-ba
k pro
edure whi
h enfor
es velo
ity ex
hanges fromthe 
riterion of the momentary shear being too small ortoo large. The simplisti
 pro
edure to sele
t within alayer just the parti
le whose velo
ity di�ers most stronglyfrom the desired layer velo
ity may lead to large over-shoots of the layer velo
ity after the ex
hange, sin
e evena single{parti
le ex
hange already may give a momentumtransfer whi
h is signi�
antly too large. This requires toeither 
orre
t this in the subsequent step, whi
h resultsin undesirable os
illations, or to 
arefully sele
t the pairfor ex
hange to rea
h the desired result. In the latter



5
ase, a rather 
umbersome sear
h pro
edure is ne
essary.On the other hand, if the system is thermostatted inthe bulk (in order to stabilize the integration of the equa-tions of motion, and to enfor
e a homogeneous temper-ature pro�le), it is not ne
essary to drive the sytem viaa Maxwell demon. This 
an rather be done by simplyapplying a uniform for
e on all the layer parti
les, whi
his adjusted every single time step to keep the shear ratestri
tly 
onstant. It is this latter pro
edure whi
h wehave implemented in our tests, whi
h we restri
ted toa rather small system of only 4096 parti
les. Here weused simple periodi
 boundary 
onditions in all three di-re
tions for a box of size Lx � Ly � Lz. Two thin layersperpendi
ular to the y axis, with distan
e Ly=2, were 
ho-sen for driving in the +x and �x dire
tion, respe
tively.This setup e�e
tively generates two Couette 
ells withopposite shear gradients. Compared to Lees{Edwardsboundary 
onditions, this pro
edure has the advantagethat the driving o

urs only in velo
ity spa
e, su
h thatit is quite readily implemented as a modi�
ation of a par-allelized equilibrium simulation. In our 
ase, we used astraightforward adaptation of the program des
ribed inRef. [24℄.An important issue of thermostatting the system inthe bulk is that one has to make sure that a so{
alledpro�le{unbiased thermostat (PUT, [6℄) is applied. ForNH, one de�nes the so{
alled \pe
uliar velo
ities" ~
i [6℄as the di�eren
e between the a
tual velo
ities and theexpe
ted linear pro�le. These are used to de�ne the ki-neti
 temperature in the equation of motion for �. How-ever, this s
heme is a typi
al example of a pro�le{biasedthermostat (PBT) [6℄. While the pro
edure is perfe
tlylegitimate in the linear{response regime (here the pro�leis linear anyways), unphysi
al results must be expe
ted(and have been observed, see Ref. [6℄) in the nonlinearregime: The PBT prefers the linear pro�le and thus tendsto suppress the o

urren
e of hydrodynami
 instabilities.The way out is to use a PUT whi
h does not single outa pres
ribed pro�le but rather lets the system 
hoose itsown. To do this within the framework of NH is possible,but implies a rather awkward self{
onsistent pro
edure[6℄.For SD, a possible 
hoi
e is to only thermostat the ve-lo
ities in y and z dire
tion (re
all uy = uz = 0 for Cou-ette 
ow). This should not pose any problem as long asone studies simple shear in the linear regime. However,in the nonlinear regime su
h a pro
edure is somewhatdangerous, as it presupposes a 
ertain symmetry of thesteady state, whi
h may be broken (and usually the kindof symmetry{breaking is not known in advan
e). Forsimple shear banding, where only the translational invari-an
e in y dire
tion is broken, the pro
edure is probablya

eptable. The most naive approa
h, i. e. to just applythe SD thermostat in all three dire
tions, will fail even inthe linear regime and produ
e an in
orre
t apparent vis-
osity; this is outlined in the Appendix. The same is trueif one thinks of thermostatting the pe
uliar velo
ities; inthis 
ase the \fri
tion" term ��~
i would punish any ve-

lo
ity whi
h is not in a

ord with the pres
ribed velo
itypro�le, and a
tually drive the system in the bulk, whi
his 
learly not desired.Conversely, the DPD thermostat, whi
h is based uponrelative velo
ities, does not presuppose any sort of sym-metry, and is pro�le{unbiased by 
onstru
tion.Taking all these 
onsiderations together, we thus ar-rive at what we believe to be a very suitable algorithmto study nonlinear e�e
ts in shear 
ow: Use a boundary{driven method 
ombined with the DPD thermostat. Thisresults in a simple and easy{to{implement simulationwith a straightforward PUT, whi
h keeps the tempera-ture pro�le 
onstant, and, as additional bonus, stabilizesthe integration of the equations of motion. If there is sus-pi
ion that heat 
ow might be important, one 
an insteadavoid thermostatting altogether, and drive the system bya Maxwell demon.In order to demonstrate that it is really important toallow the system to 
hoose the pro�le of its own liking,we show in Fig. 1 the 
on�guration of a system of am-phiphili
 mole
ules, simulated by the model outlined inRef. [30℄, using essentially the algorithm des
ribed above[31℄. The system exhibits very strong shear{banding:While the ordered regions move essentially as \blo
ks",the shear is 
on
entrated in the narrow strips where it isdisordered. More details of this simulation will be pub-lished elsewhere.III. SIMULATIONSThe simulations were 
arried out with a system 
on-sisting of 4096 Lennard{Jones (LJ) parti
les at a densityof � = 0:85 (in standard redu
ed units where the parti-
le mass as well as the LJ parameters � and � are set tounity) in a 
ubi
 box with periodi
 boundary 
onditions.The LJ potential was 
ut o� at a separation r
 = 21=6and shifted, so that only its repulsive part is left. Thethermostatting temperature was set to kBT = 1. For thethermostats (both SD and DPD) uniform random num-bers were used, sin
e it has been shown that they arejust as good as Gaussian ones for Langevin simulations[32℄. For the weight fun
tions of the DPD thermostatwe used the standard 
hoi
e (Eq. 13), and r
 = 21=6for the 
uto�. We integrated the equations of motionswith the velo
ity Verlet algorithm [1, 2℄, using a timestep �t = 0:01 both for SD and DPD. As already men-tioned, this is large 
ompared to stri
t Newtonian MD,while small 
ompared to DPD simulations with ultra{softparti
les and ultra{large time steps. Therefore, our sim-ulation was not hampered by the typi
al large dis
retiza-tion errors of large time{step DPD simulations [15{20℄.To test this, we measured the temperature in equilibriumand found it to 
onverge from a high value of kBT = 10to the simulation temperature kBT = 1 within 400 timesteps for DPD in 
omparison to somewhat less than 600for SD, at a damping 
onstant of � = 1. The usual 
hoi
efor SD lies in the range 0:5 � � � 1:5; this ensures that



6the fri
tion from the algorithm is still rather small 
om-pared to the intrinsi
 fri
tion from the surrounding par-ti
les for these dense systems.We did not 
arefully analyze the equilibrium propertiesof the 
uid, sin
e they are essentially known from previ-ous simulations: In Ref. [33℄ the same model was stud-ied in detail, however at a slightly di�erent state point(� = 0:864, kBT = 1:2). Taking the results from thatsimulation, we know that our 
uid is 
hara
terized by (i)a highly stru
tured pair 
orrelation fun
tion g(r), (ii) alarge pressure P � 10, (iii) a vis
osity � � 2, and simi-larly (iv) a kinemati
 vis
osity � � 2, while (v) the parti-
le di�usion 
onstant D is roughly D � 0:07. From this,one sees that the S
hmidt number S
 = �=D is roughlyS
 � 30, whi
h is a reasonable value for real 
uids (largeS
 means that di�usive momentum transport is substan-tially faster than mass transport). For more details, seeRef. [33℄.Con
erning 
omputational eÆ
ien
y, it is obvious thatDPD is somewhat more expensive than SD, sin
e it in-volves the 
al
ulation of velo
ity di�eren
es and of unitve
tors, plus the generation of substantially more ran-dom numbers. In our simulations we found an averageslowdown of 35%. Note that one 
ould optimize the DPDpro
edure further by (i) introdu
ing the simpler weightfun
tion Eq. 14, and (ii) applying fri
tion and noise notevery single time step, but, say, every se
ond or thirdstep (pushing this idea to its limits, one would arrive atthe Lowe{Andersen [28℄ thermostat).In Fig. 2 we 
ompare the apparent vis
osity �app,as obtained from naive SD and from DPD runs, vary-ing the fri
tion 
oeÆ
ient � over a substantial range.The data show on the one hand that for shear rates_
 = 0:001; 0:01; 0:1 there is not yet a measurable de-penden
e on _
, and on the other hand that �app is in-dependent of the fri
tion 
oeÆ
ient only for DPD butnot for SD. In the latter 
ase, there is a sizeable in
reasewith �, and the physi
al value �0 is only re
overed in thelimit � ! 0. The theoreti
al 
onsiderations of the Ap-pendix explain this in
rease as a result of hydrodynami
s
reening, whi
h gives rise to an inhomogeneous shearpro�le whi
h is 
on
entrated around the driving layers,with thi
kness of the order of the hydrodynami
 s
reen-ing length ��1 = l (see Eq. 5). The resulting predi
tion�app�0 = �Ly4 
oth��Ly4 � = 1+13 ��Ly4 �2+O(�4) (16)is also shown in Fig. 2, using the value �0 = 2. Obviously,the in
rease in �app is mu
h weaker than expe
ted. Wedo not fully understand this deviation but believe thatit is some sort of �nite size e�e
t. The system has athi
kness of order of 16 atomi
 layers, and this is probablynot enough to faithfully represent the strongly modi�edpro�le. Indeed, it is reasonable to assume that the atomi
stru
ture of the 
uid prohibits a de
rease of the s
reeninglength below a value of order of a parti
le diameter. Ifwe thus assume lmin = 2 or �max = 0:5, we �nd that

�app=�0 
annot ex
eed the value �maxLy=4 � 2, whi
h isroughly what we observe.Stri
tly spoken, for the DPD 
ase a 
onstant �app isnot expe
ted either. Rather the theoreti
al predi
tion is[12℄ �app�0 = 1 +O(�2): (17)The prefa
tor of the 
orre
tion term is non{universal,and 
an be written as a Green{Kubo integral over theauto
orrelation fun
tion of the dissipative stresses. Theimportant point, however, is that (in 
ontrast to SD)it is an intensive quantitity, i. e. does not depend onthe system size Ly. Indeed the data of Fig. 2 show nosystemati
 in
rease of �app within our range of �, andwithin our error bars. For our system, whose behavioris dominated by the hard interatomi
 intera
tions, the
orre
tion due to the fri
tion is below resolution withinthe studied range of � values.IV. CONCLUSIONSOur 
onsiderations and test results show that DPD isa very useful thermostat for MD, whi
h should be usedwhenever hydrodynami
s (momentum transport) is im-portant. Unlike SD, it does not s
reen the hydrodynami

orrelations, and unlike NH, it is 
ompletely lo
al. To ourknowledge, it is the �rst thermostat whi
h avoids pro�le{biasing of NEMD simulations in a very natural and sim-ple way, as it introdu
es neither an absolute referen
eframe (as SD) nor the 
on
ept of \pe
uliar velo
ities"(as NH). We think that it is therefore the ideal thermo-stat for NEMD simulations | with the 
aveat that itsappli
ability is of 
ourse restri
ted to phenomena whereenergy transport plays no role (for example, it would notbe appli
able for studying, say, Rayleigh{Benard 
onve
-tion). In su
h 
ases, stri
tly Newtonian MD, 
ombinedwith a Maxwell demon along the lines of Refs. [7, 8℄is most probably the method of 
hoi
e. These 
onsid-erations are all in a

ord with our general belief thatnonlinear phenomena in nonequilibrium systems shouldbe studied by methods whi
h do not interfere with thesystem in the bulk. From this perspe
tive, the main ad-vantage of DPD 
ompared to just Newtonian MD is thestabilization of the numeri
al integraton s
heme, whi
his also very important, in parti
ular for simulations withlong observation times.A
knowledgementsWe thank F. M�uller{Plathe, J. Vollmer, H. Pleiner, H.Brand, and G. Auernhammer for fruitful dis
ussions.



7APPENDIX A: PROFILE BIASING ANDAPPARENT VISCOSITY FOR THE LANGEVINTHERMOSTATIn the boundary{driven method, the apparent vis
osityis obtained by measuring the average for
e F (momen-tum transfer per unit time) exerted onto the boundarylayers, and normalizing it by their area LxLz and theshear gradient _
 = �ux=�y:� = F=( _
LxLz): (A1)Here we have assumed an Lx � Ly � Lz simulation 
ell,and a shear gradient in y dire
tion, while the velo
ity 
ow�eld is in x dire
tion. This pro
edure is, by de�nition,
orre
t if the underlying dynami
s in the bulk is Newto-nian (i. e. thermostatting o

urs only at the boundaries,too), and _
 is small enough to ex
lude nonlinear e�e
ts.An equivalent pro
edure is obtained by realizing that theaverage dissipated energy per unit time and unit volumeis given by � _
2, resulting in a total dissipated power of�LxLyLz _
2. On the other hand, the power put into thesystem by external driving is Fu = F _
Ly. Equatingthese expressions, one again obtains Eq. A1.For a system whi
h is subje
t to a bulk Langevin ther-mostat, the apparent vis
osity �app, as measured by thispro
edure, will, in general, di�er from the true vis
osity�0. Sin
e the produ
ed velo
ity pro�le u(y) will in gen-eral not be linear, we generalize the above 
onsiderationto yield�app�0 = 1�0Ly _
2 Z +Ly=2�Ly=2 dy(�0�dudy�2 + P (u(y))) :(A2)Here we assume that the simulation 
ell extends from�Ly=2 to +Ly=2, while P denotes the average energyper unit time and unit volume whi
h is dissipated by thethermostat. Following a general prin
iple of linear non{equilibrium thermodynami
s, we now assume that u willadjust in su
h a way that the above energy dissipationrate will be minimum.Further progress requires 
al
ulation of P . TheLangevin equation for a single parti
le with mass m (allparti
les are assumed to have identi
al mass) is writtenas m ddt~vi = ~Fi � �~vi + ~fi (A3)where the sto
hasti
 for
es have zero mean and satisfythe 
u
tuation{dissipation theoremDf�i (t)f�j (t0)E = 2�kBTÆijÆ��Æ(t� t0): (A4)Therefore the average dissipation power by the fri
tionterm is given by Pfr = n� 
~v2i � ; (A5)where n denotes the parti
le density, to transform fromdissipation per parti
le to dissipation per unit volume.

We now de
ompose the velo
ity into the 
ow velo
ity andthe pe
uliar velo
ity, writing ~vi = ~u+~
i, and note that forweak driving the varian
e in terms of pe
uliar velo
itiesis still given by 
~
2i � = 3kBT=m, as in the equilibrium
ase. We hen
e �ndPfr = n� �~u2 + 3kBT=m� : (A6)Similarly, it is straightforward to show that the ran-dom displa
ements in velo
ity spa
e result in an aver-age in
rease of the kineti
 energy, resulting in a termPst = �3n�kBT=m. Therefore, the total dissipativepower per unit volume isP = n�u2 (A7)where we have assumed that ~u points in x dire
tion. Inthe equilibrium 
ase u = 0, P vanishes, as it should be.Equation A2 thus be
omes�app�0 = 1�0Ly _
2 Z +Ly=2�Ly=2 dy(�0 �dudy�2 + n�u2) : (A8)We now introdu
e redu
ed variables � and � by writ-ing y = Ly�=(2�) and u = _
Ly�=4, and the s
reeningparameter �2 = n�=�0 (��1 is just the hydrodynami
s
reening length of the algorithm [21℄). This transformsEq. A8 to�app�0 = Z +��� d�(�8 �d�d��2 + 12� ��Ly4 �2 �2) : (A9)We now turn to the minimization of this expression, tak-ing into a

ount the way in whi
h the simulation is run.Firstly, we have periodi
 boundary 
onditions in all threespatial dire
tions, whi
h allows us to write the pro�le interms of a Fourier expansion as�(�) = b0 + 1Xn=1 fan sin (�n) + bn 
os (�n)g : (A10)Inserting this expression into Eq. A9, one �nds aftersome straightforward algebra�app�0 = ��Ly4 �2 b20 + 12 1Xn=1Cn �a2n + b2n� (A11)with Cn = 14�2n2 +��Ly4 �2 : (A12)Se
ondly, the shear is imposed in the layers y = �Ly=4,su
h that u(Ly=4)� u(�Ly=4) = _
Ly=2 or1Xp=0 a2p+1(�1)p = 1: (A13)



8Minimizing the dissipation rate with the 
onstraint Eq.A13, one �nds that all 
oeÆ
ients ex
ept a1; a3; : : : van-ish. The nonvanishing 
oeÆ
ients are given bya2p+1 = 2(�1)pC2p+1 �Ly4 
oth��Ly4 � ; (A14)here we have made use of the relation [34℄1Xp=0 1C2p+1 = 12 4�Ly tanh��Ly4 � : (A15)Inserting this solution into Eq. A11, and using Eq. A15again, one �nds�app�0 = �Ly4 
oth��Ly4 � = 1 + 13 ��Ly4 �2 +O(�4):(A16)The pro�le 
an also be obtained as a 
losed expression bynoti
ing that the Euler{Lagrange equation 
orrespondingto the fun
tional Eq. A9 is given by the modi�ed Stokesequation �4 d2�d�2 = 1� ��Ly4 �2 � (A17)with solution (between � = ��=2 and +�=2)�(�) = sinh��Ly2� ��sinh��Ly4 � (A18)

(note that � must be odd, and �(�=2) = 1). This implies
usps at � = ��=2. It is straightforward to 
he
k thatthe Fourier 
oeÆ
ients of this pro�le are indeed givenby Eq. A14. One also sees that in the Newtonian limit� = 0 a sawtooth pro�le is re
overed. It should be notedthat quite analogous 
onsiderations have already beenput forward in Ref. [35℄.The important point about this reasoning is that themodi�
ations be
ome arbitrarily large when the systemsize Ly in
reases. Indeed, in the limit Ly ! 1, we justhave �app�0 = �Ly4 : (A19)Furthermore, one sees from Eq. A18 that the shear is
on
entrated in a small layer, whose size is given bythe hydrodynami
 s
reening length ��1. In other words,the hydrodynami
 s
reening prevents the driving at theboundaries from having any e�e
t beyond that layer. Thedata analysis therefore underestimates the shear gradi-ent by a fa
tor of order ��1=Ly, i. e. overestimates thevis
osity by a fa
tor of order �Ly. This is the physi
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FIG. 1: Shear{banded state of a large system of amphiphili
 mole
ules modeled as 995328 A{B dimers with attra
tive A{Aand B{B intera
tions. The parti
le 
olor is used to distinguish between A and B. Dire
tion of view is the x{dire
tion, i. e.the dire
tion of the shear velo
ity. Dire
tion up{down is the y{dire
tion, i. e. the dire
tion of the shear gradient. The systemorganizes in lamellae whose normal is oriented in z{dire
tion. The driving o

urs at narrow layers at (i) the top / bottom and(ii) the 
enter of the box. Near these layers, the velo
ity gradient is essentially zero, and the mole
ules move as a homogeneous\blo
k". The shear gradient is 
on
entrated in small regions lo
ated in the middle between the driving layers; in these regionsthe system is disordered.
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FIG. 2: Apparent shear vis
osity �app as a fun
tion of the fri
tion 
onstant � for di�erent shear rates and thermostats, asindi
ated in the plot. The line indi
ates the theoreti
al predi
tion, Eq. 16.


