Considerations on Correlations in Shift—Register
Pseudorandom Number Generators and Their Removal

Andreas Heuer and Burkhard Diinweg'

Max—Planck-Institut fir Polymerforschung, Postfach 3148, D-55021 Mainz, Germany

and

Alan M. Ferrenberg?

Institut fir Physik, Johannes—Gutenberg—Universitat Mainz, Postfach 3980, D-55099

Mainz, Germany

Abstract

We present a simple calculation quantitatively explaining the triplet correlations
in the popular shift-register random number generator “R250”, which were recently
observed numerically by Schmid and Wilding, and are known from general analy-
sis of this type of generator. Starting from these considerations, we discuss various
methods to remove these correlations by combining different shift-register genera-
tors. We implement and test a particularly simple and fast version, based on an
XOR combination of two independent shift-register generators with different time
lags. The results indicate that this generator has much better statistical properties
than R250, while being only a factor of two slower. This is consistent with previ-
ous analytical considerations and successful applications of this type of generator.
The known nine—point correlations still present in the generator are quantitatively

understood by our simple arguments.

PACS: 02.70.Lq, 05.40.4j, 05.50.4-q, 75.40.Mg

Keywords: Random number generators, Shift-register generators
R250, Triplet correlations
Statistical tests, Application tests
Ising model, Wolff algorithm

!To whom correspondence should be addressed (phone: +49-6131-379-198, fax: +49-6131-379-340,
e-mail: duenweg@mpip-mainz.mpg.de)
?Present and permanent address: University Computing and Networking Services, and Center for

Simulational Physics, The University of Georgia, Athens GA 30602, USA



1 Introduction

Shift-register pseudorandom number (PN) generators [1-4] have been widely used in
many areas of computational and simulational physics. In addition to being simple to
implement in a machine-independent manner, these generators are also quite fast, often
requiring only a single operation to produce a PN. Moreover, shift-register generators also
possess rather long periods which make them particularly well-suited for applications
which require many PNs. Unfortunately, several recent studies have pointed out flaws
in the statistical properties of these generators, which can result in systematic errors in
Monte Carlo simulations. Typical examples included the Wolff algorithm [5-7], cluster
properties [8], random and self-avoiding walks [9-11] as well as the 3D Blume-Capel
model using local Metropolis updating [12]. It is important to note, however, that despite
the known deficiencies in these generators, which can potentially yield erroneous results

in Monte Carlo calculations, they remain quite popular and are still in widespread use.

Standard statistical tests of randomness [13], and even more so application tests, can often
reveal a substantial amount of information on the hidden correlations in PN generators.
Nevertheless, an improved understanding would be obtained if one could directly relate
the flaws in the applications to specific statistical correlations. Previous authors have
pointed out that the problems with shift-register PN generators are connected with triplet
correlations [9-11, 14], which are, even more specifically, directly related to the “time
lag” involved in the generator [12, 15]. Actually, they are a natural consequence of
the algorithm, and have, on the bit level, been discussed in quite some detail in the
comprehensive analysis of Compagner et al. [14-16]. In this paper we focus on the
correlation observed by Schmid and Wilding [12], and discuss the effect for normalized
real PNs rather than for bits only. Starting from the observation that also the reverse
correlation can be induced by slightly modified shift-register PN generators, we then
discuss ways of removing the triplet correlations. The simplest and fastest (approximately
half as fast as the uncorrected generator) of these methods turns out to be one which has
been proposed [15, 16] and used [17, 18] previously. Theoretical analysis of this scheme
reveals some residual higher—order correlations [16], which we however were unable to
resolve in our application tests. The detailed mechanism of how the triplet correlations
finally introduce the deviations in the applications could not be addressed in the present

study, and remains unclear.

One should note that the research effort of recent years has produced PN generators with
very good statistical properties. In particular, we would like to mention the RANLUX
generator by Liischer and James [19, 20]. It is based on a map for which there are strong
theoretical arguments that its correlations are short-ranged and hence can be removed

by discarding large chunks of PNs. Without discarding, the generator is just the well-



known Marsaglia-Zaman generator [21], which has actually performed worse than R250
(the most popular version of shift—register PN generators [4]) in statistical tests [13]. Very
good statistical properties are obtained if only roughly 10 % of the PNs are actually used
[19, 20]; however, the generator is then rather slow, needing 700 nanoseconds per PN on a
Cray-YMP [19]. Conversely, R250 needs only 22 nanoseconds, and the modified version
R250/521, which we discuss below, 41 nanoseconds. Thus, our view on the question which
generator one should use can be summarized as follows: In case it is affordable, a generator
with well-established quality like RANLUX is probably the method of choice. However,
for some applications like simple lattice models, where the PN generation is actually the
most time—consuming part of the overall program and the interesting regime can only be
accessed by high—statistics studies, a faster generator is needed. For these applications, we
believe that the generator to be described below is an excellent compromise between speed
and statistical quality. In case one needs even better statistical properties, it is possible
to systematically improve the generator, as explained below. Hence, for both methods
it is possible to trade in speed for quality. However, for these specialized applications
this trade—off is much more economical for the improved shift-register generator: If the
application requires a production rate of 10 PNs per microsecond YMP—-time or above,
then clearly the improved shift-register generator (which is at least as good as R250, for all
properties) is superior to RANLUX (which then is just the Marsaglia—Zaman generator),

as seen from the results of Ref. [13].

Another rather interesting PN generator has recently been proposed and used by Ziff
[22]. This generator is also quite fast, needing the same number of operations as the one
to be discussed below, while rather good statistical properties have been found [9, 22].
However, theoretical analysis shows that this generator has somewhat larger correlations,

as explained in Sec. 3.

The remainder of this paper is organized as follows: Sec. 2 contains the analytical consid-
erations which explain the observations by Schmid and Wilding [12], while Sec. 3 describes
the reasoning which leads to the improved generator. Numerical tests are described in

Sec. 4, while Sec. 5 summarizes our conclusions.

2 Explanation of Triplet Correlations

Shift-register PN generators can be viewed as a special case of the general lagged—

Fibonacci generators [23]

Y, =Y, OV, _,, (1)



where the binary operator < acting on the integers Y,,_, and Y,,_, can be either one of the

q
arithmetic operators —, 4+ and x, or the bitwise exclusive—or (XOR, see Table 1) denoted
by the symbol @. In the case of the arithmetic operators, the operations can lead to
intermediate results which fall outside the range of integers for a particular machine and
which must, therefore, be manually folded back with a time—consuming modulo operation
into the proper range to ensure a machine-independent implementation. The exclusive—or
operation, on the other hand, keeps all numbers within the proper range and therefore
requires no additional operations. The most common example is the widely employed
“R250” generator [4] where p = 250, ¢ = 103 (special choices of p and ¢ are necessary to
ensure maximum period length [4]; instead of (250,103) one could also use, e. g., (521,168)
[24]). It should be noted that ¢ = 147 = 250 —103 is equally valid, due to a “time-reversal

symmetry” of the generator, and that the routine can be vectorized by splitting up the

recursion loop into blocks of length min(q, p — ¢).

In very recent work Schmid and Wilding [12] analyzed the three point average
(X, X,_1X,_,) (X, denoting the normalized real random number X, = Y, /(2V — 1)
formed from the positive N-bit integer Y,,) for different values of k. Only for k # ¢ did
they obtain the expected value (1/2)° = 0.125, whereas for k = ¢ they found a value of
approximately 0.107.

In order to understand this, let us consider two N—bit integer numbers
N-1 N-1
A=>a,2", B=)> 02" (2)
n=0 n=0

with a,,b, € {0,1}. These numbers are the input for the XOR operation, and for sim-
plicity, we assume that they are bitwise statistically independent. This assumption allows

us to straightforwardly calculate the three point average

W= (X, X, X)) = (ABC) /(2 — 1Y, )
where N N
C = Z c, 2" = Z (a, & b,)2". (4)

This is well-justified since no strong pair correlations have been found in R250, and the

generator leaves the mth and nth bit independent for m # n.

Calculating (ABC') by using their explicit binary representation one obtains four different

types of terms:

dy = (azb,(a, b)), (5)
dy = {anby(a, ©b,)) (m #n), (6)
dy = (anby(ay, O by)) (M #n), (7)

4



and

dy = (a,by(ar B b)) (K #m#n), (8)
for which we find the values d; = 0, dy = (by)(anc,) = (1/2)(1/4) = 1/8,
(a, )b )en) = (1/2)> = 1/8, dy = (a,)(by,)ci) = (1/2)° = 1/8. Hence {(a,b,,

be always viewed as if «a,,, b,,, ¢; were independent except for the case & = m = n.

> can

Neglecting the anomalies induced by the occurrence of these “diagonal” (k = m = n)
terms, hence setting (a,b,c,) = 1/8, one would obtain W = 1/8. In reality, however,
(a,b,c,) vanishes, and for calculating the true value of W one has to subtract the “diag-
onal” terms:
N-1
Z (271)3
—(1/8) = (1/8)=2=%____

since the error in the nth bit occurs with a weight of (2"). Since

N-1 . ]V _q N
7;)8 e = (1/7)(8" — 1), (10)

we find ' 1(8N )
w5 s "

which, for large N, is W = 3/28 & 0.107. Conversely, for N = 1 we find W = 0 since
then only diagonal terms occur. Hence the numerically observed triplet correlation can

be directly traced back to the relation (a,b,c,) =0 (# 1/8).

Furthermore, one can do the same calculation for a variant of R250, where the XOR
operation is replaced by the not—exclusive-or (NXOR, &, see Table 2). It should be noted
that such a generator is as valid as the conventional R250, since the NXOR sequence can
be viewed as the exact bitwise mirror image of an R250 sequence. This is obvious from the
bitwise relation a®b = NOT(a & 7)) (where @ = NOT(a) is a’s complement or negative).
This means that one can generate the NXOR sequence by either starting from values Y,
and using NXOR, or by starting from Y,,, then using the standard R250, and afterwards
negating the whole sequence. For the NXOR generator one finds (a,b,c,) = 1/4, while
dy = d3 = dy = 1/8. An analogous calculation to above then yields W = 1/7 & 0.143,
i. e. one obtains the same absolute value of the systematic deviation |W — 0.125], but in
the opposite direction. This suggests that a suitable combination of both methods should

be free of triplet correlations.



3 Improved Generators

A trivial way to decrease the error (X, X,_,X,_;) — 0.125 for k = ¢ and [ = p is to
randomly choose between two standard R250s, or to randomly mix the output of one
R250. While these procedures would only “smear out” the error, we here pursue the idea
of combining XOR and NXOR generators, or to combine the XOR operation with bitwise

negations.

The most straightforward way to implement this would be to run two generators (one
XOR sequence and one NXOR), and then to alternate between the two sequences, such

that
1/271 = 1/271—210 @ 1/271—2qv 1/271—|—1 = 1/271—|—1—2106731/2714—1—2(1' (12)

This algorithm would be quite fast, since only for every second PN is an additional XOR
operation for the calculation of the complement required. Moreover, the originally wrong
triplet correlation (which here is of course (X, X,,_2,X,_5,)) is corrected, since the errors
from the two sequences exactly cancel out. Nevertheless, we have not pursued this idea
further, as the correction comes at the price of another correlation: One immediately
sees that the procedure above leads to a wrong high—frequency Fourier component, since
(2M)~t Zi]\fo_l(—l)”<Xan_2an—2q> = —1/56, which differs from the ideal value zero.
Moreover, the six—point correlation function (X, X, 2, X2, X, 11 X122, Xs11-2,) is of

course also wrong, with a relative deviation from the ideal value (1/2)° of 1/49.

A generalization would then be to “randomly” alternate between the two generators, i. e.
to have a third independent generator decide if the next PN should be taken from the
XOR sequence or from the NXOR sequence. One could conveniently use for this third
generator an R250 which only runs on the least significant bit, i. e. yields only zeroes or
ones. However, although rather good statistical properties are expected, such a generator
is rather slow, since (apart from the generation of an additional unused PN, which however
seems to be inevitable) the involved random addressing or random branching is rather
inefficient on both scalar and vector architectures. Indeed, a timing test on a Cray—
YMP with fully vectorized codes, in which we generated 10° normalized PNs with 10*
calls, showed that the simple R250 procedure needed only 22 nsec. per PN, while the

procedure with mixing needed 80 nsec..

Given the rather slow speed of this generator, we sought a faster algorithm that would
nevertheless be able to get rid of the erroneous triplet correlations. Instead of mixing two
independent series one might instead think of a modified procedure, where integers are
randomly negated, or bits randomly flipped. Let us discuss this idea in some detail on
the bit level.



Let {f.} be a (yet unspecified, but supposedly random) sequence of “flip bits”. The
original R250 sequence is then given by

Yn = Yn—p D Yn—q> (13)

where y,, stands for a single bit. We assume that {y,} and {f,} are statistically indepen-

dent. From these two, one can generate a new sequence {z,} either by

i. e. simple random flipping, or by
2y = Zp_p D 2nq O fr (15)

i. e. random flipping with feedback (where the “flipped” number is fed back into the

random number table).

Rule 1 (Eqn. 14) simply is an XOR of an R250 sequence with another random sequence,
and hence the random properties are not deteriorated in comparison with R250. Con-
versely, rule 2 (Eqn. 15) establishes a generator which is best viewed as a recursion for
pairs of bits (z,, f,,), the details of which depend on the rule for {f,}. For the simplest

case, where {f,} is also an R250 sequence, f, = f,_, ® f.—,, one would obtain

(va fn) = (Zn—p D Zn—q D fn—p D fn—q7 fn—p D fn—q)' (16)

The same rule is obtained if one replaces z, by (, = z, & f,. While this generator
might be an interesting alternative, we do not discuss it further, since to our knowledge
the mathematical analysis of period etc. has not been done yet, and the simpler rule 1
provides a possibility to remove the triplet correlations. However, in the case of rule 1
one has to make sure that {f,} is not an R250 sequence: Eqn. 14 shows immediately that
XOR-ing two R250 sequences with each other will generate just another R250 sequence
such that nothing has been gained. On the other hand, there is no compelling reason to
use an R250 sequence for {f,}. Instead, one could use a sequence based on another pair
of “magic numbers”, say (r,s) = (521, 168). Therefore, we finally arrive at the following
simple recipe: Run two sequences based on two different pairs of “magic numbers” (we
will call these, in accordance with our choice, R250 and R521), and get the final output
Y by XOR~ing those sequences together (we will call this generator R250/521):

U, = Uy, & U,_, (17)
Y, = U, &V, (19)

This procedure should make the bits effectively independent, such that W = 1/8. Apart

from using different values for p, g, r, s, this generator has actually been proposed [15, 16]

7



and used [17, 18] previously. Very good results were obtained for the Wolff algorithm
applied to the two-dimensional Ising model [17], and it was pointed out that now instead
of three—point correlations nine—point correlations (and of course higher correlations) do
occur [18]. This is seen from the fact that Eqns. 17-19 are equivalent to the eight-point
production rule [16]

Yn = Yn—p D Yn—q D Yn—r D Yn—s D Yn—p—r D Yn—p—s D Yn—q—r D Yn—q—57 (20)

which is easily verified using the properties of the XOR operation (of course, this repre-
sentation is less suitable for the implementation). Generalizing the calculation of Sec. 2,
we find that for a generator based on XOR~ing m — 1 previous values (i. e. m = 3 for

R250, m = 9 for R250/521) the following general formula holds for the correlation of the

output value with the input values:

B=A®...0A,,_, = (21)
(BA,...A,_,) 1 (—1ym
RN —1)y» " 2m (1 oz 1) (22)

(here the small effects of finite word length have been neglected). For R250/521, this
yields a very small relative correction 1/511 in the nine-point correlation. For some
applications, this might turn out to not be sufficient; in this case one can improve further
by introducing a third generator (with a third set of “magic numbers”), and combine its
output via XOR with that of R250/521. The lowest—order deviation for such a generator

would occur in a 27-point correlation function, etc. [16].

For R250/521, we found that normalized real PNs were produced at a rate of 41 nsec.
per PN on a Cray-YMP, i. e. roughly two times slower than the original R250. On
workstations, we found similar moderate slowdowns: An IBM RISC/6000 model 390
needed 57 nsec. per R250 PN and 130 nsec. per R250/521 PN, while for an SGI R10000

processor with 194 MHz clock speed these numbers are 22 nsec. and 96 nsec., respectively.

A generator similar to R250/521 was suggested and tested by Grassberger [9], with quite
satisfactory results (which is no longer too surprising, in view of the results given above).
His second generator was based on a congruential rule, and hence rather slow. The
generator by Ziff [22],

Y, =Y, 157D Y514 O Y,_ur1 D Y, _96s9, (23)

which also seems to have quite good statistical properties, needs the same number of
input values and operations, and should hence have comparable speed. However, Eqn.
22 shows that its statistical properties are slightly worse, since it exhibits a systematic
deviation in the five—point correlation function (X, X, 157X, _314 X, _471 X,._96s9), Whose

relative size is 1/31.



4 Empirical and Physical Tests of R250/521

As a test of our implementation of the simple R250 generator, which is based upon
31-bit integers (regardless of the machine), we first reproduced the triplet correlation
results of Schmid and Wilding [12]. We generated 1000 x 100250 PNs, and calculated
(X, X, X, _250) for each of the 1000 sub—blocks separately. Within a block we used all
available data, while the block-block fluctuations allowed us to calculate the statistical
error (assuming statistical independence of the blocks). As seen from Figs. la and b,
the correlation function is, for all lags k, consistent with the ideal value 0.125, except for
k = q = 103, where the value 3/28 is reproduced. Conversely, the corresponding data for
R250/521 in Fig. 1c do not show this deviation at k = ¢, as expected. At first glance, it is
interesting to note that the data in Fig. 1c seem to be in much better agreement with the
ideal value than those in Fig. 1b, which are somewhat below 0.125. However, this behavior
does not hint to additional flaws in R250. By using different start values, we were able to
produce data which were both above as well as below 0.125, within error bars. Note that
deviations (within error bars) in the direction of smaller values are expected to be slightly
more probable than those in the direction of larger values: The probability density of a
random variable x, which is the product of m statistically independent random numbers
uniformly distributed between zero and one, is P(z) = [(m — 1)!]"Y(=Ina)™~!, which is
strongly asymmetric. Moreover, one can find analytically the size of the error bar which
should be produced if the PNs were strictly statistically independent. A straightforward
but somewhat tedious calculation yields an error bar of ¢ = 2.3 x 107", which is (for two
significant digits) nicely reproduced by the data for R250/521. Conversely, the numerically
calculated and plotted error bar for R250 is roughly 2.0 x 1077, i. e. slightly too small. We
view this as an indication of spurious additional (or secondary) long-range correlations
in R250, which cause a systematic underestimation of the error. Finally, the data for
all k values are strongly correlated, because they are all based on the same set of raw
data. Indeed, an analytical calculation of the root mean square fluctuation between two

different k values reveals that its size should be roughly 40% of the size of the error bar.

The long-range correlations in R250, which are already revealed by the underestimation of
the error bar mentioned above, are more clearly borne out by the blocking test introduced
by Vattulainen et al. [10]. We would like to describe this test here in a “magnetic”
language (for a formulation closer to the concepts of statistics, see Ref. [10]). First,
one subdivides the sequence {X;} of N PNs into blocks of length n, and forms, for each
block, the arithmetic mean n~'3°% | X;. If this variable exceeds 1/2, the spin variable
S, which is associated with the block, is 1; otherwise it is -1. This procedure maps the
sequence of PNs onto a one-dimensional Ising chain of L. = N/n spins. One then estimates

the magnetization, m = L™ % S;, and checks if the value is consistent with its ideal



value zero within statistical accuracy, assuming independent spins. In particular, the
susceptibility-like variable y = Lm? should be of order unity, since for independent spins
(x) = 1. In more detail, the probability density of y is P(x) = (2my) Y2 exp (—x/2),

since m, for large L, should be Gaussian.

In our test, we used L = 10° and varied n between 100 and 800. The y values which we
obtained are plotted in Fig. 2, as a function of block length n. Consistent with the results
obtained in Ref. [10], we observe a dramatic increase in x for R250, as soon as the block
size exceeds n ~ 250. This is indicative of “ferromagnetic ordering”, i. e. subsequent
blocks are statistically more like each other than they should. Conversely, for R250/521,
the values are much more moderate. Indeed, the distribution of the 71 y values is roughly
consistent with P(y), as demonstrated in Table 3. We also checked the behavior for larger

n up to 1600 (data not shown) and observed no qualitative difference.

Furthermore, we performed the Wolff algorithm test originally used by Ferrenberg, Landau
and Wong [5]. The two-dimensional Ising model was simulated using the Wolff cluster—
flipping algorithm at the critical point, using a square lattice of size 16 x 16. The simple
R250 generator showed rather severe systematic errors in both the average energy and
the specific heat [5]. As the comparison of these numbers with the corresponding data
for R250/521 (Table 4) shows, the latter generator performs much better than R250,
the deviations from the exact values [25] being consistent with the statistical error bars.
Quite similar behavior was observed by Talapov et al. [17], who ran the same test for
R4423/9689 (i. e. p = 4423, ¢ = 1393, r = 9689, s = 471) and lattices up to 256 x 256.
This remarkable improvement indicates that the triplet correlations were very probably
responsible for the systematic error. However, the reason why the Wolff algorithm is so

sensitive to triplet correlations remains a mystery.

5 Conclusions

It has been shown how the numerically observed value for the triplet correlation in shift—
register PN generators can be calculated on the basis of the production rule. Interestingly,
the reverse correlation is obtained if the logical exclusive—or operation is replaced by a
not—exclusive—or operation. These considerations motivate the introduction of a second
generator which is used to remove the triplet correlations. The simple and fast method of
combining two independent shift-register generators with different time lags via an XOR
has shown very satisfactory results in the triplet correlation test, the blocking test, and
the Wolff algorithm. These are all tests where R250 failed spectacularly. Since it is also

obvious that R250/521 cannot be worse than R250, we did not consider it necessary to run

10



tests which R250 had passed. We hence believe that this type of generator can prove very
useful in many applications, in particular in those where a lot of PNs are needed at a very
high production rate, with only small additional cost of the overall program. Of course,
one should keep in mind that this speed comes at the price of a weak residual nine—point
correlation. It is therefore advisable to not use this generator blindly, but rather compare
application results with results produced by either R250 or an even further improved
version where three or more shift-register generators are combined, as discussed in Ref.
[16]. Such a test on the “convergence” of statistical quality might still be cheaper than

using a slow generator.

6 Acknowledgements

We wish to thank F. Schmid and N. B. Wilding for stimulating discussions. AMF would
like to acknowledge the hospitality of the Physics Department of the University of Mainz
during a recent visit, as well as the support of NATO Grant No. CRG 921202.

11



References

[1] R. C. Tausworthe, Math. Comput. 19 (1965) 201.

[2] T. G. Lewis and W. H. Payne, J. Assoc. Comput. Mach. 20 (1973) 456.

[3] H.S. Bright, Computing Surveys 11 (1979) 357.

[4] S. Kirkpatrick and E. P. Stoll, Journ. Comp. Phys. 40 (1981) 517.

[5] A. M. Ferrenberg, D. P. Landau and Y. J. Wong, Phys. Rev. Lett. 69 (1992) 3382.

[6] W. Selke, A. L. Talapow and L. N. Shchur, JETP Lett. 58 (1993) 665.

[7] P. D. Coddington, Int. Journ. Mod. Phys. C 5 (1994) 547.

[8] K. Kankaala, T. Ala—Nissila and I. Vattulainen, Phys. Rev. E 48 (1993) R4211.

[9] P. Grassberger, Phys. Lett. A 181 (1993) 43.
[10] I. Vattulainen, T. Ala—Nissila and K. Kankaala, Phys. Rev. Lett. 73 (1994) 2513.
[11] I. Vattulainen, T. Ala—Nissila and K. Kankaala, Phys. Rev. E 52 (1995) 3205.
[12] F. Schmid and N. B. Wilding, Int. Journ. Mod. Phys. C 6 (1995) 781.

[13] I. Vattulainen, K. Kankaala, J. Saarinen and T. Ala-Nissila, Comp. Phys. Comm.
86 (1995) 209.

[14] A. Compagner and A. Hoogland, J. Comp. Phys. 71 (1987) 391.

[15] A. Compagner, J. Stat. Phys. 63 (1991) 883.

[16] A. Compagner, Phys. Rev. E 52 (1995) 5634.

[17] A. L. Talapov, L. N. Shchur and H. W. J. Blote, JETP Lett. 62 (1995) 174.
[18] H. W. J. Blote, E. Luijten and J. R. Heringa, J. Phys. A 28 (1995) 6289.
[19] M. Liischer, Comp. Phys. Comm. 79 (1994) 100.

. James, Comp. Phys. Comm. 79 (1994) 111.

. Marsaglia and A. Zaman, Ann. Appl. Prob. 1 (1991) 462.

. James, Comp. Phys. Comm. 60 (1990) 329.

F
G
[22] R. M. Ziff, Phys. Rev. Lett. 69 (1992) 2670.
F
N. Zierler, Information and Control 15 (1969) 67.
A

. E. Ferdinand and M. E. Fisher, Phys. Rev. 185 (1969) 823.

12



Figures

>

<X X, X

< Xy Koy Xy >

<Ky X X >

0.125

0.120

0.115 p

0.110

0.105 4 "
] 100 200

0.125025

0.125000

v (S ‘l‘\l o ol M B 'hmn»
:

0.124950

0.124925

k

0.12506
0.12504
0.12502
= : ‘ il
| ” \" ‘“HI“‘ “| \||"”H|
C rasoo “”| M i |‘ |‘|||‘||| “|| |‘| H’hp ‘
0.12498

0,12496

Figure 1: (a) The triplet correlation function (X, X, _rX,_250) as a function of the lag
parameter k, for data from R250. In accordance with the analytical calculation, we
observe for k = 103 a value of 0.1071 ~ 3/28. (b) Same as (a), but on an expanded scale,
and including statistical error bars. (¢) Same as (b), but for R250/521.

13



600

400 F

o....'
o
e O
oo
.
0 S
0 200 400 600 800
n
8
6 P
( ) Xa
2 F
.
.
oo
o . e 40 o g%’ o ’ o
0 200 400 600 800

n

Figure 2: (a) The variable v, as defined in the text, as a function of block length, for
R250. (b) Same as (a) for R250/521 (note the different scale).

14



Tables

Tab. 1: The exclusive-or operation: ¢ = a © b

_ = o O Q
_ o = O o
O R = O N0

Tab. 2: The not—exclusive—or operation: ¢ = abb=15a H b

_ = O O Q
_ o = O o
_ o O = 0

15



Tab. 3: Blocking test results for R250/521: Comparison of observed y distribution with

the theoretical one.

Y interval | theor. probab. | obs. freq.
0<y<0.2 0.35 0.38
0.2<y<1 0.34 0.25

l<x<3 0.23 0.27
J<xy <o 0.08 0.10

Tab. 4: Wolff algorithm results for the energy per site (E) and the specific heat C of

the two—dimensional Ising model on the 16 x 16 square lattice at the critical point.

Generator | R250 (Ref. [5]) | R250/521 | exact (Ref. [25])
- (F) 1.455017 1.4530621 | 1.4530649

error 0.000046 0.0000243 | —

deviation |42 o 0.1 0 —

C 1.448627 1.498378 | 1.498711

error 0.000467 0.000217 | —

deviation | 107 o 1.5¢0 —

16



