Conformations of Random Polyampholytes
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We study the size?, of random polyampholytes (i. e. polymers with randomly gegr monomers) as a
function of their lengthV. All results of our extensive Monte Carlo simulations carrdtgonalized in terms of
the scaling theory we develop for the Kantor—Kardar neektaodel, although this theory neglects the quenched
disorder in the charge sequence along the chain. Wefgil o« N'/2. The elongated globule model, the initial
predictions of both Higgs and Joanny (V'/?) and Kantor and Kardar{ ), and previous numerical estimates
are ruled out.

PACS Numbers: 61.41+e,82.70.Gg,64.75.+g

Polyampholytes (PAs) are heteropolymers comprising neueharge sequence except the net charge, the necklace model
tral, positively and negatively charged monomers. Suclpredicts(R,) N'/2, while the evidence from Monte Carlo
molecules are often water—soluble, offer numerous applicasimulations [9] (R,) « N°f) and exact enumerations [10]
tions [1], and can be regarded as simple model systems fq{R,) o N?2/3) rather suggests a faster growth. Neverthe-
electrostatic interactions in proteins and other biopaysn less, the effect seems to be weaker than predicted [6] by Kan-
Depending on the method of synthesis, the charge sequenta&’s and Kardar’s original renormalization group arguten
can either be alternating or random. The first case is well un{(R,) o< N).
derstood in terms of a theta collapse due to effectivelytshor  In the following we present a complete scaling theory for
ranged interactions [2,3]. In contrast, the statisticathamics the Kantor—Kardar necklace model as well as large scale
of random PAs [4—14] has turned out to be surprisingly com-computer simulations of various ensembles of quenched ran-
plex. The purpose of this Letter is to settle a long—standinglom PAs: Fixed (zero or nonzero) net charge, and randomly
controversy on the shape of isolated random PAs in genera@harged chains with a typical net charge of ordlgr'2. With
and the effect of the quenched disorder in the charge sequentespect to the length of our chaing < 4096 as well as the
in particular. number of independent charge sequences (between 512 and

The interest in this question was triggered by the discov1024) we by far exceed previous simulation studies [9,18,19
ery of Kantor and Kardar [7] that random PAs are sensitiveThe good statistics for large chains turns out to be crucial,
to small disparities in the number of positively and negdiiv  since our results suggest that deviations from the prexdisti
charged monomers per chain. In an ensemblgatistically  of the necklace model f@nsemble averagese merely finite
neutralPAs of length\V, the typical net charge |§)| o« N'/2.  size effects.

Chains with a net charge up to this value behavglabally We consider isolated, flexible chains 6f monomers of
neutral ( = 0) PAs and form dilute globules of spherical diameterb in a good solvent with no added salt. This corre-
shape as predicted by Higgs and Joanny [5]. In contrassponds to the limit ofnfinite dilution, where the chains do

the more strongly charged members of the ensemble adopbt form complexes [13] and where counterions, which may
strongly elongated conformations leading to a situatioensh be necessary to balance the net charge of the considered PA
ensemble averages for quantities such as the gyrationsradigensemble, can be considered as infinitely far away. For a par-
for statistically neutrarandom PAs are dominated by the un- ticular chain, a fractiorf = f. + f_ of the monomers at
typical, extended chains in the wings of the net chargeidistr quenched random positions carries charjesresulting in a
bution [7]. net charge per monomer eff = e(f; — f_). The strength

To explain this behavior Kantor and Kardar have proposed af the unscreened electrostatic interactions is chaiaetéby
model where, as a function of their net charge and in analogthe Bjerrum lengthig = €>/(ekgT).
to the Rayleigh instability of charged droplets, the PA glob  Globally neutral chains §f = 0) assume a globular con-
ules splitinto a pearl-necklace—like sequence of smalitdr-g  formation if they are sufficiently long [5], while for shorte
ules connected by thin strings [8,9]. While pelgctrolytes chains a smooth crossover to self-avoiding walks (SAWSs) oc-
(PEs) in poor solvent [15] are well described by the necklaceurs. Within the framework of mean field theory, the attrarcti
concept [16,17], Kantor and Kardar have argued that in thenergy is estimated via the Debye—Hiickel polarizatiomgyne
PA case the charge inhomogeneities should drastically moditensity [4]fpr o< k2kgT, where the inverse squared screen-
ify the necklace picture. Indeed, computer simulationsAs P ing lengthx? = g fc is proportional to the monomer con-
reveal a rich variety of conformations [18] and it is unclearcentrationc. Thus the attraction will be important on length
if the disorder is relevant for ensemble averages of quantiscales larger than the so called blob diaméter= «~1. On
ties as the gyration radiusR,). Ignoring all details of the length scales belog, the conformation is described as an un-



perturbed SAW, so tha, = bg”, whereg, is the number of
monomers in the blob, and ~ 0.59. Sincec = g,/&2, the
blob size is given ag, = (b/(Igf))'/("=*). The PA chain is
then envisioned as a spherical droplet of blobs; this mirési
the surface energy which is estimated &9 g, )%/ kpT (each
surface blob contributesgT). The gyration radius hence
scales as
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In analogy to Khokhlov’s description of PEs in poor sol- N
vent [15], a first understanding of the effect of a nonzero net - -
charge density)f can be gained from an elongated globule «
model [1,11,12]. A globule becomes extended as soon as the
Coulomb energys T (6fN)2l5/ ((N/g.)/?¢,) exceeds the 107 L I 13 T e 1
surface energksT (N/g,)?/?, i. e. forN > gr = f/8f7, N N
the number of monomers in a “Rayleigh blob”, whose size is FIG. 1. Radius of gyration as a function of chain lengitfor (a)
given byég = &, (gR/ga)l/S- The globule is stable fay, < globally (full symbols) and (b) statistically (open symspheutral
N < gg, while for N > gp the elongated globule model pre- random PAs with

dicts an object of diametei and length(N/gr)¢g, whose  [8/b=1/64(0), 1/16 (A), 1/4(2), 1/2(v), 1 (D), 2 (). The
relative extension is thus given by data are normalized to the size of random walks, while thedggit

lines indicate the slopes expected for self—avoiding wRlK & N”,
{ 1 N/gn < 1 v = 0.588), random walk R, o< N'/?) and globularR, o« N'/3)

4/3 conformations.
(Z)" N/gr>1. @
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However, Kantor and Kardar [8,9] argued that the electro- Finally we consider the ensemble treated by Kantor and
static repulsion should rather result in necklace—likefoon  kardar, randomly charged PAs with a Gaussian net charge
mations, where spherical regions with net charges below thgistribution of zero mean and widttdf?) = f/N. The cal-
instability threshold alternate with thin strings. Basettlois - jation of averages such &®,) is somewhat subtle. For
concept, Dobrynin et al. [16] developed a scaling theory fory « 4. one will of course observe SAW behavior, while
PEs in poor solvent, which has been recently shown in comfor 7 5. ¢, the ensemble comprises contributions from both
puter simulations to describe the data much better than thge globular and the necklace phase. Indeed, each charge re-
earlier Khokhlov picture [17]. Applied to PAs, one expects gjization implies a certain value afs = f/df2, the typi-
the pearl and string diameters to be givendayand¢, re-  ca value beinggr = N. Hence there will always be a fi-
spectively. The length= ¢r(Er/&a)'/> > Eg of the strings  nite (N—independent) fraction of chains whogg is small
is then again determined by the equilibrium between the-addignough that they are in the extended necklace phase. This
tional surface energy of the strings; T'!/¢,., and the electro-  fraction will asymptotically dominate the average valudigf
static repulsion between the pearts;T'(3fgr)*ls/I. Note  Thys the average stretching relative to the globule is fdynd

that even though the strings make up for most of the lengthyst using Eq. (3), wherer is replaced byN. Since then
of the necklace, they contain only a negligible fractiontu t €r/€a = (gr/9a)""® = (N/ga)'/3, we find

PA volume, withR, (6f, N) = (N/gr)!. Hence the necklace
model predicts a different scaling for the chain dimensjons Rﬁ (6f) =0, f,15/b,N) { 1 N/g, < 1,
X
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R3(0f =0, f,ls/b,N) — & 9R> One thus finds(R,) o« N'/2 for the random PA neck-
(I]ace [8,9], which is formally a random walk (RW) exponent,
while the underlying structure is completely different. tBlo

that within the elongated globule model (i. e. disregardirey

than the elongated globule model, Eq. (2). It should be note
that in the necklace case no universal scaling functiongf ju

one scaling argument/gp, occurs, i. €. a complete data col- possibility of a Rayleigh instability) the net charge fluetu

lapse is only possible foeither the globular regimeor the . . . L
. : . tions are predicted to be irrelevant as originally assumed b
necklace regime, the reason being that the regimes are se

arated by a first—order phase transition [16,17]. Conversel Iq|ggs and Joanny [5].

o In our Monte Carlo simulations we studied a bead—spring
the elongated globule model predicts just a smooth crossove . . -
. : : model with short-range potentials to model connectivitgt an
such that only a single scaling function occurs.

excluded volume. All monomers are chargegd£ 1) and



interact via an unscreened Coulomb potential. This yields
the largest amount of charge fluctuations with the smallest
number of monomers, while we are not interested in details
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of the chain structure below the distance between neighbor- R, (BfZ0) 2(0-6‘1/3?//
ing charges. We varied the blob sigg by studying differ- R,%(3f=0) ;.
ent values of g /b = 1/64...4. Note that in order to reach L 69 22-103)

the O(10?) blobs necessary for the formation of well-defined o %
globules and necklaces, we had to push the strength of the ov 89 % 3/
electrostatic interaction to or even slightly beyond thiecty weeeLsss %%i@?. j . 2 1
limit (I5/b = O(1)) of the blob picture. "W'"_i»
Further factors which facilitated the feasibility of thevé@s- R 2(3<0) ,."‘-.;_
tigation were the use of a large parallel computer, expigiti R o
the inherent parallelism resulting from the disorder @i R, (SAW) By
tions, plus the application of a very efficient hybrid algion 2(1/3-v) -t

which combines local moves with the pivot technique [20], . ;

while starting off from a configuration that was generatead vi ~ *° 10 5 5 - J

the enhanced configurational biased Monte Carlo method [21] ° N/g, ° v

with already equilibrated bond lengths. At each state puent FIG. 2. Scaling plot of the data presented in Fig. 1. The fyihs

studied 512 or 1024 different realizations of the disordach  hols show the shrinking of globally neutral PAs relative hxharged

of which was observed for a fixed run time. For the shorterSAWs, while the open symbols represent the swellingtafistically

chains and smaller charges, this run time was long enough treutral relative toglobally neutral PAs. The data are plotted as a

yield a few hundred statistically independent configuragio function of the reduced chain lenghy/ g, and support Eq. (1) and, in

per realization (as estimated via the autocorrelationtfanc particular, the prediction Eq. (4) of the necklace modele Tashed

of the end—to—end vector). On the other hand, the long globin€ corresponds to the earlier numerical estimateoc N [9],

ally neutral chains at strong charging were very difficult toWhich is clearly not supported by the data.

equilibrate in their dense globular state. Reasonablisttat

(with at least a few ten independent configurations) is avail

able up talp/b = 1, while for/g/b = 2 only the data up to  elongations by about a factor of two. The Rayleigh instabil-

N = 512 are reliable. Foig/b = 4 the globular state was ity occurs aroundV/gr ~ 2, while for N/gr > 3 the data

practically inaccessible, and only necklaces could beistlud are in excellent agreement with the prediction Eq. (3) of the

For further details we refer the reader to Ref. [22], wherenecklace model.

the analogous model was simulated with the same methods Quite interestingly, the exponeiif2 even seems to char-

to study PE adsorption. All in all, we needed roughly 10*  acterize the ensemble averages for the mean square internal

hours single—processor CPU time for the calculation. distancegr;;) = ((7; — 7;)?) in statistically neutral PAs (see
Figure 1 shows the chain length dependence of the gyrahe inset in Fig 4). That random PAs are, however, far from

tion radii of globally (full symbols) and statistically (ep  being random-walk like fractal objects is demonstratechay t

symbols) neutral random PAs. The data show unequivocallgtructure factoS (k) (x in Fig. 4) which clearly deviates from

that sufficiently long random PAs with a global neutralityeo  the Debye function. For comparison, we have also calcu-

straint adopt globular conformationB{ oc N'/3), while un-  |ated S(k) in the Gaussian approximatiqnxp[ilz- 7]y =

constrained random PAs are on the average significantly mokep|—k?(r?;) /2] showing that the distribution functigs(r;;)

extended, with?, oc N'/2. Clearly, a growth of?, with N cannot be specified by its second moment alone.

which is even faster than that of the SAW, as was suggested In summary, our results have demonstrated a remarkable

by Refs. [9,10], can be ruled out. success of the simple necklace model for random polyam-
The corresponding scaling plot (Fig. 2) supports the Higgsholytes. In particular, the scaling of tleerageextension

and Joanny [5] picture of the behavior of globally neutralof the chains is not affected by the quenched disorder of the

chains as well as our formulation of the necklace model forcharge positions along the chains. Nevertheless, a more de-

PAs carrying a net charge. For the SAW data we took thoseailed description of the relation between the charge secpie

with the weakest chargls /b = 1/64, which is very close on individual chains and their typical conformations rensai

to the true SAW behavior for our chain lengths. One alsoa challenge.

sees that the crossover from the SAW into the globule is sub- This work was supported by collaboration grant number

ject to considerable corrections to scaling, which are @b /72 164 from the Volkswagen foundation. We thank the

mainly due to the rather smaj}, values of our simulation. Rechenzentrum Garching for generous allocation of Cray T3E
In order to better characterize the Rayleigh instability weCPU time.

also investigated ensembles of random PAs with a fixed

nonzero net charge. Figure 3 demonstrates that the elahgate

globule model describes the onset of the deformation up to
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FIG. 3. Swelling of random PAs due to a nonzero net charge den

sitydf > 0. We show three data sdig/b = 1 (0), 2 (<), 4 (>) for
systems with fixed asymmetdyf = 1/32, and varying chain lengths
32 < N < 4096 and one data set withs /b = 1 (%), fixed chain
lengthN = 1024 and charge asymmetriég128 < §f < 1/2. The
shaded areas indicate the parameter regions where thegsfmaiins
Eqg. (2) and (3) break down, corresponding to the elongatelugs
and the necklace model, respectively. The dashed linesepigethe
function (N/gr)*/? predicted by both models fa¥/gr > 1. The
insets show typical conformations for chains with = 1024 and
I /b =4 with §f = 0andN/gr = 4, respectively.
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