Suppression of Capillary Wave Broadening of Interfaces in Binary Alloys
Due to Elastic Interactions

B. J. Schulz, B. Diinweg!, K. Binder, and M. Miiller$
Institut fir Physik, WA331, Johannes Gutenberg—Universitat, Staudingerweg 7, D-55099 Mainz, Germany
" Maz Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
8 Department of Physics, University of Wisconsin-Madison, 1150 University Avenue, Madison, WI 53706-1390

By Monte Carlo simulations in the constant temperature—constant pressure ensemble a planar
interface between unmixed A-rich and B-rich phases of a binary (A, B) alloy on a compressible
diamond lattice is studied. No significant capillary wave broadening of the concentration profile
across the interface is observed, unlike lattice models of incompressible mixtures and fluids. The
distortion of the lattice structure across the interface is studied.

PACS numbers: 68.60.-p; 64.75.+g

Interfaces between coexisting phases are ubiquitous in
condensed matter. Nevertheless a fundamental issue that
is not fully understood [1-10] is the precise relation be-
tween the so-called “intrinsic interfacial profile” and the
broadening caused by lateral fluctuations of the local in-
terface position. Theories for interfacial profiles go back
to van der Waals [11], Cahn and Hilliard [12] and others,
and neglect these latter fluctuations, yielding the “intrin-
sic profile” only. This remains true for more sophisticated
extensions of mean field-type theories such as the density
functional theories of fluids [5] or self-consistent field the-
ory of polymer blends [13].

Lateral interface fluctuations on large length scales are
modeled as “capillary waves” [14-16]. For a free interface
in three dimensions, these fluctuations lead to a diver-
gent interfacial width. This divergence is cut off at large
length scales either by the lateral size, L, of the system
or by a correlation length, £, which may stem from a
potential acting on the interface (e.g, due to gravity or
interaction with substrates [4, 17-19]). Normally, | is
a function of film thickness D and, hence, a dependence
on either L [4, 10, 20, 21] or D [4, 17-19] is seen in ex-
periments [10, 17, 19] or simulations [4, 18, 21]. While
these results agree with predictions based on capillary
wave theory, they do not allow a meaningful estimation
of the “intrinsic” interfacial width, wg, because the to-
tal apparent width, w, contains both contributions from
the intrinsic profile as well as capillary wave broadening.
Approximating the apparent profile by a convolution of
the intrinsic profile with capillary waves, one obtains

w® = w} + kaT/(4) - In(L/ Bo), 1)

~ being the (long wavelength limit of the) interfacial stiff-
ness [2, 3] and By a cutoff at short wavelengths. For fluid
interfaces in three dimensions the value of v agrees with
the interface tension (i. e. the excess free energy of the
interface per unit area), while in general v refers to the
free energy penalty for deforming the interface. Note
that Eq. (1) only holds for L > By because at short
wavelengths also the wavelength-dependence of the in-
terfacial stiffness [5-7, 9, 22, 23] matters. None of the
quoted experiments and simulations were able to clearly

identify wo, since data of w? as a function of L only yield
wg — kT (In By) /47, but not wy, By separately [24].

Despite the apparent universality of this problem, sys-
tems exist for which the lateral interfacial fluctuations
are suppressed by long-range interactions. In the present
work, we demonstrate this effect by model calculations
for a binary alloy (A4,B) on a compressible lattice with
long-range elastic correlations. While it has been com-
mon knowledge that elasticity plays a crucial role in phe-
nomena like alloy formation [25] or surface reconstruc-
tion [26], its effect on interface fluctuations has so far
not been noticed [27]. For a coherent binary alloy no
capillary waves occur, and the intrinsic profile is readily
observed. Since for solids strictly rigid lattices are any-
way an idealization and for most phase transitions there
will be some coupling between the order parameter and
elastic degrees of freedom we expect in solids well-defined
intrinsic interfacial profiles, unlike fluid interfaces.

Our model has been previously studied in the bulk
[28] to describe the phase diagram of solid Si-Ge mix-
tures. Despite the difference in lattice parameters be-
tween these two elements, which both crystallize in the
diamond lattice, one observes complete miscibility at
high temperatures, while phase separation occurs at low
temperatures. If the lattice were rigid, the transition
would fall in the universality class [29] of the three-
dimensional Ising model. The compressible system in the
constant-pressure, semi-grand canonical ensemble, how-
ever, clearly shows mean field critical behavior, providing
evidence for the importance of long-range elastic inter-
actions [28]. This can be rationalized as follows: The
order parameter couples directly to the fluctuations of
the volume of the system or to the elastic strain. In con-
trast to the compressible Ising model [30] with strict spin-
up/spin-down symmetry, one now has a correspondence
between the mean volume and the mean order parameter
(like for hydrogen in metals [31]). This implies that one
can also use the strain as the fundamental order param-
eter, as it is done in Cowley’s [32] theory of structural
phase transitions. There the transition is predicted to
be mean field-like because the order parameter couples
only to the volume mode and the longitudinal phonons,



with the former being intrinsically softer than the latter,
due to the existence of a non-vanishing shear modulus
[30, 33]. Therefore the bulk mode already orders before
any of the other modes has a chance to become critical.

The Keating-like [34] Hamiltonian of our model [28] is

H:Z( TS5+ B(S,85) [r5? — B3(5:.87)]%) (@)

+ ) A(Si, S, Sk) [rigrig + Ro(Si, S;)Ro(Sk, S5)/3]7
(i,3,k)

where the pseudo-spins S; = %1 represent A vs. B, ry;
is the bond vector between the sites 7 and j, Z@j) de-
notes a sum over nearest neighbors, and Z(i, ;. denotes
the sum over two nearest neighbor bonds i,j and j, k
with common vertex at site j. The “exchange constant”
of the Ising model is J = 0.005¢V [28], and the con-
stants defining the energies E(S;,S;) and A(S;, S;, Sk)
are given in Ref. [28]. The key feature of this model
is that the two species prefer different bond lengths
Ro: Ro(1,1) = 2.352A and Ro(—1,—1) = 2.450A, and
Ro(1,—1) = 2.401A, respectively. If all three choices of
Ry were taken the same, a compressible lattice with no
mismatch between A and B would result.

We choose a L x L x D geometry with periodic bound-
ary conditions in x, y direction and two free L x L sur-
faces on which surface chemical potentials act, such that
at z = 0 the A-rich and at z = D the B-rich phase is
preferred. Denoting the surfaces at z = 0 and z = D
with “(1)” and “(2)”, respectively, this additional part of

<z > [A]

FIG. 1: Profile of the local magnetization (my) = (S;)icn of
the 8 x 8 x 12 system for different block sizes B (values quoted
in the key), shown by full curves, and the total profile of the
4 x 4 x 6 system (this would correspond to B = 16), broken
curve. The symbols present the actual simulation data, while
the curves are fits to a tanh-profile which is the standard mean
field result for an “intrinsic” profile. Note that (my) is related
to the concentration profile via ¢(z) = (1 + (my))/2. The
inset shows the squared width vs. B, choosing a logarithmic
abscissa to show that there is no regime where w? « In B
holds, rather w? saturates at a finite value rather quickly.

the Hamiltonian [35] is

7-[surf - 7”5\1) Z 551‘7"1’1 - Hf) Z 5Si,+1
i€(1) 1€(2)
Ng) Z 551'7*1 - Ng) Z 551'7*1 (3)
i€(1) 1€(2)
with 1) = u8® =0, 4 = 0.0582ev, ul¥ = 0.04186V.

This choice means that the left wall prefers A with the
same strength with which the right wall prefers B. We
apply the NpT ensemble.

The total number of particles is N = 8L2D because
the diamond lattice consists of 8 interpenetrating simple
cubic lattices whose lattice constant corresponds to the
linear size of the diamond conventional cell. We choose
Ny Np = N/2, and normally initialize the system
such that particles for 0 < z < D/2 are of type A and
for D/2 < z < D are of type B [36]. Applying moves in
the constant pressure ensemble, the concentration profile
is equilibrated by allowing for “spin exchange”-type of
moves between arbitrary pairs of sites. The positions are
equilibrated by trying to move a particle from its old po-
sition rj to a randomly chosen new position r;’ within a
small surrounding of the old position [28, 35]. In the sur-
face plane, only lateral motions are permitted. To allow
for faster equilibration, also nearest neighbor relaxation
moves of the type proposed by Kelires [37] were imple-
mented. Two sizes were utilized (4 x4 x 6 and 8 x 8 x 12)
and between 3 - 105 and 107 Monte Carlo steps per site
(MCS) were used for the averaging. Temperatures stud-
ied were kgT = 0.005¢€V, 0.006 éV, and 0.007 &V [35], but
here only the results for the lowest temperature are de-
scribed. Parallel to the surfaces we observe an average
lattice constant a = 5.5307A which is similar to the arith-
metic mean of the lattice constant that would result for
pure Si and pure Ge from the Keating potential [34],
a = 5.5449A

Figure 1 shows our central result, namely evidence that
the interfacial profile is independent of both L and D. By
analyzing subsystems of size (B/4) x (B/4) x D instead of
the full system L x L x D, we observe that there is prac-
tically no dependence on B, unlike the findings for the
rigid Ising model [20, 21], the lattice model for polymer
blends [4], etc. Only when the sub-block linear dimen-
sion is reduced to the size of a few A, as is the case for
B = 4, does the interfacial profile sharpen. The behavior
at higher temperatures is qualitatively similar [35].

We believe that this phenomenon can be explained as
follows: Consider Fig. 2a, where the analogous situation
for a two-dimensional square lattice is shown. The pure
species have the same type of unit cell (square), but dif-
ferent lattice spacings. In the coherent, demixed alloy
the atom-atom distances parallel to the interface will as-
sume some compromise value between the two optimum
spacings for A and B throughout the system. In other
words, none of these parallel bonds is relaxed — they are
all either stretched or squeezed. Conversely, the bonds
perpendicular to the interface are all relaxed, except for
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FIG. 2: (a) Qualitative sketch of a typical configuration of
a coherent two-dimensional binary alloy with mismatch in
the lattice spacing. The pure species both crystallize in a
square lattice. (b) Distances in planes parallel to the interface
(001) in A vs. layer index n for the 8 x 8 x 12 system. The
arrows indicate the ideal bond lengths R used in the Keating
potential.

a few near the interface. We note that the approximation
used in Fig. 2a (complete neglect of bond angle fluctua-
tions, which must remain very limited as a result of the
boundary conditions), has been put forward previously
[38]. Obviously, this behavior implies that the introduc-
tion of the interface costs a free energy which does not
scale as the area L2, but rather as the volume L?D. This
implies an infinite interfacial tension. It should be noted
that the periodic boundary conditions correspond to the
condition of coherency in the real alloy. These considera-
tions show that coherency can only occur up to a certain
length scale beyond which rupture of the network (inco-
herent phase coexistence) becomes more favorable. This
latter phenomenon is well-known from metallurgy [39].
Furthermore, not only the introduction but also the de-
formation of an interface costs a free energy which scales
as the volume, implying that the interfacial stiffness, ~y, in
Eq. (1) is infinite (proportional to the film thickness D),
such that capillary waves are suppressed. This extensive
free energy penalty for deformation can be shown within
the framework of continuum elasticity theory [25]. For
anisotropic elasticity (which is the case here), the elastic
Hamiltonian can be written as a pairwise long-ranged
strain—strain interaction. From this, one can show that
the elastic free energy penalty for an A inclusion in a
B matrix is proportional to the system volume [25], and
depends on the shape of the inclusion. A shape change,
however, is equivalent to deforming the interface.
Figure 2b shows the layer-layer distances of the planes
parallel to the interface and demonstrates that the con-
figurations sketched in Fig. 2a are indeed typical for our
system. It should, however, be noted that in our case (di-
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FIG. 3: Angles between nearest neighbors (nn) termed A,B
and C, B being the atom in vertex position, plotted vs. the
layer index in the z-direction across a 8 x 8 x 12 system. The
layer index refers to that plane where the vertex atom sits. In
the upper panel (a) the two nearest neighbors A and C' are
located in the same (001)-plane, while in the lower panel (b)
the two nearest neighbors A and C are located in different
(001)-planes (one with layer index n — 1 and one with layer
index n+1, if the vertex atom has layer index n). The arrows
mark the angle 6 = 109.47° of the perfect tetrahedron. The
data points correspond to an average over 2705 configurations
taken at intervals of 10> MCS. Only angles appearing on av-
erage at least once per plane are shown. Errors are smaller
than the size of the symbols.

amond lattice) the main distortion does not come from
the bond lengths, but rather from the local bond angles.
The A-A, B-B and A-B nearest neighbor distances es-
sentially retain their values independently of z (data not
shown), while the bond angles deviate substantially from
the ideal tetrahedron value (Fig. 3). This distortion oc-
curs throughout the sample and stores most of the elastic
energy cost of the interface.

This picture is further corroborated by simulations in
the semi-grand canonical ensemble. Here, we find that
a structure of the type shown in Figs. 1-3 generally is
unstable; rather the interface gets bound either to the
boundary at z = 0 or at z = D (Fig. 4) [40]. Unlike the
Ising model on a rigid lattice our model does not exhibit
an interface delocalization transition where the interface
unbinds from one of the boundaries and moves towards
the center of the film [18]. Rather the interface stays
bound to one of the walls up to the critical temperature
where the film disorders (kg7 = 0.0175 €V, note that in
the canonical ensemble T, is expected to be substantially
smaller [38]). This lack of interface delocalization, which
would only be expected above the temperature of a wet-
ting transition, is consistent with the finding [41] that in
adsorbed solid layers strains caused by the substrate po-
tential prevent complete wetting of a solid film, and with
the special role of the volume mode which explains the
system’s mean field-like criticality in the bulk.
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FIG. 4: Magnetization profiles (m,) vs. plane position (zn)
across the film, using a very thin film of size 8 x 8 x 2, at var-
ious temperatures as indicated. The z-coordinates of the two
surfaces where the boundary fields act are shown by vertical
straight lines. For k7T < 0.018 eV two profiles are shown for
each temperature, corresponding to different signs of the total
magnetization M = 3. .S;.

In summary, we have shown that interfaces between co-
existing phases on compressible lattices behave very dif-
ferently from their counterparts on rigid lattices or fluid
mixtures: capillary waves are essentially suppressed, an
intrinsic interfacial profile with mean-field character is
easily found, but interface formation is intimately linked
to large-scale elastic distortions of the lattice, and there-
fore it is generally unfavorable to form planar interfaces
over large length scales separating large homogeneous do-
mains. The consequences of these observations are far
from being fully explored.
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