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ABSTRACT

A method for simulating the dynamics of polymer—solvent systems is described.
The fluid is simulated via lattice Boltzmann and the polymer chains via Molecular
Dynamics. The two parts are coupled by a simple dissipative point—particle force,
and the system is driven by Langevin stochastic forces added to both the fluid and
the polymers. This method is applied to a semidilute system of chains of length
N = 1000. We observe the crossover from Zimm dynamics at short length and
time scales to Rouse dynamics at long length and time scales. Moreover, we find
“incomplete screening”, i. e. Zimm-like behavior at short times but large length
scales. This behavior can be nicely described in terms of the de Gennes picture,
which explains hydrodynamic screening as a result of entanglements. An analogous
simulation approach has been developed for electrostatics, where the interaction
is described by a dynamic Maxwell field coupled to the system of charges. This
method will be briefly outlined as well, with emphasis on the analogy between
hydrodynamics and electrostatics.

1. Hydrodynamic Interactions: A Computational Challenge

Complex fluids like colloidal dispersions or polymer solutions are characterized by
a huge difference in length scales and, even more importantly, time scales. The
solvent particles are much smaller, and they relax much more quickly, than the
solute. Indeed, for a single flexible polymer chain in dilute solution, the macro-
molecule’s relaxation time may be estimated by the scaling prediction of the Zimm
model [1],

1’

Tz ~ kB—T’ (1)

where 1 denotes the solvent viscosity, R the chain’s size (e. g. given by the gyra-
tion radius), kg the Boltzmann constant, and 7" the absolute temperature. The
underlying picture is a self-similar object relaxing on all length scales A, where the
corresponding relaxation time is given by 7(\) ~ nA3/(kgT), implying a dynamic
exponent z = 3. The longest relaxation time is given by the time which the object
needs to move its own size, and this is in turn governed by its diffusion constant D:
D1, ~ R?. Equation 1 then follows from the fact that the chain behaves essentially
like a Stokes sphere, as far as diffusion is concerned, D ~ kgT'/(nR).

The important point for computer simulations is that Eq. 1 holds (approximately)
for the solvent particles as well; however, the relaxation is much faster. Thus,
a length scale ratio of, say, only ten would result in a chain relaxation which is



roughly one thousand times slower than that of the solvent particles, or of the
monomers. Therefore simulations of polymer dynamics which aim at resolving the
full spectrum of relaxation times between the monomer scale and the macromolec-
ular scale are intrinsically expensive, and one would like to do this with a model /
method which is as simple and efficient as possible.

The most striking observation is that for dilute systems there are many more
solvent than solute degrees of freedom. Therefore the solvent should be reduced to
its bare essentials, which are just needed to reproduce the chain dynamics correctly.
The first important solvent property is the supply of thermal noise, such that one
is tempted to just simulate the solute particles via Brownian Dynamics,

A T

where ( is the friction coefficient of monomer i at position 77, F the deterministic
force, and ﬁ the Langevin noise. However, this simple scheme does not take into
account the hydrodynamic interaction, which is nothing but highly correlated mo-
tion of the Brownian particles, due to fast diffusive momentum transport through
the solvent, and of paramount importance for dilute systems. These correlations
are actually the reason for the Stokes-like behavior of the diffusion constant; with-
out them one would obtain Rouse-like scaling D oc N~!, where N is the degree
of polymerization. The so—called Schmidt number Sc¢ = 1,/ Dy, 1. €. the ratio
between kinematic viscosity (which is the diffusion constant for momentum) and
monomer diffusion coefficient, has typical values of 10%...10% in dense fluids, and
can safely be replaced by Sc = oo. Therefore, one should replace Eq. 2 by

ij

where the Langevin noise is now described by a huge correlation matrix, propor-
tional to the mobility matrix #;;,

(filt)© fi(t)) = 2ksT Ky 6(t — 1), (4)

ﬁi]’ can be calculated from hydrodynamics [1] with various degrees of accuracy
(Oseen—Tensor, Rotne-Prager—Tensor, etc.); the leading—order Oseen correlations
are long-ranged, decaying like 1/r. The Oseen tensor is nothing but the Green’s
function of the Stokes equation, in close analogy to electrostatics, where the
Coulomb potential is the Green’s function of the Poisson equation. This ma-
trix has been a severe obstacle to Brownian dynamics simulations, since simple
algorithms to treat it scale as N3, where N is the number of Brownian particles.
Recent progress has reduced this to roughly N log N [2]; however, this complicated
method has not yet found widespread use.

The “mesoscopic” approach instead resolves this problem by keeping the solvent de-
grees of freedom, but reducing them to just a means of momentum transport. Dif-
ferent methods (Navier—Stokes, Dissipative Particle Dynamics [3], Multi-Particle
Collision Dynamics [4], lattice Boltzmann (LB) [5]) have been invented and im-
plemented, and in the author’s opinion they are all very similar both in terms



of philosophy and (probably) computational efficiency. Space restrictions do not
permit to describe any of these here. For complex fluids, one then couples one
such method to a particle description of the solute, making sure that the overall
momentum is conserved. An important point is that the solvent should be struc-
tureless, in order to make sure that the static equilibrium properties of the solute
are the same with and without solvent, such that the latter can be discarded for
equilibration.

The method developed in our group [6] is based upon a simple LB description for
the solvent, coupled dissipatively to a bead—spring system to describe polymers.
The latter is described by the equation of motion

mr; = F,— ¢ (i — a (7)) + i, (5)

where ﬁ is a standard Langevin noise, while  (7;) is the solvent velocity at the
particle’s position, obtained via linear interpolation from the surrounding lattice
sites. The LB part is subjected to a fluctuating Langevin stress tensor, and ex-
ternal forces coming from the Brownian particles (these forces are determined via
interpolating back onto the lattice, plus the condition that the overall momentum
should be conserved). This system satisfies the fluctuation—dissipation theorem,
and faithfully represents hydrodynamic interactions on sufficiently large length and
time scales. The Schmidt number can be chosen as rather large (roughly 0.5 x 10?),
by using a suitably large value for .

2. Hydrodynamic Screening in Semidilute Polymer Solutions

A semidilute polymer solution (in good solvent) is characterized by the so—called
“blob size” & [7], which marks the onset of chain—chain interactions, and which
governs both the static crossover from self-avoiding walk (SAW) statistics at small
length scales to random walk (RW) statistics at large length scales, and the dy-
namic crossover from Zimm dynamics for small length scales to Rouse dynamics at
large length scales. This latter crossover, which is usually referred to by the term
“hydrodynamic screening”, had been poorly understood. An important landmark
was the observation by de Gennes [8] that the screening is due to entanglements,
which, in the present context, should however not be viewed as topological confin-
ing interactions as in reptation theory [1], but rather as the presence of chain—chain
collisions. In this picture, the blobs are viewed as “hooked up” in a temporary gel,
such that they provide Darcy—type friction to the solvent flow. Thus the viscous
stress nV2i in the Stokes equation should be augmented by an additional term
—CprobCrioptl, Where (yop is the friction constant of a blob, and ¢y, the concentra-
tion of blobs. However, since cyop ~ 73, and (yop ~ né (Stokes), this term can
also be written as (/£2?)d. Balancing this against the viscous stress, one finds a
hydrodynamic screening length ~ &. Therefore, there are no hydrodynamic cor-
relations beyond the length scale £, such that the dynamics should be Rouse-like
there.

Our simulation data [9] show that this picture needs to be completed in terms
of time scales. Though the Darcy picture of screening by the blobs turns out
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Figure 1: Single—chain dynamic structure factor S(k,t) for a semidilute polymer
solution (replotted data of Ref. [9]). The wave numbers k are restricted to the
regime k& < 1, such that only correlations beyond the blob size are probed. For
pure Zimm scaling, the structure factor should be just a function of k?t?/3, while
it should only depend on k?t!/? for pure Rouse scaling. The early and late times
refer to those which are smaller or larger than 7.

to be essentially correct, one nevertheless needs to take into account that the
entanglements are not felt before the blob relaxation time 7z ~ n&®/(kpT'), which
is the average waiting time until a chain—chain collision occurs. Before this time, an
initial “kick” will just propagate throughout the system, and just drag the chains
along. Therefore, the hydrodynamic interactions are unscreened on time scales
below ¢, even on large length scales well beyond ¢. This completes the de Gennes
picture, and explains the experimental observation of “incomplete screening” [10]
in a straightforward way:.

It should also be mentioned that this study was quite non—trivial with respect
to computational demands: In order to resolve the SAW-RW crossover, and the
Zimm-Rouse crossover, we needed roughly thirty blobs per chain, plus roughly
thirty monomers per blob, such that we needed to simulate 50 chains of length
1000 in a box containing 882 LB lattice sites. This is the smallest system one can
study for this problem.

3. Maxwell Equations Molecular Dynamics (MEMD)

For hydrodynamic interactions, we started from the observation that the 1/r Oseen
tensor is just the Green’s function of a dynamic field theory (hydrodynamics) in its
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Figure 2: Electrostatic energy of a system of 4000 particles interacting via purely
repulsive Lennard—Jones (LJ) interactions, and electrostatics. The Bjerrum length
lp = €?/(4mepkpT) has the value 2.5 in units of the LJ parameter, which also
defines the unit of length for the lattice spacing a (parameter of the abscissa), and
the screening parameter x of the artificial Yukawa field theory. The density has
the rather small value 1072, In the continuum limit @ — 0, the results all converge
to the exact value, which was obtained by accurate P3M simulations.

quasistatic limit, and that we can construct an efficient algorithm by going back
to the original dynamic field theory, i. e. by coupling the Brownian particles to the
Navier—Stokes velocity field, such that the interaction comes about by propagation
of the latter. Nothing prevents us from applying the same philosophy to the
Coulomb interaction between charged particles, which we couple straightforwardly
to a propagating Maxwell field. This idea has been put forward by A. Maggs, and
also pursued by us [11] (see also references in there). Since the approach has been
described in detail in Ref. [11], we wish to be brief, and just outline the main
features:

(i) Again the charges move in continuum space, while the electric and magnetic
fields live on a simple—cubic lattice. (ii) The charges are linearly interpolated onto
the nodes of the lattice, while current density j, electric field E , and magnetic vec-
tor potential A are objects associated with the connecting links. (iii) This scheme
allows a natural and straightforward discretization of the Maxwell equations. (iv)
The discrete analogs of the continuity equation, and Gauss’ law, are satisfied within
machine accuracy. (v) The equations of electrostatics V - E = p/ey, V x E = 0
can be mapped onto a variational problem, where the electrostatic field energy
(€0/2) [ d37 E? is minimized under the constraint of Gauss’ law. This is analogous



to quantum—mechanical density functional theory, where the density functional
needs to be minimized. (vi) Replacing the minimization by some Hamiltonian dy-
namics is exactly the approach of Car and Parrinello, MEMD can be shown to be
formally very close related, with 1/c? (¢ speed of light) an adjustable mass-like
parameter, whose value is irrelevant for the static averages in thermal equlibrium,
while ¢/v & 20 (v particle velocity) seems to be sufficient to also obtain reasonable
dynamics. (vii) The distribution of particles onto lattice sites introduces an un-
physical self-interaction, which however can be approximately (within time step
errors) subtracted, using the appropriate lattice Green’s function. (viii) A combi-
nation with an artificial Yukawa—type field theory allows us to use the same trick
as for Ewald sums, i. e. the interactions are evaluated directly in real space for
short distances, while the Maxwell field propagation ensures proper Coulomb in-
teractions on the larger length scales. (ix) With this trick, it is possible to treat
dilute systems with a rather coarse grid, such that the method does not suffer from
inefficiency even in this limit. (x) Preliminary benchmarks seem to indicate that
the method is quite competitive with conventional electrostatics solvers like P3M,
while having very advantageous properties with respect to scaling, parallelizability,
and ease of implementation.
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