
Translational Di�usion of Polymer Chainswith Ex
luded Volume and Hydrodynami
 Intera
tionsby Brownian Dynami
s SimulationBo Liu and Burkhard D�unweg�Max{Plan
k{Institut f�ur Polymerfors
hungA
kermannweg 10, D{55128 Mainz, Germany(January 30, 2003)Within Kirkwood theory, we study the translational di�usion 
oeÆ
ient of a single polymer 
hainin dilute solution, and fo
us on the small di�eren
e between the short{time Kirkwood value D(K)and the asymptoti
 long{time value D. We 
al
ulate this 
orre
tion term by highly a

urate large{s
ale Brownian Dynami
s simulations, and show that it is in perfe
t agreement with the rigorousvariational result D < D(K), and with Fixman's Green{Kubo formula, whi
h is re{derived. Thisresolves the puzzle posed by earlier numeri
al results (Rey et al., Ma
romole
ules 24, 4666 (1991)),whi
h rather seemed to indi
ate D > D(K); the older data are shown to have insuÆ
ient statisti
ala

ura
y to resolve this question. We then dis
uss the Green{Kubo integrand in some detail. Thisfun
tion behaves very di�erently for pre{averaged vs. 
u
tuating hydrodynami
s, as shown for theinitial value by analyti
al 
onsiderations 
orroborated by numeri
al results. We also present furthernumeri
al data on the 
hain's stati
s and dynami
s.I. INTRODUCTIONDi�usion of polymer 
hains in dilute solution has beena subje
t of substantial theoreti
al interest1{11. A parti
-ularly important result is the Kirkwood formula for thetranslational di�usion 
oeÆ
ient of a mole
ule immersedin a solvent of temperature T and vis
osity �,D(K) = D0N + kBT6�� � 1RH � : (1)Here kB denotes Boltzmann's 
onstant, while N is thenumber of 
hain segments, ea
h of whi
h has a segmen-tal di�usion 
oeÆ
ient D0 = kBT=�, where � is the seg-mental fri
tion 
oeÆ
ient, � = 6��a, where a denotesthe segment's Stokes radius. RH is the hydrodynami
radius of the mole
ule, whi
h is de�ned as a thermal av-erage over the inverse intramole
ular distan
es betweensegments: � 1RH � = 1N2 Xi 6=j � 1rij� : (2)Equation 1 is not exa
t, but rather the result of a num-ber of approximations11. Firstly, the Brownian motionof the mole
ule is des
ribed by a Smolu
howski equation(Kirkwood's di�usion equation) in the spa
e of the seg-ment 
oordinates ~ri. Se
ondly, the di�usion tensor $Dij ,whose o�{diagonal elements des
ribe the hydrodynami
intera
tion between segments i and j, is approximatedby the Oseen formula,$Dij = kBT� Æij 1$+ (1� Æij) kBT8��rij �1$+ r̂ij 
 r̂ij� ; (3)

where r̂ij is the unit ve
tor in dire
tion of ~rij = ~ri � ~rj .Thirdly, the di�usion 
oeÆ
ient is evaluated in the short{time limit of the Smolu
howski equation. The di�usion
oeÆ
ient in the asymptoti
 long{time limit, whi
h wedenote as D, is di�erent from the short{time value D(K),due to the presen
e of intramole
ular dynami
 
orrela-tions, whi
h are expe
ted to de
ay on the time s
ale ofthe overall relaxation time of the 
hain's 
onformationaldegrees of freedom (the Zimm time �Z). Thus, the be-havior on short time s
ales t� �Z is governed by D(K),while on long time s
ales t � �Z the di�usive motiontakes pla
e with the 
oeÆ
ient D. For a general di�u-sion tensor (not ne
essarily of the Oseen type) the same
onsiderations apply. In this 
ase the short{time di�u-sion 
oeÆ
ient is obtained by averaging over the tra
e:D(K) = 13N2 Xij TrD$DijE ; (4)in what follows, the term \Kirkwood formula" will alwaysrefer to Eq. 4.The di�eren
e between D(K) and D has 
aused 
on-siderable interest and some 
onfusion (see below); it isthe purpose of the present paper to 
ontribute to the
lari�
ation of these questions. Both light s
atteringexperiments12{15 and �rst{prin
iples Mole
ular Dynam-i
s (MD) simulations16;17 show that the di�eren
e mustbe quite small su
h that it is below resolution. In the 
aseof MD, the main diÆ
ulty is the fa
t that the \short{time" limit of Kirkwood theory is of 
ourse not the ex-a
t t ! 0 limit, but rather a time regime where the�Ele
troni
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lo
al motions of the parti
les in their \
ages" (or the mo-menta) have already relaxed 
ompletely, while the 
on-formational degrees of freedom of the 
hain must at thesame time be 
onsidered as 
ompletely unrelaxed. Torea
h this separation of time s
ales (i. e. ballisti
 / short{time di�usive / long{time di�usive) in an unambiguousfashion would require extremely long 
hains whi
h arenot a

essible to today's 
omputer power. A relatedproblem is the fa
t that the monomer di�usion 
oeÆ-
ient D0, whi
h must be taken into a

ount in orderto evaluate D(K) 
orre
tly17, is a somewhat fuzzy andill{de�ned obje
t in MD. This is seen in a quite ob-vious fashion when looking at the velo
ity auto
orrela-tion fun
tion of a single monomer, whose time integralis the 
hain di�usion 
onstant D18: After a rather qui
kshort{time de
ay, one gets a negative tail whi
h slowlyde
ays to zero on the time s
ale of the overall relax-ation of the 
hain as a whole19. This latter de
ay de-s
ribes the Rouse{ or Zimm{like slowing down by the
oupling to the other monomers, while the qui
k short{time regime de�nes, in prin
iple, the monomer di�usion
oeÆ
ient D0. However, there is no obvious and well{de�ned time whi
h dis
riminates between short{ andlong{time regime. Depending on where this \
ut" is be-ing put, one obtains slightly di�erent values for D0. Thislatter problem does not exist in a re
ently introdu
ed hy-brid approa
h20, where the 
hain monomers are 
oupleddissipatively to a dis
retized hydrodynami
 ba
kground,su
h that the monomer di�usion 
oeÆ
ient is an inputparameter. However, the former problem (la
k of sepa-ration of time s
ales) is still present.In order to 
ope with these diÆ
ulties, one thereforehas to work stri
tly within the framework of Kirkwoodtheory (i. e. the Smolu
howski equation), su
h that D0is just an input parameter, the ballisti
 regime does notexist, and the theory has a well{de�ned di�usive short{time limit. Nevertheless, 
al
ulating the long{time dif-fusion 
oeÆ
ient D, and the smooth 
rossover betweenthe short{time behavior governed byD(K), and the long{time regime governed by D, requires to a
tually solve theSmolu
howski equation. However, 
losed analyti
al solu-tions do not exist as soon as 
u
tuating hydrodynami
intera
tions and / or ex
luded volume intera
tions areintrodu
ed. For this reason, analyti
al progress on theproblem has been limited; nevertheless, a few importantresults have been obtained. Within the preaveraged ap-proximation, �Ottinger21 derived a 
losed expression forDwhi
h 
learly di�ers from D(K). Furthermore, it is possi-ble to establish rigorous variational bounds on transport
oeÆ
ients11;22;23, from whi
h one 
an show that D mustbe smaller than D(K). Moreover, Fixman24 derived theGreen{Kubo type relationD = D(K) �D1 (5)with D1 = 13N2 Z 10 dtD ~A(0) � ~A(t)E > 0 (6)

and ~A =Xij �$ij � ~Fj ; (7)where ~Fj is the for
e a
ting on segment j, and �$ij is themobility tensor, �$ij = $Dij=(kBT ).However, for a more quantitative understanding onehas to rely on numeri
al solutions of the Smolu
howskiequation. The most 
ommon approa
h is Brownian Dy-nami
s (BD) simulations, whi
h, for the 
ase of 
u
tuat-ing hydrodynami
 intera
tions, was pioneered by Ermakand M
Cammon25. BD simulations for polymer 
hainshave been done by numerous workers before24;26{36. Oneof these studies31 produ
ed quite a

urate data, whi
hhowever seemed to indi
ate D > D(K). No satisfa
toryexplanation of this deviation has been given so far. Forthis reason, we have looked into the problem again, andperformed 
areful BD simulations of the same model withidenti
al parameters. In this model, ex
luded volume in-tera
tions are represented by a relatively soft potential,while the hydrodynami
 intera
tions are modeled via theRotne{Prager{Yamakawa (RPY) tensor22;37.As noted before31, this is a numeri
ally demandingtask, as su
h a 
al
ulation is looking for a rather smalle�e
t. One has, on the one hand, to wat
h out for dis-
retization errors due to the �nite time step31, and, onthe other hand, to make sure that the statisti
al a

u-ra
y of the data suÆ
es. In order to test the relationD = D(K) � D1, all three quantities must be deter-mined independently. As our analysis shows (see below),it turns out that both D(K) and D1 
an be 
al
ulatedwith moderate statisti
al e�ort, and Ref. 31 has indeedobtained values whi
h 
oin
ide with ours. The di�usion
oeÆ
ient D itself, however, is subje
t to mu
h larger
u
tuations, su
h that its a

urate determination needssubstantially more 
omputer power than what was avail-able to the authors of Ref. 31. We believe that this isthe most likely explanation of the deviation, whi
h is not
on�rmed by our mu
h more a

urate data (these arebased on an observation time whi
h is orders of mag-nitude larger than that of Ref. 31). Rather, we �nd avery ni
e agreement with the relation D = D(K) � D1with D1 > 0. We also re{derive Fixman's24 Green{Kuboformula for D1, Eq. 6, by means of an alternative ap-proa
h based on the Mori{Zwanzig proje
tion operatorte
hnique, and try to elu
idate its relation to the sto
has-ti
 analog of the velo
ity auto
orrelation fun
tion. Fur-thermore, we attempt to dis
uss the s
aling behavior ofD1 via both s
aling arguments and numeri
al data; herewe have obtained some results whi
h we view as some-what unexpe
ted and 
ounter{intuitive. However, theseshould be 
onsidered as preliminary and in
on
lusive.The 
omputational demands of the 
al
ulations are solarge that it is impossible to a

urately study the dy-nami
s for 
hain lengths mu
h beyond N � 102, whi
h is2




learly not long enough to justify any 
laim of asymptoti
behavior.The outline of this arti
le is as follows. In Se
. IIwe de�ne the simulated model and des
ribe the simu-lation pro
edure we applied. In Se
. III we derive theshort{time di�usion 
oeÆ
ient and long{time di�usion
oeÆ
ient from the mean square displa
ement of the 
en-ter of mass, and 
ompare the analyti
al predi
tions withthe numeri
al results. Se
tion IV presents our 
onsider-ations 
on
erning the s
aling of the 
orre
tion term D1together with numeri
al data. Se
tion V then dis
ussesfurther data on the stati
 and dynami
 s
aling properties,mainly to demonstrate the 
onsisten
y of the results. InSe
. VI we 
on
lude with some �nal remarks.II. MODEL AND SIMULATION METHODA. Bead{Spring ModelFollowing Rey et al.31, we have modeled the 
exiblepolymer as a linear 
hain 
onstituted by N units rang-ing from N = 6 to 200, ea
h one 
onne
ted with its �rstneighbors by means of harmoni
 springs. Therefore thebond lengths follow a Gaussian distribution whose vari-an
e we denote by b2, i. e. b is the statisti
al segmentlength. Ex
luded volume for
es only a
t between non{neighboring units; they are introdu
ed by means of apotential of the form A exp(��rij ), where A and � are
onstant parameters. This potential is 
ut o� at a dis-tan
e r
. B. Hydrodynami
 Intera
tionThe hydrodynami
 intera
tion is introdu
ed throughthe di�usion tensor proposed by Rotne and Prager andYamakawa (RPY)22;37,$Dij = 8>>>>>>><>>>>>>>:
kBT6��a 1$ i = jkBT8��rij [�1$+ r̂ij 
 r̂ij�+ 2a2r2ij �13 1$� r̂ij 
 r̂ij�℄; i 6= j and rij > 2akBT6��a [�1� 932 rija � 1$+ 332 rija r̂ij 
 r̂ij ℄; i 6= j and rij < 2a(8)where a is the Stokes radius of the beads. This tensor ispositive{de�nite for all 
hain 
on�gurations.C. AlgorithmThe polymer motion is governed by the sto
hasti
 dif-ferential equation that we solve through the �rst{orderErmak and M
Cammon algorithm25,~ri(t+ h) = ~ri(t) +Xj �$ij � ~Fjh+ ~�i; (9)

where h is the time step, ~Fi the for
e on monomer i,�$ij = $Dij=(kBT ), and ~�i a random displa
ement withzero mean and varian
e{
ovarian
e matrix given byh~�i 
 ~�ji = 2$Dijh: (10)We generated the random terms ~�i from a uniformdistribution38, and used the pro
edure given in Ref. 25to satisfy Eq. 10. The term hPj (�=�~rj) � $Dij on theright hand side of Eq. (9) was omitted, be
ause theRPY tensor, due to the in
ompressibility of the solvent,is divergen
e{free, (�=�~rj) � $Dij = 0.D. Simulation DetailsAs in Ref. 31, we use a unit system where the threequantitities b, kBT , and � = 6��a are set to unity. Hen
ethe time unit is given by �b2=kBT . In this unit system,the other parameters are A = 75, � = 4, r
 = 0:512, anda = 0:256. We used a redu
ed time step of h = 0:005,whi
h is twi
e as small as that of Ref. 31. This 
hoi
ewas motivated by a 
omparison of end{to{end distan
eand gyration radius data obtained by simulations withvarious h with the 
orresponding data from Monte Carloruns. This 
omparison showed that highly a

urate re-sults require a rather 
onservative h value.For N � 50, data with good statisti
s were generatedby the following pro
edure: (i) Equilibration by BD with-out hydrodynami
 intera
tions, (ii) short additional equi-libration with hydrodynami
 intera
tions turned on, and(iii) a long BD produ
tion run. Furthermore, we aver-aged over �ve independent su
h runs. For these 
hains,the resulting total simulation time divided by the longestrelaxation time �Z (whi
h 
an be obtained from the timeauto
orrelation fun
tion of the end{to{end distan
e) is0:5 � 106 for N � 35, 0:4 � 106 for N = 40, 0:3 � 106for N = 45, and 0:2 � 106 for N = 50. All the statis-ti
al error bars were estimated by the blo
king methoddeveloped by Flyvbjerg and Petersen39.From the results for these 
hains, it turned out thatthe dynami
s on short time s
ales signi�
antly below �Zis of parti
ular interest (see below). For this reason, westudied two longer 
hains (N = 100 and 200) by a some-what di�erent pro
edure: By an eÆ
ient Monte Carlopro
edure (the pivot algorithm40;41 
ombined with lo
almoves) we generated a large sample of statisti
ally inde-pendent 
onformations (128 
onformations for N = 100,3700 
onformations for N = 200), from whi
h we startedBD runs with hydrodynami
 intera
tions of short to mod-erate length (in our time units: � = 2:5�104 forN = 100,� = 100 forN = 200). Although this implies a quite goodstatisti
al a

ura
y, it is nevertheless signi�
antly worsethan for the shorter 
hains. Therefore only the most3



important and interesting properties were evaluated forN = 100 and 200.For 
hain length N = 6, our program needed 60 se
.to run 105 BD steps on a 667 MHz PC. This number of
ourse strongly in
reases with N (� 500 se
. for N = 50,� 105 se
. for N = 200); the asymptoti
 N3 s
aling ofthe algorithm was observed for (roughly) N � 30. The
al
ulations ran for several months on a 16{ma
hine PC
luster; the overall e�ort of the proje
t in terms of single{pro
essor time is estimated as roughly 6.7 years.III. TRANSLATIONAL DIFFUSIONCOEFFICIENTA. TheoryIn order to 
al
ulate the translational di�usion 
oeÆ-
ient in the short{ and long{time regimes, we study themean square dis
pla
ement of the 
enter of mass,~RCM = 1N Xi ~ri: (11)From the Ermak{M
Cammon algorithm, Eq. 9, we �ndthe updating rule for ~RCM in one time step:�~R(t) � ~RCM (t+ h)� ~RCM (t)= 1N �h ~A(t) + h1=2 ~B(t)� ; (12)where we have introdu
ed the abbreviations~A =Xij �$ij � ~Fj (13)(this de�nition is identi
al to the notation of Fixman24)and ~B = h�1=2Xi ~�i: (14)Note that ~A and ~B are de�ned in su
h a way that theyare independent of the time step h. As ~A and ~B, evalu-ated at the same time, are un
orrelated, and sin
e D ~BEvanishes, we �nd���~R�2� = hN2 D ~B2E+ h2N2 D ~A2E= 2hN2 Xij TrD$DijE+O(h2): (15)Thus the short{time di�usion 
oeÆ
ient is just given bythe Kirkwood formula:Dshort = limh!0 16h ���~R�2�= 13N2 Xij TrD$DijE � D(K): (16)

For longer times (n time steps) we evaluate the meansquare displa
ement as��~RCM (nh)� ~RCM (0)�2� (17)= * n�1Xk=0�~R(kh)!2+ =Xkl D�~R(kh) ��~R(lh)E :The matrix with elements D�~R(kh) ��~R(lh)E is obvi-ously symmetri
. Sin
e all elements with 
onstant k � lare identi
al, for reasons of translational symmetry intime, we 
an simplify the previous expression as��~RCM (nh)� ~RCM (0)�2� (18)= nD�~R(0)2E+ 2 n�1Xk=1(n� k)D�~R(0) ��~R(kh)E :This is quite analogous to the standard relation betweenmean square displa
ement and velo
ity auto
orrelationfun
tion18. In the long{time limit n ! 1 we thus ob-tain a di�usion 
oeÆ
ient whi
h still depends on the timestep:Dlong(h) = limn!1 16nh ��~RCM (nh)� ~RCM (0)�2�= D(K) + h6N2 D ~A2E (19)+ 13h 1Xk=1D�~R(0) ��~R(kh)E ;here we have assumed, as usual, that the 
orrelation fun
-tion de
ays qui
kly to zero.We now make use of the fa
t that the sto
hasti
 terms~B are un
orrelated at di�erent times, and that there is a
orrelation between ~A and ~B only if ~A is evaluated at alater time as ~B (of 
ourse, a sto
hasti
 \ki
k" at a 
erteintime will in
uen
e how the system evolves dynami
allyin the future). We thus obtain for k � 1D�~R(0) ��~R(kh)E = h2N2 D ~A(0) � ~A(kh)E+ h3=2N2 D ~B(0) � ~A(kh)E ; (20)yielding the relationDlong(h) = D(K) +D1(h) +D2(h) (21)withD1(h) = h6N2 D ~A2E+ h3N2 1Xk=1D ~A(0) � ~A(kh)E (22)4



and D2(h) = h1=23N2 1Xk=1D ~B(0) � ~A(kh)E : (23)In the 
ontinuum limit h! 0, we obviously haveD1 = 13N2 Z 10 dtD ~A(0) � ~A(t)E ; (24)where the previous formulae tell us how the integralshould be 
onsistently dis
retized. Con
erning D2, oneobtains D2 = 13N2h1=2 Z 10 dtD ~B(0) � ~A(t)E : (25)At �rst glan
e, this looks as if this 
ontribution would di-verge for h! 0, but this is not the 
ase. Rather, the 
or-relation fun
tion D ~B(0) � ~A(t)E depends on the time step,and is, to leading order, proportional to h1=2, su
h thatD2 
onverges to a well{de�ned non{trivial value. Thisis demonstrated in Fig. 1, where D ~B(0) � ~A(t)Eh�1=2 isplotted for N = 6 and various time steps h. The h1=2dependen
e may be explained by linear response theory:As D ~AE vanishes for symmetry reasons, only that partof ~A will 
ontribute to D ~B(0) � ~A(t)E whi
h is a
tuallythe response to the \ki
k" at time zero. This \ki
k",however, has an in�nitesimally small amplitude of orderh1=2. Therefore, linear response theory should be appli-
able, and the response in ~A should be proportional toh1=2 as well.On a more formal level, we 
an write the Ermak{M
Cammon updating rule (Eq. 9) in the 
ontinuum limitas a Langevin equation with Ito interpretation:ddt~ri =Xj �$ij � ~Fj + ~fi; (26)where the noise term ~fi has zero mean, and varian
eD~fi(t)
 ~fj(t0)E = 2$DijÆ(t� t0); (27)i. e. ~fi 
orresponds to ~�i=h. This in turn implies~B = h1=2Pi ~fi, su
h that D2 
an also be written asD2 = 13N2 Xi Z 10 dtD~fi(0) � ~A(t)E : (28)In seeming 
ontrast to this result (D = D(K)+D1+D2),Fixman24 rather obtained from linear response theoryD = D(K) �D1, where D1 is de�ned pre
isely as in Eq.24. His result is however as valid as ours, and in whatfollows we will give an alternative derivation based onthe Mori{Zwanzig proje
tion operator formalism42. The

only 
on
lusion is that D1 and D2 must satisfy the rela-tion D2 = �2D1. Unfortunately, we have not been ableto derive this result dire
tly; however, it is very ni
elyborne out by our numeri
al data (Table I). Furthermore,if D ~A(0) � ~A(t)E is positive for all times (as it is the 
asefor our simulation data), it is immediately obvious thatD must indeed be smaller than D(K).For the Mori{Zwanzig analysis of D, we �rst noti
ethat the Langevin equation 
orresponds to the Fokker{Plan
k equation (Kirkwood di�usion equation)��tP ��; tj�0; 0� = �iLP ��; tj�0; 0� ; (29)where � is a shorthand notation for the set of all monomer
oordinates, P ��; tj�0; 0� is the transition probabilitydensity for the system going from �0 at time 0 to � attime t, and �iL is the Fokker{Plan
k operator�iL =Xij ��~ri � $Dij �� ��~rj � � ~Fj� ; (30)where � = 1=(kBT ). The formal solution is P =exp(�iLt)Æ(� � �0), while the equilibrium distribution(i. e. the t!1 solution) is�(�) = exp(��U)R d� exp(��U) ; (31)where U is the potential energy, su
h that ~Fi = ��U=�~ri,and � ��~ri f = � ��~ri � � ~Fi� �f (32)for an arbitrary fun
tion f(�). Ex
ept for �iL, wealso need iLy, whi
h is the adjoint operator of �iLwith respe
t to the standard s
alar produ
t (f jg) =R d�f(�)?g(�) (f? denoting the 
omplex 
onjugate),iLy =Xij � ��~rj + � ~Fj� � $Dij � ��~ri ; (33)as well as �iL̂, whi
h is the adjoint operator of iLy withrespe
t to the natural s
alar produ
thf jgi = Z d��(�)f(�)?g(�): (34)From Eq. 32, and partial integration, one �nds that �iL̂
oin
ides with iLy.We now use the standard memory equation as derivedin Ref. 42. In Ref. 43 it was shown how to generalize thisto the 
ase of non{Hamiltonian dynami
s; spe
i�
ally itwas shown there that the integral over the time 
orrela-tion fun
tion of a slow variable S satis�es the relation5



Z 10 dt hS(0)?S(t)i = �hSjSi2 � (35)�
SjiLyjS�+ Z 10 dt 
SjiLyQ exp(iLyt)QiLyjS���1 :Here Q is the operator whi
h proje
ts onto the orthog-onal spa
e of the slow variable, i. e. onto the spa
e ofvariables whi
h are (stati
ally) un
orrelated with S. Forthe analysis of di�usion we study the variableS = exp(i~q � ~RCM ) (36)in the limit q ! 0 su
h that q�1 is mu
h larger than thepolymer gyration radius. Therefore,hS(0)?S(t)i = Dexp hi~q � (~RCM (t)� ~RCM (0))iE : (37)For times of order of the Zimm relaxation time, orsmaller, this 
orrelation fun
tion is very 
lose to unity,due to the smallness of q. For times mu
h larger, themotion of ~RCM is just a Gaussian random walk with dif-fusion 
onstant D, and hen
ehS(0)?S(t)i = exp��q26 D(~RCM (t)� ~RCM (0))2E�= exp(�Dq2t): (38)Thus the left hand side of Eq. 35 is justZ 10 dt hS(0)?S(t)i = 1Dq2 : (39)As hSjSi = 1, we haveD = �q�2 
SjiLyjS��q�2 Z 10 dt 
SjiLyQ exp(iLyt)QiLyjS� (40)in the limit q ! 0. Now, straightforward evaluationyieldsiLyS =Xij � i~qN + � ~Fj� � $Dij � i~qN S= � q2N2 Xij q̂ � $Dij � q̂ S + iqN q̂ � ~AS (41)and, for q ! 0,
SjiLyjS� = � q2N2 Xij 13TrD$DijE = �q2D(K) (42)(the ~A term vanishes upon averaging, for symmetry rea-sons). This also means that in the limit q ! 0 the vari-able iLyS be
omes orthogonal to S, implying that in thislimit we 
an ignore the operator Q in Eq. 40. Further-more, in the memory integral it is suÆ
ient to just takethe term linear in q for iLyS | any higher order would

not 
ontribute to D in the limit q ! 0. In this order we�nd iLyS = i~q � ~A=N . As �iL̂ = iLy, the memory termbe
omes Z 10 dt 
SjiLyQ exp(iLyt)QiLyjS�= q23N2 Z 10 dtD ~A(0) � ~A(t)E = q2D1: (43)Combining these results, we obtain Fixman's24 formulaD = D(K) �D1.B. Numeri
al ResultsAs we have seen in the previous subse
tion, the rela-tion 2D1 + D2 = 0 should hold. Our data (see TableI) indeed 
on�rm this predi
tion. Interestingly enough,we have found numeri
ally that even the Green{Kubointegrands satisfy the 
orresponding relation�(t) � 2D ~A(0) � ~A(t)E+ h�1=2 D ~B(0) � ~A(t)E = 0: (44)More pre
isely, we observed that for �nite time step hthere is a slight systemati
 deviation (�(t) 6= 0), whi
hhowever tends to zero for h! 0. Furthermore, we foundthat �(t) qui
kly de
ays to zero with in
reasing time t,and has both a positive (small t) and a negative (largert) 
ontribution, su
h that R10 dt�(t) is very small. Su
hdis
retization e�e
ts are the reason for our �nding thatthe two fun
tionsD(t) � D(K) +D1(t) +D2(t) (45)and ~D(t) � D(K) �D1(t); (46)with D1(t) = 13N2 Z t0 d� D ~A(0) � ~A(�)E (47)and D2(t) = 13N2h1=2 Z t0 d� D ~B(0) � ~A(�)E ; (48)are slightly di�erent, in parti
ular for short times. Thisis seen in Fig. 2, whi
h shows D(t) and ~D(t) for N = 6,25, and 50, as a fun
tion of 1=t, with logarithmi
 ab-s
issa. This �gure also demonstrates that our data arewell{
onverged and a

urate enough to 
learly dis
rimi-nate between short{ and long{time regimes.Table I summarizes our results for the di�usion 
oef-�
ient, where we list D(K), D1 and D2. The data 
on-�rm the relation 2D1 +D2 = 0 within our error bars upto N = 50. As it turned out that D2 is mu
h harderto sample than D1, we did not test the relation for the6



longer 
hains N = 100 and 200, where our statisti
s isnot suÆ
ient. The data also show that the relative 
on-tribution of the 
orre
tion term systemati
ally in
reaseswith 
hain length (roughly 1% for N = 6, roughly 3:5%for N = 200).Comparing our values for D(K) and D1 with those ofRef. 31, we see that they are 
ompatible within errorbars. However, Rey et al.31 have obtained values for Dwhi
h are larger than D(K). In view of this puzzle, wehave done a test run for N = 6, where we in
reased thetime step to their value h = 0:01, and de
reased the ob-servation time to theirs (0:2� 106 time steps). Figure 3shows our results for D1(t) and D2(t). One sees that thestatisti
al a

ura
y is suÆ
ient to obtain an a

eptablevalue for D1, but that it is by far not enough to estimateD2. We believe that this is the most likely explanationfor the deviations observed in Ref. 31.IV. SCALING OF THE hAAi CORRELATIONFUNCTIONThe systemati
 in
rease of the ratio D1=D(K) with
hain length, as seen from the data in Table I, raisesthe question if that ratio will saturate at a �nite value,or keep on in
reasing, or maybe even tend to zero forN ! 1, after going through a maximum. We 
annotgive a 
on
lusive answer to this question; however, wehave found some interesting results 
on
erning the issue.Rewriting the Green{Kubo formula for D1 asD1 = 
A2�3N2 Z 10 dtCA(t); (49)where CA is the normalized A{A auto
orrelation fun
-tion, CA(t) = 1hA2i D ~A(0) � ~A(t)E ; (50)one sees that the N dependen
e is 
lear if it is knownfor 
A2� and for �A = R10 dtCA(t). As 
A2� is a stati
average, let us dis
uss it �rst.For 
u
tuating hydrodynami
 intera
tions, we noti
ethat Pj �$ij � ~Fj is nothing but the velo
ity 
ow �eldgenerated at position of monomer i, due to all the for
esa
ting on the other monomers j. However, the systemis in thermal equilibrium. Therefore, one should expe
tthat this velo
ity is of order of a typi
al thermal velo
ity.Furthermore, in equilibrium the 
ow velo
ities at di�er-ent volume elements are statisti
ally un
orrelated. Thispi
ture suggests that ~A is essentially the sum of N statis-ti
ally independent random variables, ea
h of whi
h doesnot depend on N . Therefore, the s
aling
A2� / N (51)is expe
ted from standard statisti
s, and this argumentshould be true independently of the details of the 
hain
onformations.

For preaveraged hydrodynami
 intera
tions, however,this argument does not hold (the preaveraging prevents�$ij from \thermalizing"). Here we rather write
A2� =Xij Xkl D���ij E h��
kl iDF �j F 
l E ; (52)where summation over repeated Cartesian indi
es, de-noted by the Greek letters, is implied. Exploiting theisotropy of the D~F 
 ~FE tensor (i. e. its proportionalityto the unit tensor) one �nds
A2� = 13Xij Xkl D���ij ED���kl ED~Fj � ~FlE : (53)This is simple to study for the 
ase of a Gaussian
hain, sin
e then the D~F � ~FE 
orrelation is stri
tly short{ranged. Indeed, for a random{walk 
hain, D~Fi � ~FjEmustbe zero if i and j are suÆ
iently far away from ea
h other,sin
e in that 
ase one 
an 
hoose a \pivot" monomer be-tween i and j, and rotate the \right" part of the 
hainaround that monomer by a random angle, without 
hang-ing the statisti
al weight of the 
onformation. If j is onthe rotated part, ~Fj is 
hanged, while ~Fi is un
hanged.Thus one shows D~Fi � ~FjE = �D~Fi � ~FjE = 0. Thisargument holds whenever it is possible to �nd a pivotmonomer, i. e. for ji� jj � 2. Thus the only remain-ing 
orrelations are those for i = j and ji� jj = 1, inwhi
h 
ase the 
orrelation is obvious, due to the springintera
tion with the neighboring monomer. In 
ase ofan ex
luded{volume 
hain we rather expe
t a power{law de
ay44, related to the probability of loops of lengthji� jj. In what follows, we will therefore, for simpli
ity,fo
us on the Gaussian 
ase. Noti
ing h�$iji / ji� jj�1=2,we thus �nd
A2� / Z N0 dx Z N0 dy Z N0 dz jx� yj�1=2 jz � yj�1=2(54)(the short range of D~F � ~FE redu
es the number of inte-grations from four to three). A trivial transformation toredu
ed variables x=N et
. then shows
A2� / N2 (55)for preaveraged hydrodynami
s in the Gaussian 
ase.We have tested these predi
tions numeri
ally, and ex-ploited the fa
t that 
A2� is a stati
 average, and, as su
h,amenable to eÆ
ient Monte Carlo pro
edures. This isparti
ularly true for the Gaussian 
ase, where one simplygenerates a sample of 
hains. We were therefore able tostudy this 
ase up to 
hains of lengthN = 0:8�105. How-ever, we restri
ted ourselves, for simpli
ity, to Oseen{likehydrodynami
 intera
tions, where we studied both the7




u
tuating and the preaveraged 
ase. Apart from this,we also studied the behavior for our model (
u
tuatinghydrodynami
s, ex
luded{volume 
hains) up to 
hains oflength N = 104. In this 
ase, we used the full RPYintera
tion, and generated the 
onformations by a 
om-bination of the pivot algorithm40;41 with lo
al moves. Forevery 
hain length, 0:2� 105 pivot moves, and 100 timesas many lo
al moves, were used. The results are pre-sented in Fig. 4; indeed reasonable agreement with ourpredi
tions is found.The s
aling laws for 
A2� have an interesting impli
a-tion for the dynami
s of ~A. Writing 
A2� / Nx wherex = 1; 2 for the dis
ussed 
ases, and �A / Ny, we �ndfrom Eq. 49 D1 / Nx+y�2: (56)On the other hand, it is well{established that D(K) isproportional to N�� where � is 1=2 for Gaussian 
hains,and 0:59 for ex
luded{volume 
hains. It also strongly be-lieved that this is the asymptoti
 s
aling law for D. This,however, implies that D1 must de
ay suÆ
iently qui
klyas a fun
tion of N | otherwise D1 would ultimatelydominate and spoil the s
aling of D. More pre
isely, oneexpe
ts D1 / N�� with � � �. Combined with the pre-vious 
onsideration, this yields � = 2 � x � y � � ory � 2 � x � �, i. e. y � 1 � � for 
u
tuating hydrody-nami
s, and y � �� for preaveraged hydrodynami
s of aGaussian 
hain. This is a quite 
ounter{intuitive result,sin
e it implies that �A would in
rease only very weaklywith 
hain length for 
u
tuating hydrodynami
s, whileit would even de
rease for preaveraged hydrodynami
s!Naively, one would rather expe
t that ~A, as a 
olle
tivequantity, de
ays on the same time s
ale as the overallpolymer 
onformations, i. e. �A / �Z / N3� (this latterrelation is the standard Zimm s
aling law11, and impliesa rather sharp in
rease with N). We have thus found a\
olle
tive" quantity whi
h apparently de
ays mu
h morerapidly than the 
hain as a whole. We believe this is-sue deserves further attention; in parti
ular, we think itwould be very desirable to try to understand the under-lying physi
al me
hanisms governing the relaxation of ~Asomewhat better.Our numeri
al data from the BD simulation (i. e.for 
u
tuating hydrodynami
s, and ex
luded{volume
hains) 
an only give us very limited hints on the be-havior of �A as a fun
tion of N , sin
e, due to the overall
omputational demand, we were not able to simulate thedynami
s with suÆ
ient a

ura
y for 
hains longer thanN = 200. Our data for CA(t) are presented in Fig. 5.Apparently the 
orrelation fun
tion has two distin
t timeregimes. In the short{time regime (t < t0), the 
urvesare pra
ti
ally superimposable. This is similar to the ob-servations made by Fixman26. In the long{time regime(t > t0), the 
orrelation fun
tions de
ay exponentiallywith a 
orrelation time �D , CA(t) / exp(�t=�D). Figure6 shows our data for �D. Indeed �D in
reases with 
hainlength; however, the observed behavior in our limited N

window is anything but a power law. A

ording to ourprevious 
onsiderations, the in
rease of �D should not bestronger than N1�� . Indeed this 
ondition seems to besatis�ed in the regime of longer 
hains.V. FURTHER RESULTSA. Stati
 S
aling PropertiesThe radius of gyration and end{to{end distan
e aregiven by 
R2g� = 12N2 Xij 
r2ij� (57)and 
R2e� = D(~rN � ~r1)2E : (58)The theoreti
al s
aling for these stati
 properties is
R2g� / 
R2e� / (N � 1)2� : (59)In good solvent, the s
aling exponent has the theoreti-
al value of � � 0:588 from renormalization group 
al-
ulations and Monte Carlo simulations45. The log{log�ts of 
R2e� and 
R2g� vs. N � 1 yield the exponents2� = 1:187� 0:003 and 2� = 1:133� 0:006, respe
tively(see Fig. 7), whi
h is similar to the results by Rey etal.31.Similarly, the stati
 stru
ture fa
torS(k) = 1N Xij Dexp(i~k � ~rij)E= 1N Xij � sin(krij)krij � ; (60)whi
h is measured in s
attering experiments, obeys thes
aling relation S(k) / k�1=� (61)in the regime R�1g � k � b�1. By �tting a power law toour data we get the value (see Fig. 8) � = 0:575� 0:004.We have also obtained the �rst 
umulant (or initial de-
ay rate), 
(k), of the dynami
 stru
ture fa
tor S(k; t),de�ned as 
(k) = � limt!0 ddt � S(k; t)S(k; 0)� : (62)Ak
asu et al.12;46 have shown that 
(k) 
an be writtenas 
(k) = Pij D~k � $Dij � ~k exp(i~k � ~rij)EPij Dexp(i~k � ~rij)E : (63)8



The orientational averaging in Eq. (63) is easily done forthe RPY tensor31;47. For the denominator one obtainsDexp(i~k � ~rij)Eor = sin zz (64)with z = krij . In the numerator we �nd for i = jD(~k � $Dij � ~k) exp(i~k � ~rij)Eor = kBT6��ak2: (65)For i 6= j one obtains insteadD(~k � $Dij � ~k) exp(i~k � ~rij)Eor= kBT4��rij k2" 1� 23 a2r2ij! sin zz+ 1� 2 a2r2ij!�
os zz2 � sin zz3 �# (66)in the 
ase of large distan
es rij � 2a, whileD(~k � $Dij � ~k) exp(i~k � ~rij)Eor= kBT6��ak2"�1� 316 rija � sin zz+ 316 rija �
os zz2 � sin zz3 �# (67)for rij < 2a. We should mention that there are sometypographi
al errors both in Ref. 31 and Ref. 47. Theright{hand term of Eq. (63) is therefore dire
tly 
al
u-lated from the traje
tories. In the k ! 0 limit, 
(k)re
e
ts ex
lusively the translational motion 
ontributionto the 
hain dynami
s. Therefore, the Kirkwood formula
an be re
overed from the �rst 
umulant asD(K) = limk!0
(k)=k2: (68)We have obtained D(K) through Eq. (68) from the inter-
ept of a �tting of 
(k)=k2 vs. k in the k ! 0 limit shownin Fig. 9. These values are exa
tly the same as thoseobtained from Eq. (4), whi
h 
onstitutes a further veri�-
ation of the 
onsisten
y of our numeri
al method. FromFig. 9, a universal dependen
e of the type 
(k)=k2 / kis also obtained in the s
aling regime R�1g � k � b�1.B. Dynami
 S
aling PropertiesAn approximately exponential behavior of the time{
orrelation fun
tion D~Re(t) � ~Re(0)E, where ~Re is theend{to{end ve
tor, is observed (see Fig. 10). We haveextra
ted the relaxation times (Zimm times) �Z 
orre-sponding to this behavior. �Z is related to the orienta-tional di�usion of the end{to{end ve
tor. A log{log �t

of �Z vs. N yields a slope of 1:71� 0:01 (Fig. 11), whi
his 
lose to the theoretial value 3� with hydrodynami
 in-tera
tions.The dynami
 stru
ture fa
torS(k; t) = 1N Xij Dexp hi~k � (~ri(t)� ~rj(0))iE (69)is predi
ted to exhibit s
aling behavior11 if both wavenumber and time are in the s
aling regime, i. e. R�1g �k � b�1 and �0 � t � �Z , where �0 is the mi
ros
opi
time and �Z is the Zimm time, the longest relaxationtime of the 
hain. Fig. 12 gives a ni
e data 
ollapse forthe expe
ted formS(k; t)S(k; 0) = f �k2t2=3� (70)in log{linear represention.These s
aling results demonstrate the internal 
onsis-ten
y of our simulation, and in all 
ases agreement withthe pertinent theories and experimental results.VI. SUMMARYThe present study has shown that Brownian Dynam-i
s simulations are able to atta
k the problem of trans-lational di�usion of polymer 
hains with hydrodynami
intera
tion and ex
luded volume. It has also highlightedthe ne
essity of substantial statisti
al e�ort in order toobtain reliable data. While the standard pi
ture of stati
and dynami
 s
aling is reprodu
ed, as in previous stud-ies, the novel aspe
t is the 
al
ulation of the di�usion
oeÆ
ient to suÆ
iently high a

ura
y, su
h that the dif-feren
e between the short{time Kirkwood value and theasymptoti
 long{time value 
ould be resolved unambigu-ously. The numeri
al data are in perfe
t agreement withthe theoreti
al predi
tions, both 
on
erning the short{time value, and the 
rossover to the long{time value de-s
ribed by Fixman's Green{Kubo formula. It turns outthat the long{time value is a few per
ent less than theshort{time value. For Fixman's Green{Kubo integrandwe �nd two remarkable results, namely that its initialvalue behaves very di�erently for preaveraged vs. 
u
tu-ating hydrodynami
s, and that the 
orrelation fun
tion,though des
ribing a global property of the 
hain, must de-
ay substantially faster than the 
onformations, in orderto avoid a violation of dynami
 s
aling. Our numeri
aldata are in reasonable agreement with these 
onsidera-tions, but not fully 
on
lusive sin
e only short 
hains werea

essible. More work on this issue, in parti
ular aimedat a better physi
al understanding, is 
learly desirable.9
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N D(K) D1 D2 2D1 +D2 jD1 +D2j =D(K)6 0:3544 � 10�4 0:00408 � 10�5 �0:0081 � 10�4 0:0000 � 10�4 0:0113 � 3� 10�48 0:3011 � 10�4 0:00441 � 10�5 �0:0087 � 10�4 0:0001 � 10�4 0:0143 � 3� 10�411 0:2513 � 10�4 0:00450 � 10�5 �0:0089 � 10�4 0:0001 � 10�4 0:0175 � 4� 10�415 0:2106 � 10�4 0:00443 � 10�5 �0:0088 � 10�4 0:0000 � 10�4 0:0214 � 5� 10�420 0:1788 � 10�4 0:00443 � 10�5 �0:0084 � 10�4 0:0001 � 10�4 0:0234 � 6� 10�425 0:1573 � 10�4 0:00422 � 10�5 �0:0079 � 10�4 0:0000 � 10�4 0:0249 � 6� 10�430 0:1416 � 10�4 0:00399 � 10�5 �0:0076 � 10�4 0:0001 � 10�4 0:0267 � 7� 10�435 0:1298 � 10�4 0:00381 � 10�5 �0:0072 � 10�4 0:0000 � 10�4 0:0275 � 8� 10�440 0:1201 � 10�4 0:00363 � 10�5 �0:0069 � 10�4 0:0000 � 10�4 0:0287 � 8� 10�445 0:1123 � 10�4 0:00345 � 10�5 �0:0066 � 10�4 0:0000 � 10�4 0:0292 � 9� 10�450 0:1055 � 10�4 0:00332 � 10�5 �0:0063 � 10�4 0:0000 � 10�4 0:0298 � 9� 10�4100 0:0718 � 10�4 0:0022 � 10�4 0:031 � 1� 10�3200 0:0428 � 10�4 0:0015 � 10�4 0:035 � 1� 10�3TABLE I. The di�usion 
oeÆ
ients D(K), D1, D2, as well as 2D1 + D2, and jD1 +D2j =D(K), as de�ned in the text, fordi�erent 
hain lengths N . Note that D2 was not sampled for N = 100 and 200, for reasons of poor statisti
s, and that hen
efor these 
hains we have assumed jD1 +D2j = D1.
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hain with preaveragedhydrodynami
s (
ir
les); (ii) Gaussian 
hain with 
u
tuating hydrodynami
s (triangles); (iii) ex
luded{volume 
hain with
u
tuating hydrodynami
s (squares). The slopes of the solid lines indi
ate the power laws N2 and N1.
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tion D ~A(t) ~A(0)E =D ~A2E, for N = 6, 8, 11, 15, 20, 25, 30, 40, 50, 100, 200. The 
hainlength in
reases from left to right.
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FIG. 8. The stati
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ture fa
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hain, for N = 6, 8, 11, 15, 20, 25, 30, 35, 40, 45, 50. The 
hain length in
reasesalong the arrow.
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hain length in
reases along the arrow.

20



0 5 10 15
t

1.0

0.9

0.8

0.7

0.6

<
R→

e(
t)

R→
e(

0)
>

/<
R→

e2 >

N  

FIG. 10. Normalized auto
orrelation fun
tion of the end-to-end ve
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hain length in
reases along the arrow.
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FIG. 11. Chain length s
aling for �Z obtained from the auto
orrelation fun
tion of the end{to-end ve
tor. The error barsare smaller than the symbol size.
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FIG. 12. Log{linear s
aling plot of the de
ay of the dynami
 stru
ture fa
tor for N = 15, 20, 25, 30, 35, 40, 45, 50 for Zimms
aling: S(k; t)=S(k; 0) vs. k2t2=3. We restri
ted the wave numbers to the values k = 1:0, 1.5, 2.0, and the time regime to5 � t � 20.
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