
Translational Di�usion of Polymer Chainswith Exluded Volume and Hydrodynami Interationsby Brownian Dynamis SimulationBo Liu and Burkhard D�unweg�Max{Plank{Institut f�ur PolymerforshungAkermannweg 10, D{55128 Mainz, Germany(January 30, 2003)Within Kirkwood theory, we study the translational di�usion oeÆient of a single polymer hainin dilute solution, and fous on the small di�erene between the short{time Kirkwood value D(K)and the asymptoti long{time value D. We alulate this orretion term by highly aurate large{sale Brownian Dynamis simulations, and show that it is in perfet agreement with the rigorousvariational result D < D(K), and with Fixman's Green{Kubo formula, whih is re{derived. Thisresolves the puzzle posed by earlier numerial results (Rey et al., Maromoleules 24, 4666 (1991)),whih rather seemed to indiate D > D(K); the older data are shown to have insuÆient statistialauray to resolve this question. We then disuss the Green{Kubo integrand in some detail. Thisfuntion behaves very di�erently for pre{averaged vs. utuating hydrodynamis, as shown for theinitial value by analytial onsiderations orroborated by numerial results. We also present furthernumerial data on the hain's statis and dynamis.I. INTRODUCTIONDi�usion of polymer hains in dilute solution has beena subjet of substantial theoretial interest1{11. A parti-ularly important result is the Kirkwood formula for thetranslational di�usion oeÆient of a moleule immersedin a solvent of temperature T and visosity �,D(K) = D0N + kBT6�� � 1RH � : (1)Here kB denotes Boltzmann's onstant, while N is thenumber of hain segments, eah of whih has a segmen-tal di�usion oeÆient D0 = kBT=�, where � is the seg-mental frition oeÆient, � = 6��a, where a denotesthe segment's Stokes radius. RH is the hydrodynamiradius of the moleule, whih is de�ned as a thermal av-erage over the inverse intramoleular distanes betweensegments: � 1RH � = 1N2 Xi 6=j � 1rij� : (2)Equation 1 is not exat, but rather the result of a num-ber of approximations11. Firstly, the Brownian motionof the moleule is desribed by a Smoluhowski equation(Kirkwood's di�usion equation) in the spae of the seg-ment oordinates ~ri. Seondly, the di�usion tensor $Dij ,whose o�{diagonal elements desribe the hydrodynamiinteration between segments i and j, is approximatedby the Oseen formula,$Dij = kBT� Æij 1$+ (1� Æij) kBT8��rij �1$+ r̂ij 
 r̂ij� ; (3)

where r̂ij is the unit vetor in diretion of ~rij = ~ri � ~rj .Thirdly, the di�usion oeÆient is evaluated in the short{time limit of the Smoluhowski equation. The di�usionoeÆient in the asymptoti long{time limit, whih wedenote as D, is di�erent from the short{time value D(K),due to the presene of intramoleular dynami orrela-tions, whih are expeted to deay on the time sale ofthe overall relaxation time of the hain's onformationaldegrees of freedom (the Zimm time �Z). Thus, the be-havior on short time sales t� �Z is governed by D(K),while on long time sales t � �Z the di�usive motiontakes plae with the oeÆient D. For a general di�u-sion tensor (not neessarily of the Oseen type) the sameonsiderations apply. In this ase the short{time di�u-sion oeÆient is obtained by averaging over the trae:D(K) = 13N2 Xij TrD$DijE ; (4)in what follows, the term \Kirkwood formula" will alwaysrefer to Eq. 4.The di�erene between D(K) and D has aused on-siderable interest and some onfusion (see below); it isthe purpose of the present paper to ontribute to thelari�ation of these questions. Both light satteringexperiments12{15 and �rst{priniples Moleular Dynam-is (MD) simulations16;17 show that the di�erene mustbe quite small suh that it is below resolution. In the aseof MD, the main diÆulty is the fat that the \short{time" limit of Kirkwood theory is of ourse not the ex-at t ! 0 limit, but rather a time regime where the�Eletroni mail: duenweg�mpip-mainz.mpg.de 1



loal motions of the partiles in their \ages" (or the mo-menta) have already relaxed ompletely, while the on-formational degrees of freedom of the hain must at thesame time be onsidered as ompletely unrelaxed. Toreah this separation of time sales (i. e. ballisti / short{time di�usive / long{time di�usive) in an unambiguousfashion would require extremely long hains whih arenot aessible to today's omputer power. A relatedproblem is the fat that the monomer di�usion oeÆ-ient D0, whih must be taken into aount in orderto evaluate D(K) orretly17, is a somewhat fuzzy andill{de�ned objet in MD. This is seen in a quite ob-vious fashion when looking at the veloity autoorrela-tion funtion of a single monomer, whose time integralis the hain di�usion onstant D18: After a rather quikshort{time deay, one gets a negative tail whih slowlydeays to zero on the time sale of the overall relax-ation of the hain as a whole19. This latter deay de-sribes the Rouse{ or Zimm{like slowing down by theoupling to the other monomers, while the quik short{time regime de�nes, in priniple, the monomer di�usionoeÆient D0. However, there is no obvious and well{de�ned time whih disriminates between short{ andlong{time regime. Depending on where this \ut" is be-ing put, one obtains slightly di�erent values for D0. Thislatter problem does not exist in a reently introdued hy-brid approah20, where the hain monomers are oupleddissipatively to a disretized hydrodynami bakground,suh that the monomer di�usion oeÆient is an inputparameter. However, the former problem (lak of sepa-ration of time sales) is still present.In order to ope with these diÆulties, one thereforehas to work stritly within the framework of Kirkwoodtheory (i. e. the Smoluhowski equation), suh that D0is just an input parameter, the ballisti regime does notexist, and the theory has a well{de�ned di�usive short{time limit. Nevertheless, alulating the long{time dif-fusion oeÆient D, and the smooth rossover betweenthe short{time behavior governed byD(K), and the long{time regime governed by D, requires to atually solve theSmoluhowski equation. However, losed analytial solu-tions do not exist as soon as utuating hydrodynamiinterations and / or exluded volume interations areintrodued. For this reason, analytial progress on theproblem has been limited; nevertheless, a few importantresults have been obtained. Within the preaveraged ap-proximation, �Ottinger21 derived a losed expression forDwhih learly di�ers from D(K). Furthermore, it is possi-ble to establish rigorous variational bounds on transportoeÆients11;22;23, from whih one an show that D mustbe smaller than D(K). Moreover, Fixman24 derived theGreen{Kubo type relationD = D(K) �D1 (5)with D1 = 13N2 Z 10 dtD ~A(0) � ~A(t)E > 0 (6)

and ~A =Xij �$ij � ~Fj ; (7)where ~Fj is the fore ating on segment j, and �$ij is themobility tensor, �$ij = $Dij=(kBT ).However, for a more quantitative understanding onehas to rely on numerial solutions of the Smoluhowskiequation. The most ommon approah is Brownian Dy-namis (BD) simulations, whih, for the ase of utuat-ing hydrodynami interations, was pioneered by Ermakand MCammon25. BD simulations for polymer hainshave been done by numerous workers before24;26{36. Oneof these studies31 produed quite aurate data, whihhowever seemed to indiate D > D(K). No satisfatoryexplanation of this deviation has been given so far. Forthis reason, we have looked into the problem again, andperformed areful BD simulations of the same model withidential parameters. In this model, exluded volume in-terations are represented by a relatively soft potential,while the hydrodynami interations are modeled via theRotne{Prager{Yamakawa (RPY) tensor22;37.As noted before31, this is a numerially demandingtask, as suh a alulation is looking for a rather smalle�et. One has, on the one hand, to wath out for dis-retization errors due to the �nite time step31, and, onthe other hand, to make sure that the statistial au-ray of the data suÆes. In order to test the relationD = D(K) � D1, all three quantities must be deter-mined independently. As our analysis shows (see below),it turns out that both D(K) and D1 an be alulatedwith moderate statistial e�ort, and Ref. 31 has indeedobtained values whih oinide with ours. The di�usionoeÆient D itself, however, is subjet to muh largerutuations, suh that its aurate determination needssubstantially more omputer power than what was avail-able to the authors of Ref. 31. We believe that this isthe most likely explanation of the deviation, whih is noton�rmed by our muh more aurate data (these arebased on an observation time whih is orders of mag-nitude larger than that of Ref. 31). Rather, we �nd avery nie agreement with the relation D = D(K) � D1with D1 > 0. We also re{derive Fixman's24 Green{Kuboformula for D1, Eq. 6, by means of an alternative ap-proah based on the Mori{Zwanzig projetion operatortehnique, and try to eluidate its relation to the stohas-ti analog of the veloity autoorrelation funtion. Fur-thermore, we attempt to disuss the saling behavior ofD1 via both saling arguments and numerial data; herewe have obtained some results whih we view as some-what unexpeted and ounter{intuitive. However, theseshould be onsidered as preliminary and inonlusive.The omputational demands of the alulations are solarge that it is impossible to aurately study the dy-namis for hain lengths muh beyond N � 102, whih is2



learly not long enough to justify any laim of asymptotibehavior.The outline of this artile is as follows. In Se. IIwe de�ne the simulated model and desribe the simu-lation proedure we applied. In Se. III we derive theshort{time di�usion oeÆient and long{time di�usionoeÆient from the mean square displaement of the en-ter of mass, and ompare the analytial preditions withthe numerial results. Setion IV presents our onsider-ations onerning the saling of the orretion term D1together with numerial data. Setion V then disussesfurther data on the stati and dynami saling properties,mainly to demonstrate the onsisteny of the results. InSe. VI we onlude with some �nal remarks.II. MODEL AND SIMULATION METHODA. Bead{Spring ModelFollowing Rey et al.31, we have modeled the exiblepolymer as a linear hain onstituted by N units rang-ing from N = 6 to 200, eah one onneted with its �rstneighbors by means of harmoni springs. Therefore thebond lengths follow a Gaussian distribution whose vari-ane we denote by b2, i. e. b is the statistial segmentlength. Exluded volume fores only at between non{neighboring units; they are introdued by means of apotential of the form A exp(��rij ), where A and � areonstant parameters. This potential is ut o� at a dis-tane r. B. Hydrodynami InterationThe hydrodynami interation is introdued throughthe di�usion tensor proposed by Rotne and Prager andYamakawa (RPY)22;37,$Dij = 8>>>>>>><>>>>>>>:
kBT6��a 1$ i = jkBT8��rij [�1$+ r̂ij 
 r̂ij�+ 2a2r2ij �13 1$� r̂ij 
 r̂ij�℄; i 6= j and rij > 2akBT6��a [�1� 932 rija � 1$+ 332 rija r̂ij 
 r̂ij ℄; i 6= j and rij < 2a(8)where a is the Stokes radius of the beads. This tensor ispositive{de�nite for all hain on�gurations.C. AlgorithmThe polymer motion is governed by the stohasti dif-ferential equation that we solve through the �rst{orderErmak and MCammon algorithm25,~ri(t+ h) = ~ri(t) +Xj �$ij � ~Fjh+ ~�i; (9)

where h is the time step, ~Fi the fore on monomer i,�$ij = $Dij=(kBT ), and ~�i a random displaement withzero mean and variane{ovariane matrix given byh~�i 
 ~�ji = 2$Dijh: (10)We generated the random terms ~�i from a uniformdistribution38, and used the proedure given in Ref. 25to satisfy Eq. 10. The term hPj (�=�~rj) � $Dij on theright hand side of Eq. (9) was omitted, beause theRPY tensor, due to the inompressibility of the solvent,is divergene{free, (�=�~rj) � $Dij = 0.D. Simulation DetailsAs in Ref. 31, we use a unit system where the threequantitities b, kBT , and � = 6��a are set to unity. Henethe time unit is given by �b2=kBT . In this unit system,the other parameters are A = 75, � = 4, r = 0:512, anda = 0:256. We used a redued time step of h = 0:005,whih is twie as small as that of Ref. 31. This hoiewas motivated by a omparison of end{to{end distaneand gyration radius data obtained by simulations withvarious h with the orresponding data from Monte Carloruns. This omparison showed that highly aurate re-sults require a rather onservative h value.For N � 50, data with good statistis were generatedby the following proedure: (i) Equilibration by BD with-out hydrodynami interations, (ii) short additional equi-libration with hydrodynami interations turned on, and(iii) a long BD prodution run. Furthermore, we aver-aged over �ve independent suh runs. For these hains,the resulting total simulation time divided by the longestrelaxation time �Z (whih an be obtained from the timeautoorrelation funtion of the end{to{end distane) is0:5 � 106 for N � 35, 0:4 � 106 for N = 40, 0:3 � 106for N = 45, and 0:2 � 106 for N = 50. All the statis-tial error bars were estimated by the bloking methoddeveloped by Flyvbjerg and Petersen39.From the results for these hains, it turned out thatthe dynamis on short time sales signi�antly below �Zis of partiular interest (see below). For this reason, westudied two longer hains (N = 100 and 200) by a some-what di�erent proedure: By an eÆient Monte Carloproedure (the pivot algorithm40;41 ombined with loalmoves) we generated a large sample of statistially inde-pendent onformations (128 onformations for N = 100,3700 onformations for N = 200), from whih we startedBD runs with hydrodynami interations of short to mod-erate length (in our time units: � = 2:5�104 forN = 100,� = 100 forN = 200). Although this implies a quite goodstatistial auray, it is nevertheless signi�antly worsethan for the shorter hains. Therefore only the most3



important and interesting properties were evaluated forN = 100 and 200.For hain length N = 6, our program needed 60 se.to run 105 BD steps on a 667 MHz PC. This number ofourse strongly inreases with N (� 500 se. for N = 50,� 105 se. for N = 200); the asymptoti N3 saling ofthe algorithm was observed for (roughly) N � 30. Thealulations ran for several months on a 16{mahine PCluster; the overall e�ort of the projet in terms of single{proessor time is estimated as roughly 6.7 years.III. TRANSLATIONAL DIFFUSIONCOEFFICIENTA. TheoryIn order to alulate the translational di�usion oeÆ-ient in the short{ and long{time regimes, we study themean square displaement of the enter of mass,~RCM = 1N Xi ~ri: (11)From the Ermak{MCammon algorithm, Eq. 9, we �ndthe updating rule for ~RCM in one time step:�~R(t) � ~RCM (t+ h)� ~RCM (t)= 1N �h ~A(t) + h1=2 ~B(t)� ; (12)where we have introdued the abbreviations~A =Xij �$ij � ~Fj (13)(this de�nition is idential to the notation of Fixman24)and ~B = h�1=2Xi ~�i: (14)Note that ~A and ~B are de�ned in suh a way that theyare independent of the time step h. As ~A and ~B, evalu-ated at the same time, are unorrelated, and sine D ~BEvanishes, we �nd���~R�2� = hN2 D ~B2E+ h2N2 D ~A2E= 2hN2 Xij TrD$DijE+O(h2): (15)Thus the short{time di�usion oeÆient is just given bythe Kirkwood formula:Dshort = limh!0 16h ���~R�2�= 13N2 Xij TrD$DijE � D(K): (16)

For longer times (n time steps) we evaluate the meansquare displaement as��~RCM (nh)� ~RCM (0)�2� (17)= * n�1Xk=0�~R(kh)!2+ =Xkl D�~R(kh) ��~R(lh)E :The matrix with elements D�~R(kh) ��~R(lh)E is obvi-ously symmetri. Sine all elements with onstant k � lare idential, for reasons of translational symmetry intime, we an simplify the previous expression as��~RCM (nh)� ~RCM (0)�2� (18)= nD�~R(0)2E+ 2 n�1Xk=1(n� k)D�~R(0) ��~R(kh)E :This is quite analogous to the standard relation betweenmean square displaement and veloity autoorrelationfuntion18. In the long{time limit n ! 1 we thus ob-tain a di�usion oeÆient whih still depends on the timestep:Dlong(h) = limn!1 16nh ��~RCM (nh)� ~RCM (0)�2�= D(K) + h6N2 D ~A2E (19)+ 13h 1Xk=1D�~R(0) ��~R(kh)E ;here we have assumed, as usual, that the orrelation fun-tion deays quikly to zero.We now make use of the fat that the stohasti terms~B are unorrelated at di�erent times, and that there is aorrelation between ~A and ~B only if ~A is evaluated at alater time as ~B (of ourse, a stohasti \kik" at a erteintime will inuene how the system evolves dynamiallyin the future). We thus obtain for k � 1D�~R(0) ��~R(kh)E = h2N2 D ~A(0) � ~A(kh)E+ h3=2N2 D ~B(0) � ~A(kh)E ; (20)yielding the relationDlong(h) = D(K) +D1(h) +D2(h) (21)withD1(h) = h6N2 D ~A2E+ h3N2 1Xk=1D ~A(0) � ~A(kh)E (22)4



and D2(h) = h1=23N2 1Xk=1D ~B(0) � ~A(kh)E : (23)In the ontinuum limit h! 0, we obviously haveD1 = 13N2 Z 10 dtD ~A(0) � ~A(t)E ; (24)where the previous formulae tell us how the integralshould be onsistently disretized. Conerning D2, oneobtains D2 = 13N2h1=2 Z 10 dtD ~B(0) � ~A(t)E : (25)At �rst glane, this looks as if this ontribution would di-verge for h! 0, but this is not the ase. Rather, the or-relation funtion D ~B(0) � ~A(t)E depends on the time step,and is, to leading order, proportional to h1=2, suh thatD2 onverges to a well{de�ned non{trivial value. Thisis demonstrated in Fig. 1, where D ~B(0) � ~A(t)Eh�1=2 isplotted for N = 6 and various time steps h. The h1=2dependene may be explained by linear response theory:As D ~AE vanishes for symmetry reasons, only that partof ~A will ontribute to D ~B(0) � ~A(t)E whih is atuallythe response to the \kik" at time zero. This \kik",however, has an in�nitesimally small amplitude of orderh1=2. Therefore, linear response theory should be appli-able, and the response in ~A should be proportional toh1=2 as well.On a more formal level, we an write the Ermak{MCammon updating rule (Eq. 9) in the ontinuum limitas a Langevin equation with Ito interpretation:ddt~ri =Xj �$ij � ~Fj + ~fi; (26)where the noise term ~fi has zero mean, and varianeD~fi(t)
 ~fj(t0)E = 2$DijÆ(t� t0); (27)i. e. ~fi orresponds to ~�i=h. This in turn implies~B = h1=2Pi ~fi, suh that D2 an also be written asD2 = 13N2 Xi Z 10 dtD~fi(0) � ~A(t)E : (28)In seeming ontrast to this result (D = D(K)+D1+D2),Fixman24 rather obtained from linear response theoryD = D(K) �D1, where D1 is de�ned preisely as in Eq.24. His result is however as valid as ours, and in whatfollows we will give an alternative derivation based onthe Mori{Zwanzig projetion operator formalism42. The

only onlusion is that D1 and D2 must satisfy the rela-tion D2 = �2D1. Unfortunately, we have not been ableto derive this result diretly; however, it is very nielyborne out by our numerial data (Table I). Furthermore,if D ~A(0) � ~A(t)E is positive for all times (as it is the asefor our simulation data), it is immediately obvious thatD must indeed be smaller than D(K).For the Mori{Zwanzig analysis of D, we �rst notiethat the Langevin equation orresponds to the Fokker{Plank equation (Kirkwood di�usion equation)��tP ��; tj�0; 0� = �iLP ��; tj�0; 0� ; (29)where � is a shorthand notation for the set of all monomeroordinates, P ��; tj�0; 0� is the transition probabilitydensity for the system going from �0 at time 0 to � attime t, and �iL is the Fokker{Plank operator�iL =Xij ��~ri � $Dij �� ��~rj � � ~Fj� ; (30)where � = 1=(kBT ). The formal solution is P =exp(�iLt)Æ(� � �0), while the equilibrium distribution(i. e. the t!1 solution) is�(�) = exp(��U)R d� exp(��U) ; (31)where U is the potential energy, suh that ~Fi = ��U=�~ri,and � ��~ri f = � ��~ri � � ~Fi� �f (32)for an arbitrary funtion f(�). Exept for �iL, wealso need iLy, whih is the adjoint operator of �iLwith respet to the standard salar produt (f jg) =R d�f(�)?g(�) (f? denoting the omplex onjugate),iLy =Xij � ��~rj + � ~Fj� � $Dij � ��~ri ; (33)as well as �iL̂, whih is the adjoint operator of iLy withrespet to the natural salar produthf jgi = Z d��(�)f(�)?g(�): (34)From Eq. 32, and partial integration, one �nds that �iL̂oinides with iLy.We now use the standard memory equation as derivedin Ref. 42. In Ref. 43 it was shown how to generalize thisto the ase of non{Hamiltonian dynamis; spei�ally itwas shown there that the integral over the time orrela-tion funtion of a slow variable S satis�es the relation5



Z 10 dt hS(0)?S(t)i = �hSjSi2 � (35)�
SjiLyjS�+ Z 10 dt 
SjiLyQ exp(iLyt)QiLyjS���1 :Here Q is the operator whih projets onto the orthog-onal spae of the slow variable, i. e. onto the spae ofvariables whih are (statially) unorrelated with S. Forthe analysis of di�usion we study the variableS = exp(i~q � ~RCM ) (36)in the limit q ! 0 suh that q�1 is muh larger than thepolymer gyration radius. Therefore,hS(0)?S(t)i = Dexp hi~q � (~RCM (t)� ~RCM (0))iE : (37)For times of order of the Zimm relaxation time, orsmaller, this orrelation funtion is very lose to unity,due to the smallness of q. For times muh larger, themotion of ~RCM is just a Gaussian random walk with dif-fusion onstant D, and henehS(0)?S(t)i = exp��q26 D(~RCM (t)� ~RCM (0))2E�= exp(�Dq2t): (38)Thus the left hand side of Eq. 35 is justZ 10 dt hS(0)?S(t)i = 1Dq2 : (39)As hSjSi = 1, we haveD = �q�2 
SjiLyjS��q�2 Z 10 dt 
SjiLyQ exp(iLyt)QiLyjS� (40)in the limit q ! 0. Now, straightforward evaluationyieldsiLyS =Xij � i~qN + � ~Fj� � $Dij � i~qN S= � q2N2 Xij q̂ � $Dij � q̂ S + iqN q̂ � ~AS (41)and, for q ! 0,
SjiLyjS� = � q2N2 Xij 13TrD$DijE = �q2D(K) (42)(the ~A term vanishes upon averaging, for symmetry rea-sons). This also means that in the limit q ! 0 the vari-able iLyS beomes orthogonal to S, implying that in thislimit we an ignore the operator Q in Eq. 40. Further-more, in the memory integral it is suÆient to just takethe term linear in q for iLyS | any higher order would

not ontribute to D in the limit q ! 0. In this order we�nd iLyS = i~q � ~A=N . As �iL̂ = iLy, the memory termbeomes Z 10 dt 
SjiLyQ exp(iLyt)QiLyjS�= q23N2 Z 10 dtD ~A(0) � ~A(t)E = q2D1: (43)Combining these results, we obtain Fixman's24 formulaD = D(K) �D1.B. Numerial ResultsAs we have seen in the previous subsetion, the rela-tion 2D1 + D2 = 0 should hold. Our data (see TableI) indeed on�rm this predition. Interestingly enough,we have found numerially that even the Green{Kubointegrands satisfy the orresponding relation�(t) � 2D ~A(0) � ~A(t)E+ h�1=2 D ~B(0) � ~A(t)E = 0: (44)More preisely, we observed that for �nite time step hthere is a slight systemati deviation (�(t) 6= 0), whihhowever tends to zero for h! 0. Furthermore, we foundthat �(t) quikly deays to zero with inreasing time t,and has both a positive (small t) and a negative (largert) ontribution, suh that R10 dt�(t) is very small. Suhdisretization e�ets are the reason for our �nding thatthe two funtionsD(t) � D(K) +D1(t) +D2(t) (45)and ~D(t) � D(K) �D1(t); (46)with D1(t) = 13N2 Z t0 d� D ~A(0) � ~A(�)E (47)and D2(t) = 13N2h1=2 Z t0 d� D ~B(0) � ~A(�)E ; (48)are slightly di�erent, in partiular for short times. Thisis seen in Fig. 2, whih shows D(t) and ~D(t) for N = 6,25, and 50, as a funtion of 1=t, with logarithmi ab-sissa. This �gure also demonstrates that our data arewell{onverged and aurate enough to learly disrimi-nate between short{ and long{time regimes.Table I summarizes our results for the di�usion oef-�ient, where we list D(K), D1 and D2. The data on-�rm the relation 2D1 +D2 = 0 within our error bars upto N = 50. As it turned out that D2 is muh harderto sample than D1, we did not test the relation for the6



longer hains N = 100 and 200, where our statistis isnot suÆient. The data also show that the relative on-tribution of the orretion term systematially inreaseswith hain length (roughly 1% for N = 6, roughly 3:5%for N = 200).Comparing our values for D(K) and D1 with those ofRef. 31, we see that they are ompatible within errorbars. However, Rey et al.31 have obtained values for Dwhih are larger than D(K). In view of this puzzle, wehave done a test run for N = 6, where we inreased thetime step to their value h = 0:01, and dereased the ob-servation time to theirs (0:2� 106 time steps). Figure 3shows our results for D1(t) and D2(t). One sees that thestatistial auray is suÆient to obtain an aeptablevalue for D1, but that it is by far not enough to estimateD2. We believe that this is the most likely explanationfor the deviations observed in Ref. 31.IV. SCALING OF THE hAAi CORRELATIONFUNCTIONThe systemati inrease of the ratio D1=D(K) withhain length, as seen from the data in Table I, raisesthe question if that ratio will saturate at a �nite value,or keep on inreasing, or maybe even tend to zero forN ! 1, after going through a maximum. We annotgive a onlusive answer to this question; however, wehave found some interesting results onerning the issue.Rewriting the Green{Kubo formula for D1 asD1 = 
A2�3N2 Z 10 dtCA(t); (49)where CA is the normalized A{A autoorrelation fun-tion, CA(t) = 1hA2i D ~A(0) � ~A(t)E ; (50)one sees that the N dependene is lear if it is knownfor 
A2� and for �A = R10 dtCA(t). As 
A2� is a statiaverage, let us disuss it �rst.For utuating hydrodynami interations, we notiethat Pj �$ij � ~Fj is nothing but the veloity ow �eldgenerated at position of monomer i, due to all the foresating on the other monomers j. However, the systemis in thermal equilibrium. Therefore, one should expetthat this veloity is of order of a typial thermal veloity.Furthermore, in equilibrium the ow veloities at di�er-ent volume elements are statistially unorrelated. Thispiture suggests that ~A is essentially the sum of N statis-tially independent random variables, eah of whih doesnot depend on N . Therefore, the saling
A2� / N (51)is expeted from standard statistis, and this argumentshould be true independently of the details of the hainonformations.

For preaveraged hydrodynami interations, however,this argument does not hold (the preaveraging prevents�$ij from \thermalizing"). Here we rather write
A2� =Xij Xkl D���ij E h��kl iDF �j F l E ; (52)where summation over repeated Cartesian indies, de-noted by the Greek letters, is implied. Exploiting theisotropy of the D~F 
 ~FE tensor (i. e. its proportionalityto the unit tensor) one �nds
A2� = 13Xij Xkl D���ij ED���kl ED~Fj � ~FlE : (53)This is simple to study for the ase of a Gaussianhain, sine then the D~F � ~FE orrelation is stritly short{ranged. Indeed, for a random{walk hain, D~Fi � ~FjEmustbe zero if i and j are suÆiently far away from eah other,sine in that ase one an hoose a \pivot" monomer be-tween i and j, and rotate the \right" part of the hainaround that monomer by a random angle, without hang-ing the statistial weight of the onformation. If j is onthe rotated part, ~Fj is hanged, while ~Fi is unhanged.Thus one shows D~Fi � ~FjE = �D~Fi � ~FjE = 0. Thisargument holds whenever it is possible to �nd a pivotmonomer, i. e. for ji� jj � 2. Thus the only remain-ing orrelations are those for i = j and ji� jj = 1, inwhih ase the orrelation is obvious, due to the springinteration with the neighboring monomer. In ase ofan exluded{volume hain we rather expet a power{law deay44, related to the probability of loops of lengthji� jj. In what follows, we will therefore, for simpliity,fous on the Gaussian ase. Notiing h�$iji / ji� jj�1=2,we thus �nd
A2� / Z N0 dx Z N0 dy Z N0 dz jx� yj�1=2 jz � yj�1=2(54)(the short range of D~F � ~FE redues the number of inte-grations from four to three). A trivial transformation toredued variables x=N et. then shows
A2� / N2 (55)for preaveraged hydrodynamis in the Gaussian ase.We have tested these preditions numerially, and ex-ploited the fat that 
A2� is a stati average, and, as suh,amenable to eÆient Monte Carlo proedures. This ispartiularly true for the Gaussian ase, where one simplygenerates a sample of hains. We were therefore able tostudy this ase up to hains of lengthN = 0:8�105. How-ever, we restrited ourselves, for simpliity, to Oseen{likehydrodynami interations, where we studied both the7



utuating and the preaveraged ase. Apart from this,we also studied the behavior for our model (utuatinghydrodynamis, exluded{volume hains) up to hains oflength N = 104. In this ase, we used the full RPYinteration, and generated the onformations by a om-bination of the pivot algorithm40;41 with loal moves. Forevery hain length, 0:2� 105 pivot moves, and 100 timesas many loal moves, were used. The results are pre-sented in Fig. 4; indeed reasonable agreement with ourpreditions is found.The saling laws for 
A2� have an interesting implia-tion for the dynamis of ~A. Writing 
A2� / Nx wherex = 1; 2 for the disussed ases, and �A / Ny, we �ndfrom Eq. 49 D1 / Nx+y�2: (56)On the other hand, it is well{established that D(K) isproportional to N�� where � is 1=2 for Gaussian hains,and 0:59 for exluded{volume hains. It also strongly be-lieved that this is the asymptoti saling law for D. This,however, implies that D1 must deay suÆiently quiklyas a funtion of N | otherwise D1 would ultimatelydominate and spoil the saling of D. More preisely, oneexpets D1 / N�� with � � �. Combined with the pre-vious onsideration, this yields � = 2 � x � y � � ory � 2 � x � �, i. e. y � 1 � � for utuating hydrody-namis, and y � �� for preaveraged hydrodynamis of aGaussian hain. This is a quite ounter{intuitive result,sine it implies that �A would inrease only very weaklywith hain length for utuating hydrodynamis, whileit would even derease for preaveraged hydrodynamis!Naively, one would rather expet that ~A, as a olletivequantity, deays on the same time sale as the overallpolymer onformations, i. e. �A / �Z / N3� (this latterrelation is the standard Zimm saling law11, and impliesa rather sharp inrease with N). We have thus found a\olletive" quantity whih apparently deays muh morerapidly than the hain as a whole. We believe this is-sue deserves further attention; in partiular, we think itwould be very desirable to try to understand the under-lying physial mehanisms governing the relaxation of ~Asomewhat better.Our numerial data from the BD simulation (i. e.for utuating hydrodynamis, and exluded{volumehains) an only give us very limited hints on the be-havior of �A as a funtion of N , sine, due to the overallomputational demand, we were not able to simulate thedynamis with suÆient auray for hains longer thanN = 200. Our data for CA(t) are presented in Fig. 5.Apparently the orrelation funtion has two distint timeregimes. In the short{time regime (t < t0), the urvesare pratially superimposable. This is similar to the ob-servations made by Fixman26. In the long{time regime(t > t0), the orrelation funtions deay exponentiallywith a orrelation time �D , CA(t) / exp(�t=�D). Figure6 shows our data for �D. Indeed �D inreases with hainlength; however, the observed behavior in our limited N

window is anything but a power law. Aording to ourprevious onsiderations, the inrease of �D should not bestronger than N1�� . Indeed this ondition seems to besatis�ed in the regime of longer hains.V. FURTHER RESULTSA. Stati Saling PropertiesThe radius of gyration and end{to{end distane aregiven by 
R2g� = 12N2 Xij 
r2ij� (57)and 
R2e� = D(~rN � ~r1)2E : (58)The theoretial saling for these stati properties is
R2g� / 
R2e� / (N � 1)2� : (59)In good solvent, the saling exponent has the theoreti-al value of � � 0:588 from renormalization group al-ulations and Monte Carlo simulations45. The log{log�ts of 
R2e� and 
R2g� vs. N � 1 yield the exponents2� = 1:187� 0:003 and 2� = 1:133� 0:006, respetively(see Fig. 7), whih is similar to the results by Rey etal.31.Similarly, the stati struture fatorS(k) = 1N Xij Dexp(i~k � ~rij)E= 1N Xij � sin(krij)krij � ; (60)whih is measured in sattering experiments, obeys thesaling relation S(k) / k�1=� (61)in the regime R�1g � k � b�1. By �tting a power law toour data we get the value (see Fig. 8) � = 0:575� 0:004.We have also obtained the �rst umulant (or initial de-ay rate), 
(k), of the dynami struture fator S(k; t),de�ned as 
(k) = � limt!0 ddt � S(k; t)S(k; 0)� : (62)Akasu et al.12;46 have shown that 
(k) an be writtenas 
(k) = Pij D~k � $Dij � ~k exp(i~k � ~rij)EPij Dexp(i~k � ~rij)E : (63)8



The orientational averaging in Eq. (63) is easily done forthe RPY tensor31;47. For the denominator one obtainsDexp(i~k � ~rij)Eor = sin zz (64)with z = krij . In the numerator we �nd for i = jD(~k � $Dij � ~k) exp(i~k � ~rij)Eor = kBT6��ak2: (65)For i 6= j one obtains insteadD(~k � $Dij � ~k) exp(i~k � ~rij)Eor= kBT4��rij k2" 1� 23 a2r2ij! sin zz+ 1� 2 a2r2ij!�os zz2 � sin zz3 �# (66)in the ase of large distanes rij � 2a, whileD(~k � $Dij � ~k) exp(i~k � ~rij)Eor= kBT6��ak2"�1� 316 rija � sin zz+ 316 rija �os zz2 � sin zz3 �# (67)for rij < 2a. We should mention that there are sometypographial errors both in Ref. 31 and Ref. 47. Theright{hand term of Eq. (63) is therefore diretly alu-lated from the trajetories. In the k ! 0 limit, 
(k)reets exlusively the translational motion ontributionto the hain dynamis. Therefore, the Kirkwood formulaan be reovered from the �rst umulant asD(K) = limk!0
(k)=k2: (68)We have obtained D(K) through Eq. (68) from the inter-ept of a �tting of 
(k)=k2 vs. k in the k ! 0 limit shownin Fig. 9. These values are exatly the same as thoseobtained from Eq. (4), whih onstitutes a further veri�-ation of the onsisteny of our numerial method. FromFig. 9, a universal dependene of the type 
(k)=k2 / kis also obtained in the saling regime R�1g � k � b�1.B. Dynami Saling PropertiesAn approximately exponential behavior of the time{orrelation funtion D~Re(t) � ~Re(0)E, where ~Re is theend{to{end vetor, is observed (see Fig. 10). We haveextrated the relaxation times (Zimm times) �Z orre-sponding to this behavior. �Z is related to the orienta-tional di�usion of the end{to{end vetor. A log{log �t

of �Z vs. N yields a slope of 1:71� 0:01 (Fig. 11), whihis lose to the theoretial value 3� with hydrodynami in-terations.The dynami struture fatorS(k; t) = 1N Xij Dexp hi~k � (~ri(t)� ~rj(0))iE (69)is predited to exhibit saling behavior11 if both wavenumber and time are in the saling regime, i. e. R�1g �k � b�1 and �0 � t � �Z , where �0 is the mirosopitime and �Z is the Zimm time, the longest relaxationtime of the hain. Fig. 12 gives a nie data ollapse forthe expeted formS(k; t)S(k; 0) = f �k2t2=3� (70)in log{linear represention.These saling results demonstrate the internal onsis-teny of our simulation, and in all ases agreement withthe pertinent theories and experimental results.VI. SUMMARYThe present study has shown that Brownian Dynam-is simulations are able to attak the problem of trans-lational di�usion of polymer hains with hydrodynamiinteration and exluded volume. It has also highlightedthe neessity of substantial statistial e�ort in order toobtain reliable data. While the standard piture of statiand dynami saling is reprodued, as in previous stud-ies, the novel aspet is the alulation of the di�usionoeÆient to suÆiently high auray, suh that the dif-ferene between the short{time Kirkwood value and theasymptoti long{time value ould be resolved unambigu-ously. The numerial data are in perfet agreement withthe theoretial preditions, both onerning the short{time value, and the rossover to the long{time value de-sribed by Fixman's Green{Kubo formula. It turns outthat the long{time value is a few perent less than theshort{time value. For Fixman's Green{Kubo integrandwe �nd two remarkable results, namely that its initialvalue behaves very di�erently for preaveraged vs. utu-ating hydrodynamis, and that the orrelation funtion,though desribing a global property of the hain, must de-ay substantially faster than the onformations, in orderto avoid a violation of dynami saling. Our numerialdata are in reasonable agreement with these onsidera-tions, but not fully onlusive sine only short hains wereaessible. More work on this issue, in partiular aimedat a better physial understanding, is learly desirable.9
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N D(K) D1 D2 2D1 +D2 jD1 +D2j =D(K)6 0:3544 � 10�4 0:00408 � 10�5 �0:0081 � 10�4 0:0000 � 10�4 0:0113 � 3� 10�48 0:3011 � 10�4 0:00441 � 10�5 �0:0087 � 10�4 0:0001 � 10�4 0:0143 � 3� 10�411 0:2513 � 10�4 0:00450 � 10�5 �0:0089 � 10�4 0:0001 � 10�4 0:0175 � 4� 10�415 0:2106 � 10�4 0:00443 � 10�5 �0:0088 � 10�4 0:0000 � 10�4 0:0214 � 5� 10�420 0:1788 � 10�4 0:00443 � 10�5 �0:0084 � 10�4 0:0001 � 10�4 0:0234 � 6� 10�425 0:1573 � 10�4 0:00422 � 10�5 �0:0079 � 10�4 0:0000 � 10�4 0:0249 � 6� 10�430 0:1416 � 10�4 0:00399 � 10�5 �0:0076 � 10�4 0:0001 � 10�4 0:0267 � 7� 10�435 0:1298 � 10�4 0:00381 � 10�5 �0:0072 � 10�4 0:0000 � 10�4 0:0275 � 8� 10�440 0:1201 � 10�4 0:00363 � 10�5 �0:0069 � 10�4 0:0000 � 10�4 0:0287 � 8� 10�445 0:1123 � 10�4 0:00345 � 10�5 �0:0066 � 10�4 0:0000 � 10�4 0:0292 � 9� 10�450 0:1055 � 10�4 0:00332 � 10�5 �0:0063 � 10�4 0:0000 � 10�4 0:0298 � 9� 10�4100 0:0718 � 10�4 0:0022 � 10�4 0:031 � 1� 10�3200 0:0428 � 10�4 0:0015 � 10�4 0:035 � 1� 10�3TABLE I. The di�usion oeÆients D(K), D1, D2, as well as 2D1 + D2, and jD1 +D2j =D(K), as de�ned in the text, fordi�erent hain lengths N . Note that D2 was not sampled for N = 100 and 200, for reasons of poor statistis, and that henefor these hains we have assumed jD1 +D2j = D1.
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FIG. 2. Time{dependent di�usion oeÆients D(t) = D(K) + D1(t) + D2(t) (dotted lines) and ~D(t) = D(K) � D1(t) (fulllines; see also Eq. 45 et.), for N = 6 (upper graph), N = 25 (middle graph) and N = 50 (lower graph). The dashed linesindiate the orresponding Kirkwood values D(K).
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FIG. 3. Time{dependent di�usion oeÆients D1(t) and D2(t) for N = 6 for di�erent overall observation times: (i) Solidline: D1(t) (high resolution). (ii) Solid line with triangles: D2(t) (high resolution). (iii) Solid line with irles: D1(t) (lowresolution). (iv) Dashed line: D2(t) (low resolution). The parameters of the low{resolution alulation are adapted to those ofRey et al.31, as explained in the text.
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