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We study the electrophoretic mobility of spherical charged colloids in a low-salt suspension as a
function of the colloidal concentration. Using an effective particle charge and a reduced screening
parameter, we map the data for systems with different particle charges and sizes, including nu-
merical simulation data with full electrostatics and hydrodynamics and experimental data for latex
dispersions, on a single master curve. We observe two different volume fraction-dependent regimes
for the electrophoretic mobility that can be explained in terms of the static properties of the ionic
double layer.

PACS numbers: 82.45.-h,82.70.Dd,66.10.-x,66.20.+d

Many important properties of colloidal dispersions are
directly or indirectly determined by the electric charge of
the colloidal particles. Phase stability is provided by the
repulsive interaction between like charges, while the de-
tails of the static and dynamic behavior are the result of
the interplay between electrostatic interactions between
macroions, counterions, and added salt ions, the dielec-
tric response of the solvent, and the solvent hydrody-
namics. Depending on whether the concentration of the
background electrolyte (relative to that of the “native”
counterions) is large or small, one must expect quite dif-
ferent behavior both with respect to statics and dynam-
ics. The salt-dominated regime (high salt concentration)
has been studied extensively both for static [1] and dy-
namic properties [2–5]. In this case, the large reservoir of
salt ions results in a strong Debye screening of the elec-
trostatic interactions between the macroions, such that
the net charge density is essentially zero throughout the
dispersion except for narrow ionic atmospheres around
the colloids. An external electric field will therefore exert
forces only within these layers, such that hydrodynamic
interactions are also strongly screened in a system sub-
jected to electrophoresis [6, 7]. Therefore, the problems
both of ion cloud structure and of electrophoresis can
be treated within a single-macroion framework [8], and
the dependence of the electrophoretic mobility µ = v/E
(v denoting the colloid drift velocity and E the driving
electric field) on the macroion volume fraction Φ is weak.

Conversely, in the interesting regime of low salt con-
centration, where this screening is not present, the con-
centration dependence can be significant [9, 10]. From
the theoretical point of view, this regime remains practi-
cally unexplored. The main goal of the present Letter is
to find general relations between the electrophoretic mo-
bility and other dispersion parameters in the counterion-
dominated regime, based upon data from both computer

simulations and experiments.

An important reference point in the case of low salt is
the Hückel limit of electrokinetics. For an isolated col-
loidal sphere (Φ = 0, salt concentration zero) with radius
R and charge Ze (e denoting the elementary charge) in
a solvent of viscosity η and dielectric constant ǫ, Stokes’
law implies µ = Ze/(6πηR) (note that all counterions
are infinitely far away). Furthermore, we introduce the
Bjerrum length lB = e2/(4πǫkBT ), kB and T denoting
Boltzmann’s constant and the temperature, respectively,
as a characteristic length scale of electrostatic interac-
tions. The reduced (dimensionless) mobility, defined as
µred = 6πηlBµ/e, thus assumes the value µred = ZlB/R
in the Hückel limit.

We are now interested in the case Φ > 0 (but still salt-
free). Some non-trivial statements about this regime can
be made already in terms of dimensional analysis. µred,
as a dimensionless quantity, can only depend on dimen-
sionless combinations of the essential parameters of the
system. These are: (i) kBT as a typical energy scale;
(ii) lB as the fundamental length scale of electrostat-
ics (lB may be viewed as re-parametrization of ǫ); (iii)
the solvent viscosity η (or alternatively µ0 = e/(6πηlB))
providing the fundamental time scale for viscous dissi-
pation; (iv) the colloid radius R and (v) its valence Z;
(vi) the colloid volume fraction Φ; and (vii) the radius a
of the (monovalent) counterions (which we consider, due
to Stokes’ law, also as a measure of their mobility). Us-
ing the first three parameters as those which provide our
fundamental unit system for energy, length, and time, we
thus find µred = µred(Φ, Z, lB/R, lB/a).

We now introduce two further re-parametrizations.
Firstly, we replace Z by Z̃ = ZlB/R, which would be
equal to µred in the Φ = 0 limit. We expect that this
change of variables results in a much weaker dependence
on the last two parameters. This is obvious for Φ = 0
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where there is no dependence left; note also that lB/a is
typically of order unity for most systems. Secondly, in
order to make contact with the standard parametrization
used in the high-salt case [8, 11], we use the variable κR
instead of Φ, where κ has the dimension of an inverse
length, and (κR)

2
= 3Z̃Φ. Since the average counterion

concentration is ni = Z/V , where V is the average sys-
tem volume per colloidal sphere, and Φ = 4πR3/(3V ),
one sees that κ2 = 4πlBni, i. e. κ would have the inter-
pretation of a Debye screening parameter if ni were the
salt concentration. We would like to stress, however, that
these are mere re-parametrizations. This implies neither
the interpretation of Z̃ as an electrostatic potential, nor
of κ in terms of Debye screening. With these caveats
in mind, we will call Z̃ the reduced charge, and κ the
screening parameter [12]. From these considerations we
expect that measurements for different systems should
yield equal µred values if the physical situations are iden-
tical in terms of the two parameters κR (or Φ), and Z̃.
As we will show below, this is indeed the case.

As a final crucial step, we introduce effective values
for the parameters Z and R (and correspondingly also
Φ) and the effective reduced charge Z̃eff = ZefflB/Reff.
While counterions far away from the colloid can be de-
scribed reasonably well in terms of small Stokes spheres,
co-moving with the surrounding hydrodynamic flow, this
is much less obvious for those ions in the close vicinity of
the colloid, which are tightly coupled to its motion. This
is particularly true for highly charged systems. For this
reason, we combine the central colloid with some of its
counterions to an effective sphere with slightly increased
R as well as decreased Z. Reff, the effective radius in the
computer model, was defined as the minimum distance
between the center of the colloid and the center of a coun-
terion (see below). In the experiment, we set Reff = R
due to the smallness of the counterions. For determining
Zeff both in simulation and experiment, we applied the
concept of charge renormalization [12–14]: After obtain-
ing the full numerical solution of the Poisson-Boltzmann
(PB) equation within the framework of the Wigner-Seitz
cell model, this function was fitted to the solution of the
corresponding linearized equation near the cell boundary
[12]. Correspondingly, the screening parameter has to
be calculated now with the effective counterion concen-
tration, i. e. ni = Zeff/V for the salt-free system. The
comparison between simulation and experiment is then
done in terms of these effective parameters. The degree
of charge renormalization is weak for small Z but is quite
substantial for larger values (see below).

Our Molecular Dynamics (MD) computer model com-
prises small counterions, plus one large charged sphere,
around which we wrap a network of small particles.
All small particles are coupled dissipatively to a Lat-
tice Boltzmann (LB) background [15, 16], which provides
the hydrodynamic interactions. Thermal motion is taken
into account via Langevin noise, and electrostatic interac-
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FIG. 1: Reduced electrophoretic mobility of a spherical parti-
cle vs. (a) particle volume fraction, and (b) reduced screening
parameter, calculated from counterion and salt contributions
(see text) for various systems with matching Z̃. The solid
curves represent a fit to the experimental data.

tions are calculated via the Ewald summation technique.
The system is simulated in a box with periodic boundary
conditions, and thus corresponds to a well-defined finite
value of Φ. In our unit system, we use lB = 1.3, R = 3 or
5 and Z = 20, 30, or 60, while the small monovalent ions
have diameter unity, which is also the LB lattice spacing.
The closest colloid-ion separation was set to σci = R+1,
which was also taken as the effective macroion radius,
Reff = σci. For further details, see Refs. [17–19]. Apply-
ing an external electric field, and averaging the steady-
state velocity of the colloid, we calculated µ. Some data
points were compared with zero-field data obtained from
Green-Kubo integration, confirming that the response is
still in the linear regime. Due to the “screening” of hy-
drodynamic interactions (the total force on the system
vanishes, due to charge neutrality, and thus does not gen-
erate a large-scale flow) [6, 7], we expect (and find, see
below) only weak finite-size effects.

The experimental system comprises thoroughly deion-



3

ized aqueous suspensions of latex spheres (lab code
PnBAPS68, kindly provided by BASF, Ludwigshafen,
Germany) with diameter 2R = 68nm, low polydisper-
sity and high charge (bare charge Z ≈ 1500; effective
charge from conductivity Z∗

σ
= 450 [20]). They show a

low lying and narrow first order freezing transition at
a particle number density of nF ≈ (6.1 ± 0.3)µm−3.
Due to the small size optical investigations are possi-
ble without multiple scattering up to large n. Using
Doppler velocimetry in the super-heterodyning mode [21]
we studied the electrophoretic mobility in the range of
0.1µm−3 ≤ n ≤ 160µm−3, corresponding to volume frac-
tions Φ = (4π/3)R3n of 5 × 10−4 ≤ Φ ≤ 2.5 × 10−2 [22].
Consistent with data taken on other species and also at
elevated salt concentrations [23], the mobility as shown
in Fig. 1 exhibits a plateau at low Φ and descends fairly
linearly in this semi-logarithmic plot at larger Φ. Charge
renormalization [12] yields weakly varying values for Zeff,
resulting in Z̃eff ≈ 8.5 [24]. In the simulations we chose
the parameter sets (Z = 20, R = 3) and (Z = 30, R = 5);
these correspond to roughly the same value of Z̃eff in the
dilute limit Φ → 0.

Comparing the experimental and simulated mobility
data in Fig. 1a, where µred is shown as a function of
Φ, one observes good agreement as long as Φ is not too
small. However, simulation and experiment deviate in
the regime of very low volume fractions. The reason is
that for very small Φ the dissociation of water starts to
play a role in the experiment — the size of the counte-
rion cloud is no longer determined by the colloid-colloid
distance, but rather by the background ionic concentra-
tion, so that it remains finite even at Φ = 0. In princi-
ple, one must expect that the salt species will introduce
yet another dimensionless parameter into the problem.
However, we found that the effect of salt can be incorpo-
rated, within a reasonable approximation, by just adding
the salt concentration to the counterion concentration,
such that we obtain a new scaling variable κReff with
κ2 = 4πlB (ni + nsalt). The use of this procedure can be
supported by the observation that the electrostatic po-
tential in the regions centered between the colloids varies
only weakly, such that a description in terms of a lin-
earized PB equation is possible. In these regions, how-
ever, the local counterion concentration contributes to
the screening parameter, too. Figure 1b shows that this
strategy to include the effect of salt is indeed successful.

A qualitatively different behavior of µred is illustrated
in Fig. 2, which shows the same simulation data as those
of Fig. 1, augmented by an additional data set obtained
at Z = 60. Upon stronger dilution µred for the system
with Z = 60 increases sharply as Φ → 0 due to evapo-
ration of the condensed ion layer, i. e. increase of Zeff.
In this regime, we find empirically µred ∝ Φ−1. Ulti-
mately, at Φ = 0 one would reach the “bare” limiting
value µred = lBZ/R = 26. At the higher volume frac-
tions Φ ≥ 0.01 charge renormalization yields Zeff < 30,
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FIG. 2: Electrophoretic mobility of a spherical particle of the
indicated charge and size as a function of the particle volume
fraction in a salt–free system. The effective reduced charge
Z̃eff is equal for the three systems at Φ ≥ 0.01, while it is
growing in the system with Z = 60 upon stronger dilution.
The inset shows the mobility of the particle of Z = 60 as a
function of VC/Vbox, where VC is the volume of one colloidal
particle, and Vbox is the system volume at constant Φ.
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FIG. 3: Variation of the electrophoretic mobility of particles
of charge Z = 60 in external field Ee = 0.1 versus the reduced
screening parameter. The screening parameter was calculated
from the concentration of the free ions at different colloid
volume fractions and/or concentrations of added 1:1 salt. The
curve is a guide to the eye.

giving rise to a reduced effective charge Z̃eff < 10. In this
high–concentration regime, Zeff is fairly constant, and ap-
proaching that of the Z = 20, Z = 30 systems. Hence,
the µred values are very similar, and again the mobility
decreases logarithmically with Φ (as do the experimental
data).

Although the behavior of µred is in general more com-
plex, our parametrization still remains valid. In Fig. 3 we
compare data obtained in a series of simulations at zero
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salt concentration and increasing Φ to results of simu-
lations at constant Φ but increasing amounts of added
salt. The data coincide over a considerable region of
κReff. The salt series curve continues with a slight in-
crease, which is also a feature seen in the classical elec-
trokinetic works [2, 3]. Yet, we note that the minimum
on the electrophoretic mobility can be related to the gen-
eral behavior of the ionic double layer for highly charged
colloids [25]. The coincidence of the mobilities obtained
for matching Z̃eff and κReff again supports our mapping
postulate. Moreover, it clearly shows that the sort of ions
present in the cloud is of minor importance for the mobil-
ity. The electrolyte effect, which leads to slowing down
the particle drift, is produced in one case by solely coun-
terions and in another case by both counterions and salt
ions. In both cases it is only the total ion concentration
that matters.

Finally, we briefly comment on finite-size effects. The
same arguments that demonstrate hydrodynamic screen-
ing in systems with salt [6, 7] apply here, too. Therefore
finite-size effects (as a result of image interactions) are
expected to be weak, i. e. the single-colloid simulation
should rather represent the many-colloid situation at the
same volume fraction. We have explicitly tested this by
increasing the number of particles at fixed Φ, which cor-
responds to a gradual transition from the symmetry of
a cubic crystal to an isotropic liquid (corresponding to
a bulk simulation [17]). The simulation results (see in-
set in Fig. 2) show that, within our numerical resolution,
the mobility is not affected by the positions of the near-
est neighbors. This is expected for a reasonably well–
defined double layer, and corroborates the general effec-
tive single–particle picture, according to which the mo-
bility is governed by the shear stresses within that layer.
Quite analogously, one finds in the experiments that µ
is remarkably smooth at the freezing transition (Fig. 1).
Electrophoretic data on other particles as well as con-
ductivity data show similar behavior [20, 24]. Moreover,
our findings agree with recent numerical results for col-
loidal dispersions, employing the numerical solution of
the Stokes and Poisson-Boltzmann equations [10, 26].

In summary, we have studied the electrophoretic mo-
bility of colloidal particles in the counterion–dominated
regime, which sets in at finite particle volume fractions
and low electrolyte strengths. Based on the idea of static
charge renormalization, we suggest a set of effective con-
trol parameters, the reduced effective particle charge Z̃eff

and reduced screening constant κReff, controlling the
static and dynamic properties of the system. Our model
is supported by a successful matching of the LB/MD
computer simulations of the primitive model electrolyte
and Laser Doppler velocimetry measurements with simi-
lar Z̃eff and κReff, whose non-rescaled system parameters
differ from each other by more than an order of mag-
nitude. We believe that these results and observations

constitute a first step towards understanding the physics
of colloid electrophoresis in the low-salt limit.
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