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Abstract

We report results of a molecular dynamics simulation of an “isotope” mixture
of polymer chains, which are represented by a standard bead—spring model,
and whose two species differ only by their monomer masses. Detailed analysis
of the Rouse modes shows that for sufficiently short (non-entangled) chains
this system can be well described by the Rouse model. Each species is de-
scribed by its individual monomeric friction coefficient, whose dependence on
both mass ratio as well as mixing ratio is studied. The main effect of mix-
ing is an acceleration of the slower chains and a slowdown of the faster ones,
while both species remain dynamically different. Some microscopic insight
into the mechanism is obtained by studying the short-time behavior of the
monomeric velocity autocorrelation function. Studies in the slightly entangled
regime (chain length up to N = 150, where the typical entanglement chain
length is N, = 35) seem to further corroborate the hypothesis that the “tube
diameter” of the reptation model is a quantity which results mainly from the
static configurations, i. e. is an equilibrium thermal average. The usefulness

of recently suggested analysis methods in this regime is briefly discussed.

PACS: 83.20.Jp, 83.10.Nn, 83.20.Fk, 83.80.Es, 61.25.Hq, 61.41.+¢

*Institut fur Physik, Johannes—Gutenberg—Universitat, D-55099 Mainz, Germany

tMax—Planck-Institut fiir Polymerforschung, Ackermannweg 10, D-55128 Mainz, Germany



I. INTRODUCTION

Polymer blends possess a number of technical advantages compared to one-component
materials, since they often combine desired properties of the single components. A partic-
ularly important feature is the possibility to vary the glass transition temperature of the
blend via the mixing ratio. Due to this practical interest, the last few years have seen
a number of investigations aiming at a deeper understanding of the dynamic processes in
a compatible blend or a block copolymer melt in the homogeneous phase. In particular,
the single—chain dynamics, which for a single-species melt is reasonably well understood
in terms of the Rouse model for short—chain systems, or the reptation model for longer
chains', is still rather unclear. The main difficulty is the complicated interplay of (i) the
intrinsic viscoelastic melt behavior, (ii) onset of domain formation and critical composition
fluctuations near the phase transition (which might however not be accessible due to the
glass transition), and (iii) the mutual dynamic influence of the different components even
far away from unmixing, which, as pure species, can have rather different dynamical prop-
erties. Recent studies have included scattering experiments??3, analytical theory* ¢ as well

7. Nevertheless a comprehensive and well-established

as computer simulations on a lattice
theoretical framework for these processes is still lacking. This is in marked contrast to the
status of the theories (and simulations®) of Rouse / reptation dynamics in melts' ' of
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the static phase behavior of blends and block copolymers , as well as the dynamics of

collective composition fluctuations'3.

In order to cleanly separate the effects from each other, one would like to study a mixed
system whose species differ only by their dynamic properties, but not by their static ones.
This is extremely difficult to do in an experiment, since in a mixture there are always some
chemical interactions which usually drive unmixing — even a mixture of protonated and
deuterated (while otherwise identical) polymers has been shown to unmix!'® — such that

there is hardly any situation in which the processes mentioned in (ii) can be neglected. Con-

versely, in a computer simulation it is rather easy to implement a model which comprises



a system of identical chains, which however are split up into species A (“fast chains”) and
species B (“slow chains”). There are several possibilities to do this. In a Monte Carlo model,
one would assign different jump rates to the different species, while in a Brownian dynamics
simulation the different species would be characterized by different monomeric friction coef-
ficients. In a stochastic dynamics simulation one could choose different friction coefficients
and/or masses, while in a microcanonical Molecular Dynamics (MD) simulation the only
possibility is an assignment of different monomer masses. In the present study, we chose
the last approach. For dense systems, both MD as well as stochastic dynamics are compu-
tationally quite efficient, but MD has the additional advantage of reproducing the overall
momentum conservation, which is important for the hydrodynamic properties'”. The closest
experimental system to this model would be a mixture of chains which are identical except
for the nuclear masses (isotope mixture). However, in the computer model we varied the
monomer mass ratio up to the value 100 (which is not accessible experimentally). Moreover,
an experimental isotope mixture would exhibit some residual differences in the chemical
interaction, while the interactions in the computer model are strictly identical. Hence the
system is best viewed as a particularly simple model designed to study the mutual dynamic
influence of slow and fast chains onto each other.

We have only been able to do this study in the chain length regime where the correspond-
ing single—species system exhibits Rouse—like behavior. It is the purpose of the present paper
to demonstrate that the mixed system can be well described by the Rouse model, too. How-
ever, the different species must be described by different monomeric friction coefficients.
In the regime of longer chains the present study has faced the usual prohibitive computa-
tional demands which occur when one tries to probe the system well above the entanglement
threshold!®!®. Hence, only qualitative results on the dynamics of entangled mixtures have
been obtained. For instance, our simulation results indicate that the “tube diameter” of
reptation theory' is a static quantity (equilibrium thermal average).

We have studied exactly the same model as the one simulated by Kremer and Grest!®

for the single-species case. Hence, all the relevant static properties, as well as the order



of magnitude of relaxation times etc., were already known beforehand. In particular, this
knowledge could be used for an efficient equilibration procedure. Details of the model
and technical details are described in Sec. II, and some static quantities (which of course
coincide with those in Ref. 10) are reported in Sec. III. Sec. IV reports on our results for
the dynamics, which are elucidated in more detail in Sec. V, which describes the analysis in
terms of Rouse modes. Sec. VI presents results on slightly entangled chains, and Sec. VII

concludes with a summary and discussion.

II. MODEL AND SIMULATION TECHNIQUE

t10 consists of M chains

The bead—spring polymer melt model studied by Kremer and Gres
of N monomers each. The excluded volume interaction is modeled via a purely repulsive

Lennard—Jones potential acting between all monomers,
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where 7 is the distance between the monomers, and the energy parameter ¢ as well as the
length parameter o are set equal to unity in order to fix energy and length units. Consecutive

monomers along a chain are connected via the FENE potential

Un(r) = —2R21n (1 - (2.2)
n(r) = —— nll—-—|, )
h 270 R2

where Ry = 1.5 is the maximum extension of the nonlinear spring, and & = 30 is the

spring constant. These parameters had been optimized in order to assure non—crossing of
the chains at the simulated density p = 0.85, as well as reasonable match of the oscillation
times associated with the two potentials'®. The temperature was chosen as kg1 = 1, and
the simulation was run in a cubic box with periodic boundary conditions.

As the potentials do not depend on the velocities, the momenta are, in the canonical
ensemble, strictly statistically independent of the coordinates, and their probability distri-

bution is simply the Maxwellian distribution. Therefore, the masses are only important for
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those static quantities which depend on the momenta (like the mean square velocity of a
monomer, for instance). On the other hand, the problem of equilibrating the polymer melt
is, in practice, identical to the equilibration of the configurational degrees of freedom (the
momenta relax much faster). Therefore, we first generated well-equilibrated configurations
of the polymer melt using the following procedure from Kremer and Grest'®: From the

previous simulations'® the mean square bond length is known rather accurately,
(%) = (P = 7)%) = 0.94, (2:3)

v and 7+ 1 being consecutive monomers along a chain. Similarly the stiffness parameter C',

defined via a chain’s mean square end—to—end distance

(R(N)) = ((Fx = 7)%) = Co (1) (N = 1), (2.4)
has the known value C, = 1.74 (note that the excluded volume interaction is screened
in the dense melt, and the chain statistics is Gaussian). Therefore, we generated for each
chain a “non—reversal random walk” in the continuum, using the following procedure: Each
monomer was added with a fixed bond length b = /(b?), and each new bond was allowed to
rotate freely, except for the condition |7; — 7_s| > d, which takes into account the excluded
volume interaction with the next nearest neighbor along the chain. Hence these random

walks have the desired bond length, and, by adjusting the minimum distance d as

U — 1

d—=2b
Cyo+1’

(2.5)

also the correct stiffness parameter. Consequently the chains already have the desired global
structure; however, the monomers will of course strongly overlap. In order to equilibrate
also the local packing we then ran a simulation in which the connectivity potential as well as
the excluded volume interaction between consecutive monomers were fully established, while
the repulsive Lennard—Jones potential between non—consecutive monomers was replaced by

a much softer potential,

A [1 + cos (7rr/21/60)] r < 2Y5g
Udr) = (2.6)
0 r>2Y5q,



whose strength parameter A was slowly increased from A = 1 to A = 60. For these

equilibration runs we used stochastic dynamics, i. e. Molecular Dynamics augmented with

a frictional force and a Langevin noise term!%2:
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where the stochastic forces I/ffz(t) on the i—th monomer and the friction constant I' are related

to each other by the fluctuation—dissipation theorem

(Wi(t) - Wi(t")) = 6;;0(t — t')6kT T, (2.8)
Since these runs had the sole purpose of equilibrating the configurational degrees of freedom,
we assigned the same mass to all monomers (any other choice of masses would have resulted
in a slower relaxation into equilibrium). Setting this mass m equal to unity fixes the mass

/2 For the monomeric

and time units, i. e. time is measured in units of 7 = (mo?/e)
friction constant we chose the standard value!® I' = 0.5, which corresponds to a rather weak
coupling, i. e. a dynamics which is similar to the strictly microcanonical case (I' = 0). The
velocity Verlet algorithm was applied, using a time step of h = 3 x 1073, First, A was
increased every 120 MD steps by AA = 5 until A = 60 was reached. Note that the increase
of A should not be done too slowly — otherwise the chains would feel a thermodynamic
driving force towards a smaller C, for a too long time, and hence temporarily decrease their
size from the initial optimum value. Then we ran the system with A = 60 for an additional
equilibration time of roughly 3 x 10* MD steps. After that, we replaced the soft potential by
the full repulsive interaction according to Eqn. 2.1, and a further equilibration was added
for at least another 5 x 10° MD steps.

After equilibration, we started to study systems with different masses. We randomly
selected x M chains, z < 1, out of the M chains in total, and assigned a larger mass m, >
m = my to each of their monomers. Each monomer was assigned a new random velocity,

generated from the correct Maxwellian distributions corresponding to the new masses. From

then on, the system was run purely microcanonically, using the velocity Verlet algorithm



with a time step A = 3 x 1072, Time units are fixed by the convention that the monomer
mass of the light component is set to unity. Tests showed that this choice ensures stability
for very long runs with several million time steps. For example, for a run with a total length
of 56 x 105 MD steps the fractional energy drift was only (E(t) — E(0))/Egin = .53%. All
results were averaged over 10 independent runs.

In order to save computer time, we implemented a multiple time step scheme along the
lines suggested by Tuckerman et al.?', which updates the slower degrees of freedom less
frequently. However, for our system the approach turned out to yield significant gains only
for the most extreme cases, i. e. the largest mass ratio (ms/m; = 100), and rather large
fractions of slow chains. We also introduced a slight modification, which ensures strict total
momentum conservation. The details of this algorithm are presented elsewhere??. Most
simulations were run on a Convex/HP SPP 1000 and a Convex/HP SPP 1200 with PA-7000
and PA-7200 RISC-processors, respectively. Using a scalar version of a link cell scheme
combined with a Verlet table?®, our program attained a performance of 1.3 x 10° particle
updates (MD steps times number of monomers) per second per processor.

Note that the case x = 0 (all chains fast) is precisely the system studied by Kremer and
Grest!'®. Moreover, the case z = 1 (all chains slow) can be trivially deduced from the data
for x = 0 by a simple rescaling of time, as is immediately seen via the identity

i 4 (2.9)

m— .
di* d(t/ym)’
The mass ratio was chosen as m,/m; = 2,4, and 100, implying a ratio of the natural time

scales of 7;/7y = 1.41, 2, and 10. Table I gives an overview over the simulated systems.

III. STATIC PROPERTIES

We calculated some static quantities like pressure, mean square end-to—end distance

(Eqn. 2.4), mean square gyration radius
al 2
<R2G> =N"') <(Fn — Tem) > (3.1)
n=1
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(Fem denoting the chain’s center of mass), and the single—chain static structure factor

> . (3.2)

Within statistical accuracy, our data coincide with those reported by Kremer and Grest!©.

N 2
Z exp (i - 7)
n=1

s@=(

The pressure decreases with increasing degree of polymerization (see Table I), due to the
decreasing density of chain ends. The chains obey Gaussian statistics, as expected for a
dense melt and revealed via the behavior (R?) o N — 1, (R%Z) o N — 1, and the fractal
scattering law?* S(q) o< ¢72 for Rg' < ¢ < b (data not shown).

Moreover, we found precisely the same static single—chain properties for both the fast
and slow chains, as it should be. This is an important check on our ability to calculate

meaningful averages also for the slow chains, up to a mass ratio m,/m; = 100.

IV. DYNAMIC PROPERTIES

In contrast to the statics, the dynamic properties will show a clear dependence on the
monomer masses. Before discussing the situation in a mixture we look at a pure system
with all masses equal to unity. Again, this case is exactly the model studied in Ref. 10, and
our results are well consistent with the older data. However, the dynamics turned out to
be a few percent faster for our runs than for those of Ref. 10. We ascribe this difference
to the difference between the stochastic dynamics used in Ref. 10 and the microcanonical
algorithm used in the present study.

The standard picture on the dynamics of single-component melts®2?®

can be briefly sum-
marized as follows: Melts of extremely short chains (say, N < 10) are best viewed as simple
liquids — these chains are simply too short for any scaling behavior (like the Gaussian
statistics of the chain conformations) to be observable. Melts of longer chains can then be
reasonably described by the Rouse model', which simply assumes that a test chain moves in

the same way as a random walk would move whose monomers are coupled to a homogeneous

viscous background. The model lumps together all the complicated matrix effects into one



single parameter, the monomeric friction constant (. For our model, Kremer and Grest!’
found that the crossover to reptation sets in rather early, and hence the effective ( increases
systematically with chain length from ¢ & 15 for very short chains (N = 5) to { ~ 25 for
the longest chains (N = 200).

Since the monomer motion in the Rouse model is described as pure Brownian motion,
it is of course only valid on time scales on which the influence of deterministic short—time
motion is no longer observed. This defines a “microscopic” time scale 7,, beyond which the
validity of the Rouse model sets in, and which roughly corresponds to the time which is
needed for the monomer to move a bond length b. Similarly, the longest relaxation time, the
Rouse time 7, corresponds to the motion of the chain as a whole over a distance of order
R¢. The behavior on intermediate length and time scales then follows from simple dynamic
scaling. As simulations'®!! have shown for several models, this simple concept works sur-
prisingly well. However, the Rouse description holds only for chain lengths which are not too
high. For larger chains, the effects of the temporary constraints (i. e. the non—crossability)
can no longer be accounted for by a homogeneous background. Reptation theory' is the
most successful (however not undisputed?®?”) theoretical picture so far, taking these effects
approximately into account. In this theory, the chain is viewed as being constrained in a
temporary tube, which forces it to move predominantly along its own contour. Therefore,
there is an additional length scale involved, the tube diameter dy, which is mapped via
d% o (R%(N,)) onto the entanglement chain length N,. The older simulations'® have shown
that for the present model in the homogeneous case N, &~ 35. Melts with N > N, must be
viewed as highly entangled; however, limitations in computer speed have made it impossible
so far to go deeply into this regime. It should be noted that the concept of a characteristic
chain length N,, above which slowing down compared to Rouse behavior sets in, is also
present in other theoretical approaches which have been developed as alternatives to26:%7
or generalizations of?® standard reptation theory!, and also observed in neutron spin echo
experiments?? 3!

The current and the subsequent section will be devoted to the Rouse regime, and hence



we will limit ourselves to rather short chain lengths. Most data will be presented for N = 20
or N = 30; we view these chains as sufficiently long to exhibit random walk behavior
reasonably well, while being still far away from the entangled regime. In the Rouse model,
the center—of-mass diffusion constant is proportional to N~ D = (kgT)/(CN). The overall

chain moves diffusively, i. e. for time scales t > 7,

95(t) = ([Foar () — Forr (0)°) o< t. (4.1)

However, nearly all polymer simulations!'®!!

, including ours, show a slightly different behav-
ior: While indeed for large times ¢ >> 7 simple diffusion (g3 o t!) takes place, the data for
T, < t < TR are better described via g3 oc t%%. This observation is so far not fully under-
stood; since this power law is not found in single-chain simulations in a frozen medium it
is very likely a many-chain effect?®. Apart from g3, the dynamics is commonly studied in

terms of the mean square displacement of a single monomer (located at the center of the

chain, in order to minimize end effects), both in the “laboratory system”,

g(t) = <[FN/2 () — FN/2(0)]2> , (4.2)

as well as in the chain’s center—of—mass system,

w(t) = <[FN/2(t) — Foar(t) — (ya(0) - FCM(O))]2> . (4.3)

For long times ¢ > 7, the overall diffusion takes over, i. e. g; & g3  t, while gy saturates at
a constant value proportional to R%. On the intermediate time scales 7, < t < Tg, dynamic

scaling implies (omitting prefactors of order unity)

0t~ o) ~ 1 (1) (11

TR
(note Tp o« N? o< R¢). Of course, for extremely short times all three displacements are
proportional to #?, due to the underlying Newtonian dynamics. Figs. 1 and 2 show g¢;(¢)
and g3(t) for a pure system for various chain lengths. We find that our simulation reproduces
Rouse behavior quite satisfactorily up to chain length N = 30, while for N = 50 already a

slight slowing down is observable.
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Let us now discuss the same quantities for mixed systems. Fig. 3 studies the motion
of the light chains for chain length N = 30, for both the pure system as well as two 50%
mixtures (mass ratio mg/m; = 4 and 100). If there were no matrix effects, the curves
would coincide. However, as is seen from both ¢; as well as g3, the light chains get slowed
down substantially upon increasing the mass of the heavier chains. The slopes of the curves
indicate that the chains should be still describable by the Rouse model, but the monomeric
friction coefficient is significantly increased due to the matrix effect. A quantitative analysis
of this picture is done in Sec. V.

The reverse effect is observed for the heavy chains: In Fig. 4 we plot ¢; and g3 for
the heavy chains, and the same system as before. In order to remove the trivial slowing
down induced by the larger mass, the displacements are shown as a function of scaled time
t\/my/ms. This is equivalent to keeping the mass of the heavy chains fixed, while decreasing
the mass of the light chains, such that again the curves would coincide in the absence of
matrix effects. As is seen from the figure, the heavy chains get the faster the lighter the
other component gets. Again the typical Rouse power laws are observable, i. e. also the
slow chains are describable by the Rouse model, choosing a suitable friction coefficient.

Moreover, we observe that the matrix effects on a test chain get more and more pro-
nounced when the fraction of the other component is increased: Fig. 5 shows ¢g; and g3 of
the light chains for a fixed mass ratio m,/m; = 4, but varying mixing ratio (chain length
N = 20). Again the fastest dynamics is found in the pure system. The higher the fraction of
heavy particles is the slower the light polymers become. Finally, we find that in the mixed
system the originally faster chains are still somewhat faster than the slow ones.

Note that from a simple Stokes-Einstein picture (which works quite well for simple
single—species liquids, see, e. g., Ref. 32) one would have expected that the monomeric
friction coefficient would only depend on the effective monomer size, which is of course
the same for both species, and on the viscosity, which is of course affected by mass and
mixing ratio (large mass means slow stress relaxation), but also a global property of the

overall system. Hence, from simple Stokes—Finstein arguments one would have expected a
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polymer dynamics which is independent of the species. Hence, the results show clearly that
the monomer friction coefficient is in our case a more complex quantity which cannot be
determined reliably from simple hydrodynamics.

After having established that the matrix effects can be described by an effective micro-
scopic parameter (, one can hope to gain some more insight by looking at the phenomena
on a more microscopic time and length scale. To this end, we study the normalized velocity
autocorrelation function

((t) - 9(0)) (4.5)

(72)
of a monomer, which of course contains precisely the same dynamic information as the mean
square displacement, but visually exhibits more structure on short time scales.

Fig. 6 displays this function for a pure system. For comparison with data for mixed
systems, we rescaled time such that Fig. 6 is effectively plotted for a pure system with
monomer mass m = 4. The different curves correspond to different monomer indices such
that end effects are visible. Within the accuracy of the simulation, we observe that the
velocity autocorrelation function is the same for all monomers, except those at the very ends
of the chain. Moreover, comparing Fig. 6 with typical velocity autocorrelation functions for
dense simple liquids®?, one immediately notices the big number of oscillations, originating
in the vibrations along the backbone of the chain. Since the end monomers have got only
one neighboring monomer they couple less strongly to the backbone oscillations resulting in
a less pronounced first peak.

Another interesting observation is a quite well-defined separation of time scales. After
two oscillations the function has decayed already rather strongly, while it afterwards exhibits
a very long but weak negative tail. This is again a reflection of Rouse-like dynamics: Ignoring
the tail, one would obtain a quite large integral, which would correspond to a short—time
diffusion constant, or, via the Einstein relation, to the monomeric friction coefficient . In
contrast, upon integrating the full autocorrelation function, one obtains the true long—time

diffusion constant, which is of course the much smaller diffusion constant of the overall
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chain. Nevertheless, this separation of time scales is somewhat ambiguous and hence not
particularly useful for the determination of (. A more reliable quantitative procedure rests
on the long-time behavior and exploitation of the Rouse scaling 7 oc N2, which will be
done in Sec. V.

We now focus upon the velocity autocorrelation function of middle monomers for mixed
systems (of chain length N = 20), where we keep the mass ratio mg/m; = 4 fixed, and
vary the composition. This is shown in Fig. 7 for the heavy monomers. One sees that the
frequencies of the oscillations depend only extremely weakly on the mixing ratio, while the
amplitudes show a significant effect. This indicates that the oscillations are indeed mainly
due to the coupling to the neighbors along the chain, while the effect of the matrix is mainly
an average damping due to the “random collisions” with other monomers. As is clearly
seen from Fig. 7 (and the analogous data for light monomers), the motion of both the
heavy monomers as well as of the light monomers gets more and more efficiently damped
upon increasing the fraction of the heavy component: Heavy monomers absorb momentum
more efficiently than light ones. Thus the observed matrix effects on the monomeric friction
coefficient can, to a certain extent, be traced back to the collisional kinematics between

monomers of various masses. The microscopic origin is clearly the short—time dynamics.

V. ROUSE MODE ANALYSIS

This section is devoted to the quantitative determination of the monomeric friction coef-

ficient ¢ for each species. To this end, we start from the known exact solution of the Rouse

4,1

model for Gaussian chains? The effective Hamiltonian (in three spatial dimensions),

which describes the Gaussian statistics of the chain, is

kT N2 ,
H = 2—52 Z (Ti—l—l — 7"2’)2, (51)
i=1

where b2 is the mean square bond length. This results in the Langevin equation for the ith

monomer

13



d 1OH

i o + pi, (5.2)

where the mean square stochastic displacements are related to the temperature via the

fluctuation—dissipation theorem,

(i (t) - (1)) = 0i;6(kpT/C)o(t —1'). (5-3)

The orthogonal transformation from monomer coordinates 7; to Rouse modes X,, p =

0,1,...,N — 1, via
. N
Xo=N12Y"# (5.4)
=1

N
X, = ﬁN‘l/QZFicos
i=1

%(z’—uz)] p>1

(which is identical to the definition given in Ref. 35) decouples the equations of motions, such
that each Rouse mode can be viewed as a coordinate which performs a Brownian motion in

a harmonic potential, independently of all others'. Hence, for p > 1,

(Xp(t) - X,(0)) = (X2) exp (—t/7) (5.5)
with
S b
)) = — — (5.6)
< > 4 sin (W)
and

= 12T sin? <ﬂ>
P Cb? 2N/’

(5.7)

It should be noted that in the literature sometimes other definitions of Rouse modes are

given?>. However, we have carefully checked the transformation and convinced ourselves
that the one given by Eqn. 5.4 is the correct one. Nevertheless, we also found that the
difference is only of minor practical importance, since numerically it amounts to at most a

few percent in the relaxation rates.
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The data analysis then proceeds by calculating )?p from the monomer coordinates via
Eqn. 5.4, and calculating the mode autocorrelation function, which is then compared with
Eqn. 5.5. Since the mean square bond length 4% is known as a static average, the relaxation
rate allows us to extract ( from Eqn. 5.7. In practice, we considered only the first four
Rouse modes 1 < p < 4, since for higher modes the deviations from Gaussian statistics were
already too severe, given the rather short chain lengths which we considered.

For a pure system (N = 30) the decay of <)?p(t) -)Z'p(O)>, as a function of scaled time
t sin? (é’—;{,), is shown in Fig. 8 for 1 < p < 4. In Table II data for ¢ are shown, as obtained
for N =10, 20, 30, and 1 < p < 4. It seems that the mode p = 1 yields a slightly lower value
for ¢ than the higher modes. This might be due to some slight deviations from ideal Rouse
behavior; however, our numerical accuracy is not sufficient to prove this unambiguously.

For the mixed systems, we first checked if modes with different mode index p # ¢ are
uncorrelated for all times; within our error bars, they are (any other result would have been
quite surprising). Then we proceeded with the same analysis of the relaxation rates as for
the pure system, for each species separately. For example, Fig. 9 shows the first four modes
of the heavy polymer species plotted as a function of scaled time in a blend with mass ratio
ms/my = 100 and 20% light chains. Taking into account the somewhat worse statistics (the
heavy chains have a longer relaxation time, and only 80% of the system contribute to the
mode autocorrelation function), and comparing with Fig. 8, we conclude that the Rouse
model has the same validity in the mixture as in the pure system. By using two different
phenomenological monomer friction coefficients one is able to describe the dynamics of both
polymer species in the blend.

The friction coefficients which we thus obtained (for the mode p = 1) are shown for chain
lengths N = 20 and N = 30 and mass ratios mg/m; = 2,4,100 in Fig. 10. These data
sum up the discussed increase of both friction coefficients as a function of both z (fraction
of heavy polymers) as well as m,. Within our accuracy, no systematic dependence of ¢ on

the chain length N could be observed in the range 10 < N < 30.
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VI. CROSSOVER TO REPTATION BEHAVIOR

The reptation picture for long chains, N > N,, involves four relevant time scales, the
microscopic time 7,, the entanglement time 7, oc N2, the Rouse time 7z oc N?, and the

disengagement time 74 oc N3/N,. The reptation model predicts a sequence of crossovers

,

2 <tk

" T, <t <L TR 61)
g1 0.8 .
t1/2 TRt 1y

th T4 K t.

A similar behavior is predicted for g, (except for a final t° behavior, of course), while g3

should behave like

t <t T,
g3(t) X t1/2 Te <LKt K TR (62)

th T K t.

For more details on the theory, see Ref. 1. A recent overview over the various difficulties to
observe reptation behavior in computer simulations is given in Ref. 18. The main problem is
the necessity to study long chains N > N,, while on the other hand in this limit the longest
relaxation time, 75 oc N3, gets prohibitively large. The clearest indication of reptation-like
behavior is usually the crossover in g; from ¢'/? to ¢t'/*. Nevertheless, no simulation has so
far been able to observe this latter power law clearly; rather the observed exponents are
always larger than 0.25. The explanation of this, in the reptation picture, is the too close
proximity of the two adjacent t'/? regimes, which, due to smooth crossovers, blur the t'/*
behavior. Our simulation data have little to add to change this unfortunate state of affairs.
However, if one accepts the reptation scenario as such, one can extract the best estimate
for 7, via power-law fits to the two regimes. This, in turn, allows an estimate of the “tube
diameter” dr via ¢;(7.) = d%. This can be done reasonably well for the longest chains we

have studied, N = 150. Instead of a well-defined change from t'/? to ¢t'/* we observe effective
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exponents 0.46 and 0.37, while d% = 20. Beyond the framework of the reptation picture, dr
can at any rate be viewed as a characteristic length for slowing down, as it is also present

26,27 which however predict different power laws.

in alternative pictures
An interesting question then is whether dr should be viewed as a static quantity (i. e. an
equilibrium configurational average like, e. g., (R%), which is in accord with the intuitive pic-
ture of topological constraints), or as a purely dynamic quantity (note that a determination
of dr has so far only been possible by studying the dynamics). In the first case, dr would not
depend on the details of the dynamics, and would be the same for all mass and mixing ratios.
Conversely, in the “dynamic” case dr would depend on the behavior of dynamic correlation
functions and hence on the details of the dynamics; i. e. in this case one should expect some
dependence on mass and mixing ratio. In order to answer this question, we took the data
for a pure system as well as those for a 50% mixture (mass ratio m,/m; = 100, chain length
always N = 150) and rescaled time for each data set such that the data fall on top of each
other for times ¢t < 7.. In this time regime, pure Rouse dynamics should apply, and hence
such a rescaling is possible — this was the result of the previous sections. If each sort of
chain had a different dr, then the curves should splay after 7,. However, within the accuracy
of our data they do not, see Fig. 11, and this implies that the tube diameter is independent
of the monomeric mass found in the system. Therefore we conclude that the tube diameter
(or, beyond the reptation picture, the characteristic length scale of slowing down) is a static
quantity or that its dependence on the details of the dynamics must be quite weak. This
result further supports the reptation picture based upon topological foundations, and yields

a further criterion for theories of polymer dynamics which they should satisfy.
Recently Ebert et al.3® suggested to study also higher moments of the displacements, like
0B = (X () i) ) (63)

p=2,y,z

Analysis of ¢ should give clearer signs of reptation, and furthermore the crossover to
reptation behavior should be observable at a shorter time. We hence tested these ideas for

our system.
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Firstly, we would like to point out that ¢ cannot give any new information as long as
pure Rouse dynamics applies: From the picture of Brownian motion in a harmonic potential,
which is the motion of the X, it is clear that X, is a Gaussian variable!. Hence, 7(t) — 7;(0)
can be expressed as linear combination of Gaussian variables, i. e. it is itself Gaussian.
However, for a Gaussian distribution the higher moments are all trivially related to the
second one; in particular, the fourth moment is just three times the square of the second
moment. Hence, by exploiting the spatial isotropy, one finds ¢¥? = ¢? or g} = ¢; (in
other spatial dimensions one would obtain only proportionality). Hence, an earlier crossover
to slowed down motion can hardly be expected, since at least for the short times (Rouse
behavior) g; and ¢ must coincide. Indeed, Fig. 12 shows for our pure N = 150 system
that also beyond ¢t = 7, the curves are practically indistinguishable. Hence, our data show
that the analysis of higher moments does not give any further insight into the reptation
problem and is not of practical usefulness, at least up the chain lengths we were able to
simulate. The behavior observed by Ebert et al. seems to be an artifact of their hair—pin

model.

VII. DISCUSSION AND OUTLOOK

The present study has clearly shown that the Rouse model provides a very useful de-
scription for our system. Both types of chains relax in a Rouse-like way, however, the fast
chains are slowed down in the slow matrix, while the slow chains are accelerated in the fast
matrix. Nevertheless, there remains a clear distinction in the relaxation rates. Attempts to
estimate the viscosity for our system are currently under way, mainly in order to assess the
implied deviations in ¢ from Stokes-FEinstein behavior more quantitatively. Since we were
not able to go deeply into the entangled regime, we can however not exclude the possibility
that a mixture of extremely long (highly entangled) chains of different species (but very
similar statics) might exhibit nearly identical diffusion constants for both species, due to an

“average matrix” effect.
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We expect that real polymer blends sufficiently far away from the unmixing transition
(where the effect of the interaction is weak) would show rather similar behavior as our system.
Experiments on binary blends should be analyzed in terms of two Rouse relaxation rates.
Apart from these considerations, the system is also ideally suited to study interdiffusion in
polymer blends'® via investigating collective equilibrium composition fluctuations. Studies
along these lines are currently under way.

Of course, the present model is only the simplest one for dynamics in polymer mixtures.
Substantially more complicated and interesting behavior is to be expected when going from
the noninteracting case to a melt which actually shows a tendency for unmixing via an
attractive interaction, or, similarly, to a melt whose chains have different static properties
like different chain stiffnesses or different chain lengths. Nevertheless, we hope that the
present study stimulates further investigations, both experimental as well as theoretical.
We feel that the difference in dynamics on the monomeric level is an important feature in

polymer blend dynamics, and should be accounted for in any theoretical approach.
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FIGURES
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FIG. 1. Monomer displacement g;(t) of a pure system for various chain lengths as indicated

in the figure. As a guide to the eye the power laws t? for the short-time regime and t%° for the
intermediate regime are included.
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FIG. 2. Center—of-mass displacement g3(¢) of a pure system for various chain lengths as indi-

cated in the figure. The power laws t°-%, 15 and ¢! are shown as guide to the eye.
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FIG. 3. Displacements g; and g3 of the light chains (m = my = 1) in a pure system and two

50% mixtures with varying heavy mass (ms/ms = 4,100). The chain length is N = 30.
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FIG. 4. Displacements g; and g3 of the heavy chains as a function of scaled time tms_l/ ina

pure system and two 50% mixtures with varying heavy mass (ms/ms = 4, 100). The chain length

is N = 30.
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FIG. 5. Displacements g, g3 of the light chains m = m; = 1 for mixtures with a mass ratio of

ms/my¢ = 4 and chain length N = 20. Data for various mixing ratios are shown, as indicated in

the figure.
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FIG. 6. Velocity autocorrelation function of the first, fifth and ninth monomer in a pure system

with m =4 and N = 20.
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FIG. 7. Velocity autocorrelation function of a middle monomer of the heavy species for systems

of chain length N = 20 and fixed mass ratio m,/ms = 4. The fractions indicated in the figure

refer to the fraction of heavy chains.
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FIG. 8. Normalized autocorrelation function of the first four modes of a pure system (m =1,

N = 30) plotted against scaled time.
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FIG. 9. Normalized mode autocorrelation function of the heavy chains as a function of scaled

time for a mixture with m,/my = 100, 20% light chains, and chain length N = 30.
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FIG. 10. Monomer friction coefficient of the light polymer species (upper part) and of the heavy
species (lower part) as a function of composition. Data for N = 20 are shown in the left half of

the figure and data for N = 30 in the right part.
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FIG. 11. Mean square displacement g; for systems with chain length N = 150. Data for a pure
system as well as for a 50% mixture (both heavy and light chains) are included as indicated in the

figure. For the data sets of the mixed systems, time was rescaled in order to superimpose the data

on top of each other.
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FIC. 12. ¢1(t) and ¢ (t) (see text) for a pure system with chain length N = 150.
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TABLES

M| N L R? RZ, P t ms/m g T

25| 10| 6.65| 129 22| 528 1x10° 1, 2, 4 0, 20, 52, 80 %
30 20| 890 295| 49| 515 4x10°| 1,2, 4, 100 0, 20, 50, 80 %
200 30| 890 46.1| 76| 500 9x10°| 1,2 4, 100 0, 20, 50, 80 %
16| 50| 9.80| 80.5| 13.3] 495 25x10% 1,2, 4, 100 0, 18.75, 50, 81.25 %
20| 75| 12.08| 123.8] 20.4| 4.93] 56 x 10° 1, 2, 4 0, 20, 50, 80 %
20| 150| 15.23| 243.6| 41.3| 4.86] 33 x 10° 1, 100 0, 20, 50, 80 %

TABLE I. Simulation parameters and some quantities: M, number of chains in the system,

N, degree of polymerization, L, length of the cubic box, R?, mean square end-end distance, Ré,

mean square gyration radius, P, pressure, ¢, length of run (in MD steps), m,/m ¢, mass ratio, ,

fraction of slow chains.

N ((N,p=1) ((N,p=2) ((N,p=3) ((N,p=4)
10 19.9 20.1 19.9 20.6
20 18.3 20.8 21.2 20.5
30 18.6 20.8 21.4 20.9

indexes p for pure systems.
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TABLE II. Data for the monomeric friction coefficient for different chain lengths N and mode




Figure Captions

. Monomer displacement g;(t) of a pure system for various chain lengths as indicated in
the figure. As a guide to the eye the power laws t? for the short—time regime and ¢°-5

for the intermediate regime are included.

. Center—of—mass displacement g3(¢) of a pure system for various chain lengths as indi-

cated in the figure. The power laws t%%, t9° and t!' are shown as guide to the eye.

. Displacements g; and g3 of the light chains (m = my = 1) in a pure system and two

50% mixtures with varying heavy mass (m,/m; = 4,100). The chain length is N = 30.

. Displacements g; and g3 of the heavy chains as a function of scaled time tm;'/? in a
pure system and two 50% mixtures with varying heavy mass (ms/m; = 4, 100). The

chain length is N = 30.

. Displacements g¢;, g3 of the light chains m = m; = 1 for mixtures with a mass ratio
of my/m; = 4 and chain length N = 20. Data for various mixing ratios are shown, as

indicated in the figure.

. Velocity autocorrelation function of the first, fifth and ninth monomer in a pure system

with m =4 and N = 20.

. Velocity autocorrelation function of a middle monomer of the heavy species for systems
of chain length N = 20 and fixed mass ratio m,/m; = 4. The fractions indicated in

the figure refer to the fraction of heavy chains.

. Normalized autocorrelation function of the first four modes of a pure system (m =1,

N = 30) plotted against scaled time.

. Normalized mode autocorrelation function of the heavy chains as a function of scaled

time for a mixture with mg/m; = 100, 20% light chains, and chain length N = 30.
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10. Monomer friction coefficient of the light polymer species (upper part) and of the heavy
species (lower part) as a function of composition. Data for N = 20 are shown in the

left half of the figure and data for N = 30 in the right part.

11. Mean square displacement g; for systems with chain length N = 150. Data for a pure
system as well as for a 50% mixture (both heavy and light chains) are included as
indicated in the figure. For the data sets of the mixed systems, time was rescaled in

order to superimpose the data on top of each other.

12. g1(t) and g (t) (see text) for a pure system with chain length N = 150.
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