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Abstract. The problem of critical slowing down is the appearance of a very
long (diverging) correlation time associated with a corresponding appearance of
a diverging correlation length. This is elucidated by a trivially solvable model,
the one-dimensional Gaussian model. The general strategy to fight this effect,
in order to sample phase space more efficiently, is to update large length scales
with artificially high rates. This approach is exemplified by the methods of Fourier
acceleration, and multigrid simulations. For polymer chains, the long correlations
arise directly from the molecular connectivity. Some Monte Carlo algorithms which
attack this problem again by non-local moves (dimerization, pivot, slithering snake,
connectivity—altering methods) are presented.

1. The Problem: Critical Slowing Down

Critical slowing down always occurs when a physical system exhibits
objects which, in some sense, can be called “critical clusters”. This
terminology stems from the theory of critical phenomena; however,
the applicability of the concepts and algorithms to be discussed in this
chapter goes beyond standard second—order phase transitions. A critical
cluster is a large correlated object of typical size ¢ (the correlation
length), which can be made arbitrarily large by means of some control
parameter. Typical examples are magnetic clusters in a spin model
(where the control parameter is the temperature distance from the
critical point), percolation clusters (whose size is controlled by the oc-
cupation fraction), polymer chains and tethered membranes (controlled
by the degree of polymerization). Furthermore, the objects typically
do not have a well-defined shape, but are rather ramified fractals, and
exhibit very many configurations, which are all easily accessible as the
typical energy to change (or create / delete) the object is, at most, of
order of the thermal excitation energy kpT.

Such inherently soft objects are also inherently slow: The physical
dynamics is usually local, which means that the object can only be re—
arranged if the information about such changes has spread throughout
it, and this takes the more time the larger £ is. For the “classical” case
of diffusive dynamics, this implies the scaling law 7 oc £2, where 7 is the
correlation time which is needed to completely re—arrange the object.
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2 B. Diinweg

Taking non—diffusive dynamics and the fractal geometry into account,
one rather has the more general law 7 ox £? where z is the dynamical
exponent. A power law should hold since the system exhibits only two
relevant length scales (the correlation length ¢ and the lower length
scale cutoff a, like the lattice spacing or the particle size), and similarly
only two relevant time scales (7 and the microscopic time related to a),
while the behavior in between should be scale-invariant. An overview
over the various cases of dynamic critical phenomena at second—order
phase transitions can be found in the review article by Halperin and
Hohenberg [7].

The large value of z of course poses a problem to computer simula-
tions, since the correlation time determines the statistical accuracy of
a simulation (see contribution by A. Milchev). If one is only interested
in static properties, one would therefore like to move the system in an
unphysical way through its configuration space, and to “beat” critical
slowing down by deliberately violating the condition of locality such
that information may spread more quickly. The present lecture intends
to outline a few of such strategies for some systems, without attempting
to cover the topic thoroughly or comprehensively. It should be noted
that critical slowing down is only one mechanism of slowing down which
plagues simulations; others are equally important and are discussed in
other parts of the school (for “hydrodynamic slowing down” and its
elimination by choice of a suitable ensemble, see contributions by K.
Binder and N. Wilding; for dealing with low-temperature excitations
in discrete systems, see contribution by M. Novotny; for dealing with
activation barriers, see contributions by N. Wilding and W. Janke).

In order to understand the strategies to devise algorithms against
critical slowing down, let us first discuss the simplest model which
exhibits this phenomenon, and which is actually exactly solvable.

2. The Gaussian Model

We start out from the well-known Landau-Ginzburg-Wilson (LGW)
Hamiltonian for the Ising universality class:

L1 T U
H = /ddac [5 VoL + g7 + 14t (1)

This is the simplest model for a system with a scalar order parameter
¢ exhibiting a second—order transition. All three terms are essential:
The terms ¢? and ¢* describe the competition between order (¢ # 0)
and disorder (¢ = 0). In the Mean Field picture, only these terms are
considered. While u is constant, r is varied and corresponds to the
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distance from the critical point: For r > 0, ¢ = 0 is stabilized, while
for r < 0 the ordered phase prevails. This picture, however, lacks any
spatial structure, i. e. the tendency of near neighbors to order in the
same way. This last property is built in via the first term, which makes
interfaces energetically unfavorable.

From there, we go to the Gaussian model by omitting the ¢? term.
We thus obtain a quadratic Hamiltonian which is exactly solvable. Of
course, the model only makes sense in the disordered phase r > 0; the
stabilization of the ordered phase is not described. For simplicity, we
specialize on the one—dimensional case, and study the lattice discretized

version:
L—1

=2 3 [ — ) +762) ©)

n=0

where L is the number of sites, 5 = 1/(kgT), with T the absolute tem-
perature and kp Boltzmann’s constant. An appropriate re-definition of
the units of ¢ is implied, and periodic boundary conditions are assumed.
The statics is trivially solved by the introduction of Fourier modes via
a unitary transformation which diagonalizes H:

bp = \}—Lz:ld)n exp (27men> (3)
b = Z ¢bp exp <——pn> (4)
fH = = Z [4sm < > —i—r} ‘qﬁp‘ . (5)

The equipartition theorem then tells us that
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which is the well-known Ornstein—Zernike correlation function in
Fourier space. The last approximation has been made for long—
wavelength modes p — 0. From this, we can directly read off £ 2 o r,
implying the Mean Field value 1/2 for the critical exponent v. Fur-
thermore, the overall mean square fluctuation of the order parameter,
which is proportional to the susceptibility, is obtained as the p = 0

)
mode, for which we can read off <‘¢0‘ > =r~! or 4 = 1 for the Mean

P

Field susceptibility exponent.
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4 B. Diinweg

Turning to the dynamics, we assume the Langevin equation of
motion (see also the other contribution by the author)

d 1 9BH

%%:—a 9; + fi (7)
with )
(fi) =0 (fi() fi(t") = 2aéij5(t —t'), (8)

and 7, denoting an elementary local (“microscopic”) time scale. This
is the generic equation of motion for overdamped local dynamics with
non—conserved order parameter (so—called “model A” dynamics [7]), as
it corresponds, for example, to a simple single—spin flip Monte Carlo
algorithm on a somewhat coarse—grained length and time scale. As the
thermodynamic force is just linear in the order parameter, the equation
of motion is also diagonalized by introduction of the Fourier modes:

d - 1 O0BH

Chp=— TR )
P P

dt Tm  OF%

where the noise acting on mode p does not only vanish on average,

(fp) =0, but is even uncorrelated to the noise acting on other modes:

(B(OF(E)) =22t = 1) (10)

Hence, the modes decay independently,

d ~ 1 -
EQS;D = _T_p bp +fp (11)

such that the correlation function <<£;(0)¢p(t)> is just an exponential
with correlation time

Tm

= 4 sin? (BF) +r

(12)
From this, we can read off z = 2 in the long-wavelength limit p — 0
via two equivalent considerations: Either we study the relaxation of the
overall order parameter p = 0 off critically, resulting in 7y oc 7~ oc €2,
or we study the nonzero modes at criticality » = 0, resulting in 7, o
P2 )\12,, where ), is the wavelength associated with mode p.

The important point about this exercise is that it gives us a rough
understanding how critical slowing down comes about, even when we
consider non—trivial models, which require simulation. The system be-
comes increasingly soft, the larger the length scale under consideration
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is. This is expressed by the decreasing thermodynamic force as p — 0.
Correspondingly, it also becomes increasingly sluggish, as one sees from
the increase of 7 for p — 0.

3. Fourier Acceleration

The idea of Fourier acceleration [1] is easy to understand, based on the
considerations of the previous section. We start from a system which
is described by a field—theoretic LGW Hamiltonian, and simulate this
directly on a lattice, by solving the Langevin equation of motion, Eq.
7, for its non—trivial Hamiltonian, using the methods outlined in the
other contribution by the author. Suppose we would instead run this
in Fourier space. Then we would have to solve Eq. 9 instead. However,
for a non—trivial Hamiltonian the interaction in Fourier space is long—
ranged, and cumbersome to evaluate. It is therefore much easier to
rather evaluate the forces in real space, and Fourier transform these,
to give the forces on the modes. We thus arrive at a scheme where we
start from a field configuration in real space, evaluate the forces there,
then Fourier transform both the fields and the forces, then update the
fields in Fourier space, and afterwards Fourier transform the new fields
back into real space. For a non—critical system, there would however
be no point in doing so; one would only introduce superfluous opera-
tions. But for a critical system we can exploit the previously explained
sluggishness for p — 0 by noting that the necessary time step of a
Langevin update is governed by the intrinsic time scale associated with
that kind of motion. We hence introduce a multiplicity of time steps
and update those modes which have a long wavelength with a large
time step h,, and ideally adjust A, in such a way that h, oc 7,. For
the Gaussian model, this procedure eliminates critical slowing down
completely. For a non-trivial model, there remains some significant
residual slowing down. Here the modes are not completely decoupled,
and the concept of a mode relaxation time is only approximately valid.
It is often useful to combine these Langevin updates with a Metropolis
acceptance criterion in order to correct for discretization errors (“force
biased Monte Carlo”, see also the other contribution by the author).

An important ingredient of such simulations is to run lattice sizes
which are a power of two. In this case, the Fourier transformation
can be done in a very efficient way using the so—called Fast Fourier
Transform (FFT), whose effort scales as Llog L for system size L. This
is a recursive divide-and—conquer method, by which one (large) Fourier
transformation is mapped onto two transformations of half the size, etc.
For further details, see textbooks on numerical analysis [12].
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6 B. Diinweg

4. Multigrid Monte Carlo

This approach is rather similar in spirit. We again study a Hamiltonian
in terms of continuous variables (a lattice-discretized field theory),
and again confine ourselves to a rough sketch of the method, as also
explained in the original literature [6]. For simplicity, let us again look
at the one—-dimensional LGW Hamiltonian,

=3[ . p—— 13
B —7;)[5(%“—%) +§r¢n+ﬁu¢n' (13)

Quite similar to the idea of real-space renormalization, we introduce
a “blocking” transformation by subdividing the lattice into identical
blocks, each of which comprises a certain set of sites. On each of these
blocks, we introduce block variables 1 just as the arithmetic mean of
the original variables ¢. In our example, where the blocks are just pairs
of consecutive sites, we have M = L/2 variables ¢, = (don + don+1)/2.
Furthermore, we introduce fluctuation variables 7 in each block. The
precise form is not particularly important; what we require is that the
m variables should be linear combinations of the original ¢ variables in
the block, and that they, together with the ¢ variable, determine the
¢ variables in the block uniquely (if the block comprises k sites, then
we have k — 1 7 variables per block). In our one-dimensional example,
a convenient choice is m, = (¢2, — P2n+1)/2, and the Hamiltonian in
terms of the new variables is

M—-1

B = Y |5 et — ) + Bl (14)

n=0

b oral{ma W2+ gron (I b + 4 2wy

+ pH'({mi}),

where we have focused on the 1/ dependence. The dependence on the m
variables comes through a purely additive term, and the new coupling
parameters h,, T,, gn, whose precise form is of course important for
the actual implementation, but not for the spirit of the method. It is
however very important that the new Hamiltonian is again a fourth—
order polynomial, and that the range of interaction in terms of blocks
does not exceed the nearest neighbors. These properties remain true if
one goes to higher dimensions, and if one iterates the transformation
(as in the renormalization group). In contrast to renormalization—group
calculations, however, no attempt is being made to integrate out the
fluctuation variables (for any interesting Hamiltonian, this could be
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done only approximately). The fluctuation variables are rather kept,
and the transformation is used to update the v variables at an unphys-
ically high rate. One thus arrives at a recursive hierarchy of systems,
each of which is decomposed into block variables and fluctuation vari-
ables, and where the block variables of a certain level are the “raw”
variables at the next level, such that the number of degrees of freedom
in each level becomes less and less. It is useful to view these systems
as separate, such that each has its own region of memory assigned, in
which all of its variables ¢, ¥, and 7, as well as the couplings, are stored.
Together, the algorithm hence involves an “up” step (corresponding
to “coarse-graining”), and a “down” step (corresponding to “fine-
graining”). There are various ways how to jump back and forth between
the levels, and we shall not discuss these here in detail. The “up” step
works as follows: Suppose that at a certain level the ¢ variables and the
couplings are given. From these, one calculates the fluctuation variables,
plus the block variables and the new couplings. The latter two variables
are stored at the system one level higher. Then some standard Monte
Carlo procedure is applied on the latter system, such that, in effect,
only the block variables are updated, while the fluctuation variables
are kept constant. The corresponding “down” step then consists of the
transformation back, such that the ¢ variables at the lower level are
obtained from the (old) m variables of the lower level, and the (new)
¢ variables of the higher level, which are the block (1)) variables of
the lower level. This is followed by a standard Monte Carlo procedure
applied to the lower level. The speedup is essentially due to the fact
that rather large moves through phase space are facilitated by updating
a comparatively small number of degrees of freedom.

5. Polymer Algorithms

5.1. POLYMER PHYSICS: SOME BASICS

In this subsection, we wish to briefly summarize some important scaling
laws in polymer physics [2, 3], which are of direct importance for the
construction of efficient simulation algorithms.

Usually, a polymer chain is described as a self-similar random frac-
tal characterized by the law R o« NV, where R is the typical size
(e. g. the gyration radius or the end—to—end distance), and N is the
number of monomers within the chain, or the degree of polymeriza-
tion. For a single chain immersed in a good solvent, v has the value
~ 0.59 in three dimensions. This is larger than the random-walk (RW)
value 1/2, due to the swelling resulting from the excluded-volume
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8 B. Diinweg

(EV) interaction. v = 0.59 thus corresponds to the statistics of so—
called “self-avoiding walks” (SAWs). In a dense melt, however, the EV
interaction is screened; here we rather have RW statistics.

Furthermore, it is interesting to ask how many conformations are
available to the chain. For RW statistics, this number is just Z = u,
where p can be considered as an effective coordination number of a
lattice chain. For SAW statistics, it can be shown that [2]

Zsaw = Ap'N N, (15)

where (if considering the same lattice) ' is smaller than u, and the
exponent vy has a universal value which depends only on the spatial
dimension (y & 1.16 in three dimensions).

Turning to the dynamics, it is instructive to first discuss the RW
Rouse model. Firstly, a RW can be described as a Gaussian chain. The
distribution of the end-to—end vector is Gaussian, as a result of the
central limit theorem. Identifying the Gaussian distribution with the
Boltzmann factor, this corresponds to an effective harmonic Hamil-
tonian. The Gaussian distribution must also hold for subchains, for
reasons of self-similarity, and even down to the scale of the so—called
Kuhn segments (the shortest subchain for which such a description
makes sense). If b is the root mean square length of the segments, and
the chain is composed of N segments, then the effective Hamiltonian
in d dimensions is

N-1

B =5 3 (Fap1 —)>. (16)

n=0

The spatial dimensions are thus statistically independent, and the
Hamiltonian of each dimension is obviously mathematically identical
to the one-dimensional Gaussian model at criticality. The Rouse model
also assumes an overdamped dynamics, and hence the equation of
motion is identical to Eq. 7. For this reason (see above), the longest
relaxation time scales as 7 o N? o< R*.

Starting from the RW Rouse model, one can introduce various mod-
ifications, which all give different dynamic universality classes: (i) The
inclusion of hydrodynamic interactions (see contribution by A. Ladd)
yields the so—called Zimm model, which shall not be discussed further
at this point (see Ref. [3]); (ii) taking into account the EV effect, one
arrives at the SAW Rouse model; (iii) taking into account the tempo-
rary topological constraints (“entanglements”) for dense systems, one
obtains the reptation model [2, 3].

For the SAW Rouse model we observe that the chain conformations
should relax on the same time scale as is needed for translational motion
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on the scale of the coil size. Thus, if D is the translational diffusion
coefficient of the chain, then D7 o« R? o N?”. However, in the Rouse
model the friction coefficients of the segments just add up, and hence
D o 1/N. For these reasons, 7 o N1*2v.

In the reptation model, it is assumed that the topological constraints
enforce a motion which is essentially curvilinear on time scales below
7, with a curvilinear diffusion coefficient D¢y, o< 1/N (as in the Rouse
model). The path which must be followed until a new conformation
is attained is proportional to N, and hence D.yq,7 o< N%. Combining
these results, we find 7 oc N3.

Thus, in all cases we find an unfavorable power law dependence
of the relaxation time vs. N, if the slow physical dynamics is fol-
lowed. Polymers can therefore be considered as prototypical examples
of critical slowing down. Hence, the general approaches outlined in
the previous sections should work for polymers, too. Indeed, for 2d
SAWs the author has shown that the strategy of Fourier acceleration
is applicable [4]. There is however quite a number of algorithms which
specifically exploit the chain structure and are more efficient. A few of
these shall be presented below; the reader should note that this is just
a small selection which by far does not cover the field exhaustively.

5.2. ALGORITHMS FOR SINGLE CHAINS

The simplest approach to sample the conformation statistics of a SAW
would be to take a chain and move it through its conformation space
by local updates. This, however, corresponds to slow Rouse dynamics
(1 o< N'2), and hence the range of accessible chain lengths is lim-
ited. Alternatives are to either generate new conformations completely
“from scratch” (static methods), or to move the chain in a non-local
fashion. We will only give a brief sketch; for a much more comprehensive
overview the reader is referred to the review by Sokal [13]. Let us first
discuss the static methods.

It is immediately obvious that “simple sampling” (i. e. “blind” gen-
eration of a RW, which is discarded whenever there is an overlap)
cannot work. Indeed, the acceptance probability is given by pgec =
Zsaw /Zrw o« N7~!exp(—const.N) and hence exceedingly small for all
but very short chains. In contrast, the dimerization algorithm [13, 14]
is based on a recursive buildup: A SAW of length N = 2M is generated
by concatenating two SAWs of length M, i. e. chains for which non-
overlap has been checked already before. In case of an overlap, both
subchains are discarded, and the procedure is attempted again. The
two subchains, in turn, are generated by precisely the same procedure
out of even shorter chains, and so forth.
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In order to estimate the efficiency of this scheme [13], we note that
the acceptance probability of the dimerization step is given by

ZSAW (N) M/NN'y—l
Pace = —=——————————= = cONSt. —m——
[Zsaw (N/2)]? p'N N2 =2

i. e. a weak power—law decay. From this, we can conclude the following
recursion formula for the CPU time to generate one walk:

= const. N~ 071 (17)

Tepu(N) = 2Tepy(N/2) const. N7 7L, (18)
From this, one shows by induction
Tepy(N) = const. N/(V) (19)
f(N) = 7 ; ! log, N + const..

This is a power law modified with a N¢* ¥ behavior, i. e., for very long
chains, more unfavorable than any of the dynamic methods, which scale
with pure power laws. However, the power law itself is only a moderate
increase in N. Furthermore, the prefactor of the log, N term in f(N)
is quite small, such that the logarithmic modification is felt only for
quite long chains. For these reasons, dimerization is a quite competitive
method for moderate chain lengths up to a few thousand.

Turning to the non-local dynamic methods, let us first consider
the simple “slithering—snake” algorithm [13, 15]. The trial move is to
randomly select an end monomer, to cut it off, and to attach it to
the other end with a random bond orientation. The EV interactions
control if this move is successful. In order to compare the scaling of
this algorithm with Rouse dynamics, we can estimate the relaxation
time 7 via Deyre™ o N2, as in reptation theory. However, the scaling
of D,y is now much more favorable: Firstly, one elementary move
shifts the chain by one unit, and secondly, the unit time is given by
performing N such elementary moves (note that in Rouse dynamics
the computer has to work on N monomers in order to move the chain
one time step ahead). Therefore, the mean square curvilinear displace-
ment in one time unit is of order N, such that Dgy., o< NT! For
these reasons, 7 o< N, i. e. the algorithm is by a factor of N2 more
efficient than Rouse dynamics. While this is less efficient than the pivot
algorithm (see below) for single chains, the slithering—snake algorithm
is an excellent choice for (moderately) dense systems, where exactly
the same scaling considerations apply. However, one has to take into
account that in a dense matrix the acceptance rate is rather small, such
that the scaling law is hampered by a rather unfavorable prefactor.

In the so—called “pivot algorithm” [13, 9, 10] a monomer (the “pivot”
monomer) and a rotation axis going through that monomer are selected
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at random, and either the “left” or the “right” tail attempts to rotate
by a random angle. This move is successful if permitted by the EV
interactions. In another variant, the rotation axis is defined as the line
going through two randomly selected monomers.

Let us try to analyze the efficiency of this method [13]. Neglecting
the correlations between the two tails of length L and N — L, we can
estimate the acceptance rate by assuming a concatenation:

_ Zsaw (N)
Zsaw (L) Zsaw (N — L)

Pace(L) = const. [Nz(1 — z)]”0~1 (20)

with z = L/N. Averaging over z yields pgec N~ ag in dimeriza-
tion. Empirically [13], one rather finds an N7 ~ N~ %!! law, but this
may perhaps not be the true asymptotic behavior.

The efficiency of the pivot algorithm is due to the fact that the large—
scale variables are decorrelated after a small number of steps, which
(at least in good approximation) does not depend on N. Unless special
tricks are applied [13], one step takes a CPU time of order N, and hence,
for comparison with Rouse dynamics, we should identify the unit time
with one (attempted) pivot step. Combining this consideration with
the acceptance rate, we find 7 o« NP for the correlation time, which
is very efficient. There is, however, a severe caveat: The consideration
applies only to large-scale variables, while a full decorrelation will only
have taken place if the conformations are also relaxed on small scales,
i. e. if, on average, each monomer has been visited once as a pivot.
This deteriorates the efficiency by another power of N, resulting in
7 o< NP For these reasons, it is often advisable to combine the pivot
algorithm with a local Rouse-type dynamics in a hybrid scheme.

5.3. ALGORITHMS FOR DENSE SYSTEMS

In the previous subsection, we have already mentioned the slithering—
snake algorithm as an efficient method for dense systems, which is
however hampered by a small prefactor. Another (in principle rather
old) strategy is to alter the connectivity, i. e. to cut the chains into
pieces, and re—connect them in a different way. The most recent versions
of these algorithms, with special emphasis on applicability to models
with detailed atomistic structure, have been developed by the group
of Theodorou and co—workers under the names “end bridging” [11]
and “double bridging” [8]. In what follows, we shall attempt to briefly
discuss these methods, in a simplified version which disregards the
atomistic structure and would be applicable to highly flexible chains.
The end-bridging algorithm randomly selects a monomer at the
end of a chain, plus two other monomers (usually not at some chain
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end) which are (i) directly connected with each other, (ii) close to the
end monomer, and (iii) not directly connected with the end monomer.
Usually, this pair of monomers will reside on a different chain, but
this condition is not necessary. As an attempted Monte Carlo move,
this pair is broken, and the end monomer is connected to one of the
now free monomers. Care must be taken that the acceptance criterion
satisfies the condition of detailed balance (the reaction paths in both
directions must be considered explicitly), but this can be done in a
straightforward way with some book—keeping. These updates must be
combined with some conventional Molecular Dynamics or Monte Carlo
moves, since otherwise the monomers would always keep their positions.

The biggest disadvantage of this algorithm is that it does not con-
serve the chain length distribution, which is rather a result of the
algorithm itself. Usually, the procedure is adjusted in order to keep the
distribution reasonably narrow. However, it is impossible to simulate a
strictly monodisperse system where only one chain length occurs.

Empirically it has been found that this method is very efficient,
but this question has not yet been studied systematically in terms of
scaling laws. In what follows, we will attempt this analysis; however,
the presented results should be viewed as tentative. We assume that
the main relaxation mechanism is the diffusion of the “hot spots”,
which are moved by roughly one monomer unit within one elemen-
tary update. Such an update can be viewed as a complete Monte
Carlo or Molecular Dynamics cycle throughout the system (to move
the monomers), followed by end-bridging attempts wherever they are
possible. As the density of “hot spots” is of order 1/N, the CPU effort
of the latter updates can be completely neglected in the long—chain
limit. We now envision the “hot spots” as random walkers which scan
the system, and assume that the system is relaxed if every monomer has
been visited once. Now, three—dimensional random walks have only few
overlaps with each other, and also only few self-overlaps. It is therefore
reasonable to assume that the whole system has been visited after a
time of order N. We thus conclude 7 < N, as for the slithering—snake
algorithm.

In the double-bridging algorithm, the same idea is applied, but the
disadvantage of a polydisperse system is removed. Again, the algorithm
selects a pair of connected monomers (say, ¢ — j). Instead of a reaction
with a nearby end monomer k as in end-bridging, it here attempts a
reaction with another connected pair (k — ) located nearby. This other
pair must not be directly connected to i — 7. Now, a new connectiv-
ity is attempted (either 4 — k and j — [ or 4 — [ and j — k). This is
always rejected whenever a chain with length # N would be created;
otherwise the condition of detailed balance must be taken into account.
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By construction, monodispersity is conserved. This results either in a
rearrangement within one chain, or in an exchange of the tails of two
chains.

Again, the scaling behavior of the algorithm is not yet known, and
we shall tentatively attempt it here. Obviously, the relaxation is again
governed by the “hot spots” (i. e. the local regions where the move can
be successful) and their density, but here we have to distinguish between
intra—chain and inter—chain contributions. The inter—chain density is
proportional to 1/N, as one can see from the following consideration:
For a given bond 7 — 5, we can move a neighboring chain with a
slithering—snake motion until the condition of tail length fits. From
this we see that the probability of a fitting tail length is proportional to
1/N. For the intra—chain density the length condition is automatically
satisfied, and hence it is controlled by the probability of self-overlap
of a RW, which, in three dimensions, is proportional to N—1/2 (the
density of a RW is proportional to N/R? oc N/N3/2 = N~1/2). The
intra—chain density of “hot spots” is therefore proportional to N~'/2,
i. e. much larger than the inter—chain density. Nevertheless, one cannot
expect that the intra—chain moves are able to relax the system fully; this
is rather accomplished by the slower inter—chain mechanism. Moreover,
in the double-bridging case the “hot spots” are neither conserved nor
continuously moving in space, and therefore a diffusion picture does
not apply. They are rather created and destroyed at a certain constant
rate. Again assuming that the system is relaxed when every monomer
has been at a “hot spot”, we arrive at 7 o« N/r, where r is the creation
/ destruction rate, and the factor N takes into account the 1/N scaling
of the “hot spot” density. Assuming that the rate r is independent of
chain length N, one would again arrive at 7 oc N.

However, this latter assumption may be overly optimistic [5]. One
has to take into account that 7 is actually given by the mean time that
a given bond 7 — j needs to find a reaction partner, and this is governed
by the monomer motion. In three dimensions the monomers have to
travel a typical distance of order N'/3 (the mean distance between
“hot spots”, as one concludes from the density). If we now assume
that the changing of the connectivity does eliminate the reptation—like
slowing down, but keeps the Rouse-like slowing down (neither of these
assumptions is completely obvious), then the time would be given by
T x N4/3 (note that in Rouse dynamics, the mean square displace-
ment of a monomer scales as t'/? [3], resulting in 7/* o« N/3). So
this scaling argument indeed produces some slowing down compared
to the end-bridging case, which is expected to a certain extent, in
view of the monodispersity constraint which is absent for end-bridging.
Nevertheless, the definitive resolution of the question of the scaling of
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these algorithms will probably have to wait until accurate data on the
performance have been produced.
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