
Aelerated Algorithms 2B. D�unwegMax Plank Institute for Polymer ResearhAkermannweg 10D{55128 MainzGermanyAbstrat. The problem of ritial slowing down is the appearane of a verylong (diverging) orrelation time assoiated with a orresponding appearane ofa diverging orrelation length. This is eluidated by a trivially solvable model,the one{dimensional Gaussian model. The general strategy to �ght this e�et,in order to sample phase spae more eÆiently, is to update large length saleswith arti�ially high rates. This approah is exempli�ed by the methods of Fourieraeleration, and multigrid simulations. For polymer hains, the long orrelationsarise diretly from the moleular onnetivity. Some Monte Carlo algorithms whihattak this problem again by non{loal moves (dimerization, pivot, slithering snake,onnetivity{altering methods) are presented.1. The Problem: Critial Slowing DownCritial slowing down always ours when a physial system exhibitsobjets whih, in some sense, an be alled \ritial lusters". Thisterminology stems from the theory of ritial phenomena; however,the appliability of the onepts and algorithms to be disussed in thishapter goes beyond standard seond{order phase transitions. A ritialluster is a large orrelated objet of typial size � (the orrelationlength), whih an be made arbitrarily large by means of some ontrolparameter. Typial examples are magneti lusters in a spin model(where the ontrol parameter is the temperature distane from theritial point), perolation lusters (whose size is ontrolled by the o-upation fration), polymer hains and tethered membranes (ontrolledby the degree of polymerization). Furthermore, the objets typiallydo not have a well{de�ned shape, but are rather rami�ed fratals, andexhibit very many on�gurations, whih are all easily aessible as thetypial energy to hange (or reate / delete) the objet is, at most, oforder of the thermal exitation energy kBT .Suh inherently soft objets are also inherently slow: The physialdynamis is usually loal, whih means that the objet an only be re{arranged if the information about suh hanges has spread throughoutit, and this takes the more time the larger � is. For the \lassial" aseof di�usive dynamis, this implies the saling law � / �2, where � is theorrelation time whih is needed to ompletely re{arrange the objet. 2003 Kluwer Aademi Publishers. Printed in the Netherlands.
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2 B. D�unwegTaking non{di�usive dynamis and the fratal geometry into aount,one rather has the more general law � / �z where z is the dynamialexponent. A power law should hold sine the system exhibits only tworelevant length sales (the orrelation length � and the lower lengthsale uto� a, like the lattie spaing or the partile size), and similarlyonly two relevant time sales (� and the mirosopi time related to a),while the behavior in between should be sale{invariant. An overviewover the various ases of dynami ritial phenomena at seond{orderphase transitions an be found in the review artile by Halperin andHohenberg [7℄.The large value of z of ourse poses a problem to omputer simula-tions, sine the orrelation time determines the statistial auray ofa simulation (see ontribution by A. Milhev). If one is only interestedin stati properties, one would therefore like to move the system in anunphysial way through its on�guration spae, and to \beat" ritialslowing down by deliberately violating the ondition of loality suhthat information may spread more quikly. The present leture intendsto outline a few of suh strategies for some systems, without attemptingto over the topi thoroughly or omprehensively. It should be notedthat ritial slowing down is only one mehanism of slowing down whihplagues simulations; others are equally important and are disussed inother parts of the shool (for \hydrodynami slowing down" and itselimination by hoie of a suitable ensemble, see ontributions by K.Binder and N. Wilding; for dealing with low{temperature exitationsin disrete systems, see ontribution by M. Novotny; for dealing withativation barriers, see ontributions by N. Wilding and W. Janke).In order to understand the strategies to devise algorithms againstritial slowing down, let us �rst disuss the simplest model whihexhibits this phenomenon, and whih is atually exatly solvable.2. The Gaussian ModelWe start out from the well{known Landau{Ginzburg{Wilson (LGW)Hamiltonian for the Ising universality lass:H = Z dd~x �12 jr�j2 + r2�2 + u4!�4� : (1)This is the simplest model for a system with a salar order parameter� exhibiting a seond{order transition. All three terms are essential:The terms �2 and �4 desribe the ompetition between order (� 6= 0)and disorder (� = 0). In the Mean Field piture, only these terms areonsidered. While u is onstant, r is varied and orresponds to the
bduenweg2.tex; 27/01/2003; 20:00; p.2



Aelerated Algorithms 2 3distane from the ritial point: For r > 0, � = 0 is stabilized, whilefor r < 0 the ordered phase prevails. This piture, however, laks anyspatial struture, i. e. the tendeny of near neighbors to order in thesame way. This last property is built in via the �rst term, whih makesinterfaes energetially unfavorable.From there, we go to the Gaussian model by omitting the �4 term.We thus obtain a quadrati Hamiltonian whih is exatly solvable. Ofourse, the model only makes sense in the disordered phase r > 0; thestabilization of the ordered phase is not desribed. For simpliity, wespeialize on the one{dimensional ase, and study the lattie disretizedversion: �H = 12 L�1Xn=0 h(�n+1 � �n)2 + r�2ni ; (2)where L is the number of sites, � = 1=(kBT ), with T the absolute tem-perature and kB Boltzmann's onstant. An appropriate re{de�nition ofthe units of � is implied, and periodi boundary onditions are assumed.The statis is trivially solved by the introdution of Fourier modes viaa unitary transformation whih diagonalizes H:~�p = 1pL L�1Xn=0 �n exp�2�iL pn� (3)�n = 1pL L�1Xp=0 ~�p exp��2�iL pn� (4)�H = 12 L�1Xp=0 �4 sin2 �p�L �+ r� ���~�p���2 : (5)The equipartition theorem then tells us that����~�p���2� = 14 sin2 �p�L �+ r � 14 �p�L �2 + r ; (6)whih is the well{known Ornstein{Zernike orrelation funtion inFourier spae. The last approximation has been made for long{wavelength modes p! 0. From this, we an diretly read o� ��2 / r,implying the Mean Field value 1=2 for the ritial exponent �. Fur-thermore, the overall mean square utuation of the order parameter,whih is proportional to the suseptibility, is obtained as the p = 0mode, for whih we an read o� ����~�0���2� = r�1 or  = 1 for the MeanField suseptibility exponent.
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4 B. D�unwegTurning to the dynamis, we assume the Langevin equation ofmotion (see also the other ontribution by the author)ddt�i = � 1�m ��H��i + fi (7)with hfii = 0 
fi(t)fj(t0)� = 2 1�m ÆijÆ(t � t0); (8)and �m denoting an elementary loal (\mirosopi") time sale. Thisis the generi equation of motion for overdamped loal dynamis withnon{onserved order parameter (so{alled \model A" dynamis [7℄), asit orresponds, for example, to a simple single{spin ip Monte Carloalgorithm on a somewhat oarse{grained length and time sale. As thethermodynami fore is just linear in the order parameter, the equationof motion is also diagonalized by introdution of the Fourier modes:ddt ~�p = � 1�m ��H� ~�?p + fp (9)where the noise ating on mode p does not only vanish on average,hfpi = 0, but is even unorrelated to the noise ating on other modes:Dfp(t)f?q (t0)E = 2 1�m ÆpqÆ(t� t0): (10)Hene, the modes deay independently,ddt ~�p = � 1�p ~�p + fp (11)suh that the orrelation funtion D~�?p(0)~�p(t)E is just an exponentialwith orrelation time �p = �m4 sin2 �p�L �+ r : (12)From this, we an read o� z = 2 in the long{wavelength limit p ! 0via two equivalent onsiderations: Either we study the relaxation of theoverall order parameter p = 0 o� ritially, resulting in �0 / r�1 / �2,or we study the nonzero modes at ritiality r = 0, resulting in �p /p�2 / �2p, where �p is the wavelength assoiated with mode p.The important point about this exerise is that it gives us a roughunderstanding how ritial slowing down omes about, even when weonsider non{trivial models, whih require simulation. The system be-omes inreasingly soft, the larger the length sale under onsideration
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Aelerated Algorithms 2 5is. This is expressed by the dereasing thermodynami fore as p! 0.Correspondingly, it also beomes inreasingly sluggish, as one sees fromthe inrease of � for p! 0.3. Fourier AelerationThe idea of Fourier aeleration [1℄ is easy to understand, based on theonsiderations of the previous setion. We start from a system whihis desribed by a �eld{theoreti LGW Hamiltonian, and simulate thisdiretly on a lattie, by solving the Langevin equation of motion, Eq.7, for its non{trivial Hamiltonian, using the methods outlined in theother ontribution by the author. Suppose we would instead run thisin Fourier spae. Then we would have to solve Eq. 9 instead. However,for a non{trivial Hamiltonian the interation in Fourier spae is long{ranged, and umbersome to evaluate. It is therefore muh easier torather evaluate the fores in real spae, and Fourier transform these,to give the fores on the modes. We thus arrive at a sheme where westart from a �eld on�guration in real spae, evaluate the fores there,then Fourier transform both the �elds and the fores, then update the�elds in Fourier spae, and afterwards Fourier transform the new �eldsbak into real spae. For a non{ritial system, there would howeverbe no point in doing so; one would only introdue superuous opera-tions. But for a ritial system we an exploit the previously explainedsluggishness for p ! 0 by noting that the neessary time step of aLangevin update is governed by the intrinsi time sale assoiated withthat kind of motion. We hene introdue a multipliity of time stepsand update those modes whih have a long wavelength with a largetime step hp, and ideally adjust hp in suh a way that hp / �p. Forthe Gaussian model, this proedure eliminates ritial slowing downompletely. For a non{trivial model, there remains some signi�antresidual slowing down. Here the modes are not ompletely deoupled,and the onept of a mode relaxation time is only approximately valid.It is often useful to ombine these Langevin updates with a Metropolisaeptane riterion in order to orret for disretization errors (\forebiased Monte Carlo", see also the other ontribution by the author).An important ingredient of suh simulations is to run lattie sizeswhih are a power of two. In this ase, the Fourier transformationan be done in a very eÆient way using the so{alled Fast FourierTransform (FFT), whose e�ort sales as L logL for system size L. Thisis a reursive divide{and{onquer method, by whih one (large) Fouriertransformation is mapped onto two transformations of half the size, et.For further details, see textbooks on numerial analysis [12℄.
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6 B. D�unweg4. Multigrid Monte CarloThis approah is rather similar in spirit. We again study a Hamiltonianin terms of ontinuous variables (a lattie{disretized �eld theory),and again on�ne ourselves to a rough sketh of the method, as alsoexplained in the original literature [6℄. For simpliity, let us again lookat the one{dimensional LGW Hamiltonian,�H = L�1Xn=0 �12 (�n+1 � �n)2 + 12r�2n + 14!u�4n� : (13)Quite similar to the idea of real{spae renormalization, we introduea \bloking" transformation by subdividing the lattie into identialbloks, eah of whih omprises a ertain set of sites. On eah of thesebloks, we introdue blok variables  just as the arithmeti mean ofthe original variables �. In our example, where the bloks are just pairsof onseutive sites, we have M = L=2 variables  n = (�2n+�2n+1)=2.Furthermore, we introdue utuation variables � in eah blok. Thepreise form is not partiularly important; what we require is that the� variables should be linear ombinations of the original � variables inthe blok, and that they, together with the  variable, determine the� variables in the blok uniquely (if the blok omprises k sites, thenwe have k� 1 � variables per blok). In our one{dimensional example,a onvenient hoie is �n = (�2n � �2n+1)=2, and the Hamiltonian interms of the new variables is�H = M�1Xn=0 "12 ( n+1 �  n)2 + hn(f�ig) n (14)+ 12rn(f�ig) 2n + 13!gn(f�ig) 3n + 14!(2u) 4n#+ �H0(f�ig);where we have foused on the  dependene. The dependene on the �variables omes through a purely additive term, and the new ouplingparameters hn, rn, gn, whose preise form is of ourse important forthe atual implementation, but not for the spirit of the method. It ishowever very important that the new Hamiltonian is again a fourth{order polynomial, and that the range of interation in terms of bloksdoes not exeed the nearest neighbors. These properties remain true ifone goes to higher dimensions, and if one iterates the transformation(as in the renormalization group). In ontrast to renormalization{groupalulations, however, no attempt is being made to integrate out theutuation variables (for any interesting Hamiltonian, this ould be
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Aelerated Algorithms 2 7done only approximately). The utuation variables are rather kept,and the transformation is used to update the  variables at an unphys-ially high rate. One thus arrives at a reursive hierarhy of systems,eah of whih is deomposed into blok variables and utuation vari-ables, and where the blok variables of a ertain level are the \raw"variables at the next level, suh that the number of degrees of freedomin eah level beomes less and less. It is useful to view these systemsas separate, suh that eah has its own region of memory assigned, inwhih all of its variables �,  , and �, as well as the ouplings, are stored.Together, the algorithm hene involves an \up" step (orrespondingto \oarse{graining"), and a \down" step (orresponding to \�ne{graining"). There are various ways how to jump bak and forth betweenthe levels, and we shall not disuss these here in detail. The \up" stepworks as follows: Suppose that at a ertain level the � variables and theouplings are given. From these, one alulates the utuation variables,plus the blok variables and the new ouplings. The latter two variablesare stored at the system one level higher. Then some standard MonteCarlo proedure is applied on the latter system, suh that, in e�et,only the blok variables are updated, while the utuation variablesare kept onstant. The orresponding \down" step then onsists of thetransformation bak, suh that the � variables at the lower level areobtained from the (old) � variables of the lower level, and the (new)� variables of the higher level, whih are the blok ( ) variables ofthe lower level. This is followed by a standard Monte Carlo proedureapplied to the lower level. The speedup is essentially due to the fatthat rather large moves through phase spae are failitated by updatinga omparatively small number of degrees of freedom.5. Polymer Algorithms5.1. Polymer Physis: Some BasisIn this subsetion, we wish to briey summarize some important salinglaws in polymer physis [2, 3℄, whih are of diret importane for theonstrution of eÆient simulation algorithms.Usually, a polymer hain is desribed as a self{similar random fra-tal haraterized by the law R / N� , where R is the typial size(e. g. the gyration radius or the end{to{end distane), and N is thenumber of monomers within the hain, or the degree of polymeriza-tion. For a single hain immersed in a good solvent, � has the value� 0:59 in three dimensions. This is larger than the random{walk (RW)value 1=2, due to the swelling resulting from the exluded{volume
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8 B. D�unweg(EV) interation. � � 0:59 thus orresponds to the statistis of so{alled \self{avoiding walks" (SAWs). In a dense melt, however, the EVinteration is sreened; here we rather have RW statistis.Furthermore, it is interesting to ask how many onformations areavailable to the hain. For RW statistis, this number is just Z = �N ,where � an be onsidered as an e�etive oordination number of alattie hain. For SAW statistis, it an be shown that [2℄ZSAW = A�0NN�1; (15)where (if onsidering the same lattie) �0 is smaller than �, and theexponent  has a universal value whih depends only on the spatialdimension ( � 1:16 in three dimensions).Turning to the dynamis, it is instrutive to �rst disuss the RWRouse model. Firstly, a RW an be desribed as a Gaussian hain. Thedistribution of the end{to{end vetor is Gaussian, as a result of theentral limit theorem. Identifying the Gaussian distribution with theBoltzmann fator, this orresponds to an e�etive harmoni Hamil-tonian. The Gaussian distribution must also hold for subhains, forreasons of self{similarity, and even down to the sale of the so{alledKuhn segments (the shortest subhain for whih suh a desriptionmakes sense). If b is the root mean square length of the segments, andthe hain is omposed of N segments, then the e�etive Hamiltonianin d dimensions is �H = d2b2 N�1Xn=0 (~rn+1 � ~rn)2 : (16)The spatial dimensions are thus statistially independent, and theHamiltonian of eah dimension is obviously mathematially identialto the one{dimensional Gaussian model at ritiality. The Rouse modelalso assumes an overdamped dynamis, and hene the equation ofmotion is idential to Eq. 7. For this reason (see above), the longestrelaxation time sales as � / N2 / R4.Starting from the RW Rouse model, one an introdue various mod-i�ations, whih all give di�erent dynami universality lasses: (i) Theinlusion of hydrodynami interations (see ontribution by A. Ladd)yields the so{alled Zimm model, whih shall not be disussed furtherat this point (see Ref. [3℄); (ii) taking into aount the EV e�et, onearrives at the SAW Rouse model; (iii) taking into aount the tempo-rary topologial onstraints (\entanglements") for dense systems, oneobtains the reptation model [2, 3℄.For the SAW Rouse model we observe that the hain onformationsshould relax on the same time sale as is needed for translational motion
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Aelerated Algorithms 2 9on the sale of the oil size. Thus, if D is the translational di�usionoeÆient of the hain, then D� / R2 / N2� . However, in the Rousemodel the frition oeÆients of the segments just add up, and heneD / 1=N . For these reasons, � / N1+2� .In the reptation model, it is assumed that the topologial onstraintsenfore a motion whih is essentially urvilinear on time sales below� , with a urvilinear di�usion oeÆient Durv / 1=N (as in the Rousemodel). The path whih must be followed until a new onformationis attained is proportional to N , and hene Durv� / N2. Combiningthese results, we �nd � / N3.Thus, in all ases we �nd an unfavorable power law dependeneof the relaxation time vs. N , if the slow physial dynamis is fol-lowed. Polymers an therefore be onsidered as prototypial examplesof ritial slowing down. Hene, the general approahes outlined inthe previous setions should work for polymers, too. Indeed, for 2dSAWs the author has shown that the strategy of Fourier aelerationis appliable [4℄. There is however quite a number of algorithms whihspei�ally exploit the hain struture and are more eÆient. A few ofthese shall be presented below; the reader should note that this is justa small seletion whih by far does not over the �eld exhaustively.5.2. Algorithms for Single ChainsThe simplest approah to sample the onformation statistis of a SAWwould be to take a hain and move it through its onformation spaeby loal updates. This, however, orresponds to slow Rouse dynamis(� / N1+2�), and hene the range of aessible hain lengths is lim-ited. Alternatives are to either generate new onformations ompletely\from srath" (stati methods), or to move the hain in a non{loalfashion. We will only give a brief sketh; for a muh more omprehensiveoverview the reader is referred to the review by Sokal [13℄. Let us �rstdisuss the stati methods.It is immediately obvious that \simple sampling" (i. e. \blind" gen-eration of a RW, whih is disarded whenever there is an overlap)annot work. Indeed, the aeptane probability is given by pa =ZSAW=ZRW / N�1 exp(�onst.N) and hene exeedingly small for allbut very short hains. In ontrast, the dimerization algorithm [13, 14℄is based on a reursive buildup: A SAW of length N = 2M is generatedby onatenating two SAWs of length M , i. e. hains for whih non{overlap has been heked already before. In ase of an overlap, bothsubhains are disarded, and the proedure is attempted again. Thetwo subhains, in turn, are generated by preisely the same proedureout of even shorter hains, and so forth.
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10 B. D�unwegIn order to estimate the eÆieny of this sheme [13℄, we note thatthe aeptane probability of the dimerization step is given bypa = ZSAW (N)[ZSAW (N=2)℄2 = onst. �0NN�1�0NN2�2 = onst.N�(�1); (17)i. e. a weak power{law deay. From this, we an onlude the followingreursion formula for the CPU time to generate one walk:TCPU (N) = 2TCPU (N=2) onst.N�1: (18)From this, one shows by indutionTCPU(N) = onst.Nf(N) (19)f(N) =  � 12 log2N + onst.:This is a power law modi�ed with a N  lnN behavior, i. e., for very longhains, more unfavorable than any of the dynami methods, whih salewith pure power laws. However, the power law itself is only a moderateinrease in N . Furthermore, the prefator of the log2N term in f(N)is quite small, suh that the logarithmi modi�ation is felt only forquite long hains. For these reasons, dimerization is a quite ompetitivemethod for moderate hain lengths up to a few thousand.Turning to the non{loal dynami methods, let us �rst onsiderthe simple \slithering{snake" algorithm [13, 15℄. The trial move is torandomly selet an end monomer, to ut it o�, and to attah it tothe other end with a random bond orientation. The EV interationsontrol if this move is suessful. In order to ompare the saling ofthis algorithm with Rouse dynamis, we an estimate the relaxationtime � via Durv� / N2, as in reptation theory. However, the salingof Durv is now muh more favorable: Firstly, one elementary moveshifts the hain by one unit, and seondly, the unit time is given byperforming N suh elementary moves (note that in Rouse dynamisthe omputer has to work on N monomers in order to move the hainone time step ahead). Therefore, the mean square urvilinear displae-ment in one time unit is of order N , suh that Durv / N+1! Forthese reasons, � / N , i. e. the algorithm is by a fator of N2� moreeÆient than Rouse dynamis. While this is less eÆient than the pivotalgorithm (see below) for single hains, the slithering{snake algorithmis an exellent hoie for (moderately) dense systems, where exatlythe same saling onsiderations apply. However, one has to take intoaount that in a dense matrix the aeptane rate is rather small, suhthat the saling law is hampered by a rather unfavorable prefator.In the so{alled \pivot algorithm" [13, 9, 10℄ a monomer (the \pivot"monomer) and a rotation axis going through that monomer are seleted
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Aelerated Algorithms 2 11at random, and either the \left" or the \right" tail attempts to rotateby a random angle. This move is suessful if permitted by the EVinterations. In another variant, the rotation axis is de�ned as the linegoing through two randomly seleted monomers.Let us try to analyze the eÆieny of this method [13℄. Negletingthe orrelations between the two tails of length L and N � L, we anestimate the aeptane rate by assuming a onatenation:pa(L) = ZSAW (N)ZSAW (L)ZSAW (N � L) = onst. [Nx(1� x)℄�(�1) (20)with x = L=N . Averaging over x yields pa / N�(�1), as in dimeriza-tion. Empirially [13℄, one rather �nds an N�p � N�0:11 law, but thismay perhaps not be the true asymptoti behavior.The eÆieny of the pivot algorithm is due to the fat that the large{sale variables are deorrelated after a small number of steps, whih(at least in good approximation) does not depend on N . Unless speialtriks are applied [13℄, one step takes a CPU time of orderN , and hene,for omparison with Rouse dynamis, we should identify the unit timewith one (attempted) pivot step. Combining this onsideration withthe aeptane rate, we �nd � / Np for the orrelation time, whihis very eÆient. There is, however, a severe aveat: The onsiderationapplies only to large{sale variables, while a full deorrelation will onlyhave taken plae if the onformations are also relaxed on small sales,i. e. if, on average, eah monomer has been visited one as a pivot.This deteriorates the eÆieny by another power of N , resulting in� / N1+p. For these reasons, it is often advisable to ombine the pivotalgorithm with a loal Rouse{type dynamis in a hybrid sheme.5.3. Algorithms for Dense SystemsIn the previous subsetion, we have already mentioned the slithering{snake algorithm as an eÆient method for dense systems, whih ishowever hampered by a small prefator. Another (in priniple ratherold) strategy is to alter the onnetivity, i. e. to ut the hains intopiees, and re{onnet them in a di�erent way. The most reent versionsof these algorithms, with speial emphasis on appliability to modelswith detailed atomisti struture, have been developed by the groupof Theodorou and o{workers under the names \end bridging" [11℄and \double bridging" [8℄. In what follows, we shall attempt to brieydisuss these methods, in a simpli�ed version whih disregards theatomisti struture and would be appliable to highly exible hains.The end{bridging algorithm randomly selets a monomer at theend of a hain, plus two other monomers (usually not at some hain
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12 B. D�unwegend) whih are (i) diretly onneted with eah other, (ii) lose to theend monomer, and (iii) not diretly onneted with the end monomer.Usually, this pair of monomers will reside on a di�erent hain, butthis ondition is not neessary. As an attempted Monte Carlo move,this pair is broken, and the end monomer is onneted to one of thenow free monomers. Care must be taken that the aeptane riterionsatis�es the ondition of detailed balane (the reation paths in bothdiretions must be onsidered expliitly), but this an be done in astraightforward way with some book{keeping. These updates must beombined with some onventional Moleular Dynamis or Monte Carlomoves, sine otherwise the monomers would always keep their positions.The biggest disadvantage of this algorithm is that it does not on-serve the hain length distribution, whih is rather a result of thealgorithm itself. Usually, the proedure is adjusted in order to keep thedistribution reasonably narrow. However, it is impossible to simulate astritly monodisperse system where only one hain length ours.Empirially it has been found that this method is very eÆient,but this question has not yet been studied systematially in terms ofsaling laws. In what follows, we will attempt this analysis; however,the presented results should be viewed as tentative. We assume thatthe main relaxation mehanism is the di�usion of the \hot spots",whih are moved by roughly one monomer unit within one elemen-tary update. Suh an update an be viewed as a omplete MonteCarlo or Moleular Dynamis yle throughout the system (to movethe monomers), followed by end{bridging attempts wherever they arepossible. As the density of \hot spots" is of order 1=N , the CPU e�ortof the latter updates an be ompletely negleted in the long{hainlimit. We now envision the \hot spots" as random walkers whih santhe system, and assume that the system is relaxed if every monomer hasbeen visited one. Now, three{dimensional random walks have only fewoverlaps with eah other, and also only few self{overlaps. It is thereforereasonable to assume that the whole system has been visited after atime of order N . We thus onlude � / N , as for the slithering{snakealgorithm.In the double{bridging algorithm, the same idea is applied, but thedisadvantage of a polydisperse system is removed. Again, the algorithmselets a pair of onneted monomers (say, i� j). Instead of a reationwith a nearby end monomer k as in end{bridging, it here attempts areation with another onneted pair (k� l) loated nearby. This otherpair must not be diretly onneted to i � j. Now, a new onnetiv-ity is attempted (either i � k and j � l or i � l and j � k). This isalways rejeted whenever a hain with length 6= N would be reated;otherwise the ondition of detailed balane must be taken into aount.
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Aelerated Algorithms 2 13By onstrution, monodispersity is onserved. This results either in arearrangement within one hain, or in an exhange of the tails of twohains.Again, the saling behavior of the algorithm is not yet known, andwe shall tentatively attempt it here. Obviously, the relaxation is againgoverned by the \hot spots" (i. e. the loal regions where the move anbe suessful) and their density, but here we have to distinguish betweenintra{hain and inter{hain ontributions. The inter{hain density isproportional to 1=N , as one an see from the following onsideration:For a given bond i � j, we an move a neighboring hain with aslithering{snake motion until the ondition of tail length �ts. Fromthis we see that the probability of a �tting tail length is proportional to1=N . For the intra{hain density the length ondition is automatiallysatis�ed, and hene it is ontrolled by the probability of self{overlapof a RW, whih, in three dimensions, is proportional to N�1=2 (thedensity of a RW is proportional to N=R3 / N=N3=2 = N�1=2). Theintra{hain density of \hot spots" is therefore proportional to N�1=2,i. e. muh larger than the inter{hain density. Nevertheless, one annotexpet that the intra{hain moves are able to relax the system fully; thisis rather aomplished by the slower inter{hain mehanism. Moreover,in the double{bridging ase the \hot spots" are neither onserved norontinuously moving in spae, and therefore a di�usion piture doesnot apply. They are rather reated and destroyed at a ertain onstantrate. Again assuming that the system is relaxed when every monomerhas been at a \hot spot", we arrive at � / N=r, where r is the reation/ destrution rate, and the fator N takes into aount the 1=N salingof the \hot spot" density. Assuming that the rate r is independent ofhain length N , one would again arrive at � / N .However, this latter assumption may be overly optimisti [5℄. Onehas to take into aount that � is atually given by the mean time thata given bond i�j needs to �nd a reation partner, and this is governedby the monomer motion. In three dimensions the monomers have totravel a typial distane of order N1=3 (the mean distane between\hot spots", as one onludes from the density). If we now assumethat the hanging of the onnetivity does eliminate the reptation{likeslowing down, but keeps the Rouse{like slowing down (neither of theseassumptions is ompletely obvious), then the time would be given by� / N4=3 (note that in Rouse dynamis, the mean square displae-ment of a monomer sales as t1=2 [3℄, resulting in �1=4 / N1=3). Sothis saling argument indeed produes some slowing down omparedto the end{bridging ase, whih is expeted to a ertain extent, inview of the monodispersity onstraint whih is absent for end{bridging.Nevertheless, the de�nitive resolution of the question of the saling of
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