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hA
kermannweg 10D{55128 MainzGermanyAbstra
t. The problem of 
riti
al slowing down is the appearan
e of a verylong (diverging) 
orrelation time asso
iated with a 
orresponding appearan
e ofa diverging 
orrelation length. This is elu
idated by a trivially solvable model,the one{dimensional Gaussian model. The general strategy to �ght this e�e
t,in order to sample phase spa
e more eÆ
iently, is to update large length s
aleswith arti�
ially high rates. This approa
h is exempli�ed by the methods of Fouriera

eleration, and multigrid simulations. For polymer 
hains, the long 
orrelationsarise dire
tly from the mole
ular 
onne
tivity. Some Monte Carlo algorithms whi
hatta
k this problem again by non{lo
al moves (dimerization, pivot, slithering snake,
onne
tivity{altering methods) are presented.1. The Problem: Criti
al Slowing DownCriti
al slowing down always o

urs when a physi
al system exhibitsobje
ts whi
h, in some sense, 
an be 
alled \
riti
al 
lusters". Thisterminology stems from the theory of 
riti
al phenomena; however,the appli
ability of the 
on
epts and algorithms to be dis
ussed in this
hapter goes beyond standard se
ond{order phase transitions. A 
riti
al
luster is a large 
orrelated obje
t of typi
al size � (the 
orrelationlength), whi
h 
an be made arbitrarily large by means of some 
ontrolparameter. Typi
al examples are magneti
 
lusters in a spin model(where the 
ontrol parameter is the temperature distan
e from the
riti
al point), per
olation 
lusters (whose size is 
ontrolled by the o
-
upation fra
tion), polymer 
hains and tethered membranes (
ontrolledby the degree of polymerization). Furthermore, the obje
ts typi
allydo not have a well{de�ned shape, but are rather rami�ed fra
tals, andexhibit very many 
on�gurations, whi
h are all easily a

essible as thetypi
al energy to 
hange (or 
reate / delete) the obje
t is, at most, oforder of the thermal ex
itation energy kBT .Su
h inherently soft obje
ts are also inherently slow: The physi
aldynami
s is usually lo
al, whi
h means that the obje
t 
an only be re{arranged if the information about su
h 
hanges has spread throughoutit, and this takes the more time the larger � is. For the \
lassi
al" 
aseof di�usive dynami
s, this implies the s
aling law � / �2, where � is the
orrelation time whi
h is needed to 
ompletely re{arrange the obje
t.
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2 B. D�unwegTaking non{di�usive dynami
s and the fra
tal geometry into a

ount,one rather has the more general law � / �z where z is the dynami
alexponent. A power law should hold sin
e the system exhibits only tworelevant length s
ales (the 
orrelation length � and the lower lengths
ale 
uto� a, like the latti
e spa
ing or the parti
le size), and similarlyonly two relevant time s
ales (� and the mi
ros
opi
 time related to a),while the behavior in between should be s
ale{invariant. An overviewover the various 
ases of dynami
 
riti
al phenomena at se
ond{orderphase transitions 
an be found in the review arti
le by Halperin andHohenberg [7℄.The large value of z of 
ourse poses a problem to 
omputer simula-tions, sin
e the 
orrelation time determines the statisti
al a

ura
y ofa simulation (see 
ontribution by A. Mil
hev). If one is only interestedin stati
 properties, one would therefore like to move the system in anunphysi
al way through its 
on�guration spa
e, and to \beat" 
riti
alslowing down by deliberately violating the 
ondition of lo
ality su
hthat information may spread more qui
kly. The present le
ture intendsto outline a few of su
h strategies for some systems, without attemptingto 
over the topi
 thoroughly or 
omprehensively. It should be notedthat 
riti
al slowing down is only one me
hanism of slowing down whi
hplagues simulations; others are equally important and are dis
ussed inother parts of the s
hool (for \hydrodynami
 slowing down" and itselimination by 
hoi
e of a suitable ensemble, see 
ontributions by K.Binder and N. Wilding; for dealing with low{temperature ex
itationsin dis
rete systems, see 
ontribution by M. Novotny; for dealing witha
tivation barriers, see 
ontributions by N. Wilding and W. Janke).In order to understand the strategies to devise algorithms against
riti
al slowing down, let us �rst dis
uss the simplest model whi
hexhibits this phenomenon, and whi
h is a
tually exa
tly solvable.2. The Gaussian ModelWe start out from the well{known Landau{Ginzburg{Wilson (LGW)Hamiltonian for the Ising universality 
lass:H = Z dd~x �12 jr�j2 + r2�2 + u4!�4� : (1)This is the simplest model for a system with a s
alar order parameter� exhibiting a se
ond{order transition. All three terms are essential:The terms �2 and �4 des
ribe the 
ompetition between order (� 6= 0)and disorder (� = 0). In the Mean Field pi
ture, only these terms are
onsidered. While u is 
onstant, r is varied and 
orresponds to the
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A

elerated Algorithms 2 3distan
e from the 
riti
al point: For r > 0, � = 0 is stabilized, whilefor r < 0 the ordered phase prevails. This pi
ture, however, la
ks anyspatial stru
ture, i. e. the tenden
y of near neighbors to order in thesame way. This last property is built in via the �rst term, whi
h makesinterfa
es energeti
ally unfavorable.From there, we go to the Gaussian model by omitting the �4 term.We thus obtain a quadrati
 Hamiltonian whi
h is exa
tly solvable. Of
ourse, the model only makes sense in the disordered phase r > 0; thestabilization of the ordered phase is not des
ribed. For simpli
ity, wespe
ialize on the one{dimensional 
ase, and study the latti
e dis
retizedversion: �H = 12 L�1Xn=0 h(�n+1 � �n)2 + r�2ni ; (2)where L is the number of sites, � = 1=(kBT ), with T the absolute tem-perature and kB Boltzmann's 
onstant. An appropriate re{de�nition ofthe units of � is implied, and periodi
 boundary 
onditions are assumed.The stati
s is trivially solved by the introdu
tion of Fourier modes viaa unitary transformation whi
h diagonalizes H:~�p = 1pL L�1Xn=0 �n exp�2�iL pn� (3)�n = 1pL L�1Xp=0 ~�p exp��2�iL pn� (4)�H = 12 L�1Xp=0 �4 sin2 �p�L �+ r� ���~�p���2 : (5)The equipartition theorem then tells us that����~�p���2� = 14 sin2 �p�L �+ r � 14 �p�L �2 + r ; (6)whi
h is the well{known Ornstein{Zernike 
orrelation fun
tion inFourier spa
e. The last approximation has been made for long{wavelength modes p! 0. From this, we 
an dire
tly read o� ��2 / r,implying the Mean Field value 1=2 for the 
riti
al exponent �. Fur-thermore, the overall mean square 
u
tuation of the order parameter,whi
h is proportional to the sus
eptibility, is obtained as the p = 0mode, for whi
h we 
an read o� ����~�0���2� = r�1 or 
 = 1 for the MeanField sus
eptibility exponent.
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4 B. D�unwegTurning to the dynami
s, we assume the Langevin equation ofmotion (see also the other 
ontribution by the author)ddt�i = � 1�m ��H��i + fi (7)with hfii = 0 
fi(t)fj(t0)� = 2 1�m ÆijÆ(t � t0); (8)and �m denoting an elementary lo
al (\mi
ros
opi
") time s
ale. Thisis the generi
 equation of motion for overdamped lo
al dynami
s withnon{
onserved order parameter (so{
alled \model A" dynami
s [7℄), asit 
orresponds, for example, to a simple single{spin 
ip Monte Carloalgorithm on a somewhat 
oarse{grained length and time s
ale. As thethermodynami
 for
e is just linear in the order parameter, the equationof motion is also diagonalized by introdu
tion of the Fourier modes:ddt ~�p = � 1�m ��H� ~�?p + fp (9)where the noise a
ting on mode p does not only vanish on average,hfpi = 0, but is even un
orrelated to the noise a
ting on other modes:Dfp(t)f?q (t0)E = 2 1�m ÆpqÆ(t� t0): (10)Hen
e, the modes de
ay independently,ddt ~�p = � 1�p ~�p + fp (11)su
h that the 
orrelation fun
tion D~�?p(0)~�p(t)E is just an exponentialwith 
orrelation time �p = �m4 sin2 �p�L �+ r : (12)From this, we 
an read o� z = 2 in the long{wavelength limit p ! 0via two equivalent 
onsiderations: Either we study the relaxation of theoverall order parameter p = 0 o� 
riti
ally, resulting in �0 / r�1 / �2,or we study the nonzero modes at 
riti
ality r = 0, resulting in �p /p�2 / �2p, where �p is the wavelength asso
iated with mode p.The important point about this exer
ise is that it gives us a roughunderstanding how 
riti
al slowing down 
omes about, even when we
onsider non{trivial models, whi
h require simulation. The system be-
omes in
reasingly soft, the larger the length s
ale under 
onsideration
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A

elerated Algorithms 2 5is. This is expressed by the de
reasing thermodynami
 for
e as p! 0.Correspondingly, it also be
omes in
reasingly sluggish, as one sees fromthe in
rease of � for p! 0.3. Fourier A

elerationThe idea of Fourier a

eleration [1℄ is easy to understand, based on the
onsiderations of the previous se
tion. We start from a system whi
his des
ribed by a �eld{theoreti
 LGW Hamiltonian, and simulate thisdire
tly on a latti
e, by solving the Langevin equation of motion, Eq.7, for its non{trivial Hamiltonian, using the methods outlined in theother 
ontribution by the author. Suppose we would instead run thisin Fourier spa
e. Then we would have to solve Eq. 9 instead. However,for a non{trivial Hamiltonian the intera
tion in Fourier spa
e is long{ranged, and 
umbersome to evaluate. It is therefore mu
h easier torather evaluate the for
es in real spa
e, and Fourier transform these,to give the for
es on the modes. We thus arrive at a s
heme where westart from a �eld 
on�guration in real spa
e, evaluate the for
es there,then Fourier transform both the �elds and the for
es, then update the�elds in Fourier spa
e, and afterwards Fourier transform the new �eldsba
k into real spa
e. For a non{
riti
al system, there would howeverbe no point in doing so; one would only introdu
e super
uous opera-tions. But for a 
riti
al system we 
an exploit the previously explainedsluggishness for p ! 0 by noting that the ne
essary time step of aLangevin update is governed by the intrinsi
 time s
ale asso
iated withthat kind of motion. We hen
e introdu
e a multipli
ity of time stepsand update those modes whi
h have a long wavelength with a largetime step hp, and ideally adjust hp in su
h a way that hp / �p. Forthe Gaussian model, this pro
edure eliminates 
riti
al slowing down
ompletely. For a non{trivial model, there remains some signi�
antresidual slowing down. Here the modes are not 
ompletely de
oupled,and the 
on
ept of a mode relaxation time is only approximately valid.It is often useful to 
ombine these Langevin updates with a Metropolisa

eptan
e 
riterion in order to 
orre
t for dis
retization errors (\for
ebiased Monte Carlo", see also the other 
ontribution by the author).An important ingredient of su
h simulations is to run latti
e sizeswhi
h are a power of two. In this 
ase, the Fourier transformation
an be done in a very eÆ
ient way using the so{
alled Fast FourierTransform (FFT), whose e�ort s
ales as L logL for system size L. Thisis a re
ursive divide{and{
onquer method, by whi
h one (large) Fouriertransformation is mapped onto two transformations of half the size, et
.For further details, see textbooks on numeri
al analysis [12℄.
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6 B. D�unweg4. Multigrid Monte CarloThis approa
h is rather similar in spirit. We again study a Hamiltonianin terms of 
ontinuous variables (a latti
e{dis
retized �eld theory),and again 
on�ne ourselves to a rough sket
h of the method, as alsoexplained in the original literature [6℄. For simpli
ity, let us again lookat the one{dimensional LGW Hamiltonian,�H = L�1Xn=0 �12 (�n+1 � �n)2 + 12r�2n + 14!u�4n� : (13)Quite similar to the idea of real{spa
e renormalization, we introdu
ea \blo
king" transformation by subdividing the latti
e into identi
alblo
ks, ea
h of whi
h 
omprises a 
ertain set of sites. On ea
h of theseblo
ks, we introdu
e blo
k variables  just as the arithmeti
 mean ofthe original variables �. In our example, where the blo
ks are just pairsof 
onse
utive sites, we have M = L=2 variables  n = (�2n+�2n+1)=2.Furthermore, we introdu
e 
u
tuation variables � in ea
h blo
k. Thepre
ise form is not parti
ularly important; what we require is that the� variables should be linear 
ombinations of the original � variables inthe blo
k, and that they, together with the  variable, determine the� variables in the blo
k uniquely (if the blo
k 
omprises k sites, thenwe have k� 1 � variables per blo
k). In our one{dimensional example,a 
onvenient 
hoi
e is �n = (�2n � �2n+1)=2, and the Hamiltonian interms of the new variables is�H = M�1Xn=0 "12 ( n+1 �  n)2 + hn(f�ig) n (14)+ 12rn(f�ig) 2n + 13!gn(f�ig) 3n + 14!(2u) 4n#+ �H0(f�ig);where we have fo
used on the  dependen
e. The dependen
e on the �variables 
omes through a purely additive term, and the new 
ouplingparameters hn, rn, gn, whose pre
ise form is of 
ourse important forthe a
tual implementation, but not for the spirit of the method. It ishowever very important that the new Hamiltonian is again a fourth{order polynomial, and that the range of intera
tion in terms of blo
ksdoes not ex
eed the nearest neighbors. These properties remain true ifone goes to higher dimensions, and if one iterates the transformation(as in the renormalization group). In 
ontrast to renormalization{group
al
ulations, however, no attempt is being made to integrate out the
u
tuation variables (for any interesting Hamiltonian, this 
ould be
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elerated Algorithms 2 7done only approximately). The 
u
tuation variables are rather kept,and the transformation is used to update the  variables at an unphys-i
ally high rate. One thus arrives at a re
ursive hierar
hy of systems,ea
h of whi
h is de
omposed into blo
k variables and 
u
tuation vari-ables, and where the blo
k variables of a 
ertain level are the \raw"variables at the next level, su
h that the number of degrees of freedomin ea
h level be
omes less and less. It is useful to view these systemsas separate, su
h that ea
h has its own region of memory assigned, inwhi
h all of its variables �,  , and �, as well as the 
ouplings, are stored.Together, the algorithm hen
e involves an \up" step (
orrespondingto \
oarse{graining"), and a \down" step (
orresponding to \�ne{graining"). There are various ways how to jump ba
k and forth betweenthe levels, and we shall not dis
uss these here in detail. The \up" stepworks as follows: Suppose that at a 
ertain level the � variables and the
ouplings are given. From these, one 
al
ulates the 
u
tuation variables,plus the blo
k variables and the new 
ouplings. The latter two variablesare stored at the system one level higher. Then some standard MonteCarlo pro
edure is applied on the latter system, su
h that, in e�e
t,only the blo
k variables are updated, while the 
u
tuation variablesare kept 
onstant. The 
orresponding \down" step then 
onsists of thetransformation ba
k, su
h that the � variables at the lower level areobtained from the (old) � variables of the lower level, and the (new)� variables of the higher level, whi
h are the blo
k ( ) variables ofthe lower level. This is followed by a standard Monte Carlo pro
edureapplied to the lower level. The speedup is essentially due to the fa
tthat rather large moves through phase spa
e are fa
ilitated by updatinga 
omparatively small number of degrees of freedom.5. Polymer Algorithms5.1. Polymer Physi
s: Some Basi
sIn this subse
tion, we wish to brie
y summarize some important s
alinglaws in polymer physi
s [2, 3℄, whi
h are of dire
t importan
e for the
onstru
tion of eÆ
ient simulation algorithms.Usually, a polymer 
hain is des
ribed as a self{similar random fra
-tal 
hara
terized by the law R / N� , where R is the typi
al size(e. g. the gyration radius or the end{to{end distan
e), and N is thenumber of monomers within the 
hain, or the degree of polymeriza-tion. For a single 
hain immersed in a good solvent, � has the value� 0:59 in three dimensions. This is larger than the random{walk (RW)value 1=2, due to the swelling resulting from the ex
luded{volume
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8 B. D�unweg(EV) intera
tion. � � 0:59 thus 
orresponds to the statisti
s of so{
alled \self{avoiding walks" (SAWs). In a dense melt, however, the EVintera
tion is s
reened; here we rather have RW statisti
s.Furthermore, it is interesting to ask how many 
onformations areavailable to the 
hain. For RW statisti
s, this number is just Z = �N ,where � 
an be 
onsidered as an e�e
tive 
oordination number of alatti
e 
hain. For SAW statisti
s, it 
an be shown that [2℄ZSAW = A�0NN
�1; (15)where (if 
onsidering the same latti
e) �0 is smaller than �, and theexponent 
 has a universal value whi
h depends only on the spatialdimension (
 � 1:16 in three dimensions).Turning to the dynami
s, it is instru
tive to �rst dis
uss the RWRouse model. Firstly, a RW 
an be des
ribed as a Gaussian 
hain. Thedistribution of the end{to{end ve
tor is Gaussian, as a result of the
entral limit theorem. Identifying the Gaussian distribution with theBoltzmann fa
tor, this 
orresponds to an e�e
tive harmoni
 Hamil-tonian. The Gaussian distribution must also hold for sub
hains, forreasons of self{similarity, and even down to the s
ale of the so{
alledKuhn segments (the shortest sub
hain for whi
h su
h a des
riptionmakes sense). If b is the root mean square length of the segments, andthe 
hain is 
omposed of N segments, then the e�e
tive Hamiltonianin d dimensions is �H = d2b2 N�1Xn=0 (~rn+1 � ~rn)2 : (16)The spatial dimensions are thus statisti
ally independent, and theHamiltonian of ea
h dimension is obviously mathemati
ally identi
alto the one{dimensional Gaussian model at 
riti
ality. The Rouse modelalso assumes an overdamped dynami
s, and hen
e the equation ofmotion is identi
al to Eq. 7. For this reason (see above), the longestrelaxation time s
ales as � / N2 / R4.Starting from the RW Rouse model, one 
an introdu
e various mod-i�
ations, whi
h all give di�erent dynami
 universality 
lasses: (i) Thein
lusion of hydrodynami
 intera
tions (see 
ontribution by A. Ladd)yields the so{
alled Zimm model, whi
h shall not be dis
ussed furtherat this point (see Ref. [3℄); (ii) taking into a

ount the EV e�e
t, onearrives at the SAW Rouse model; (iii) taking into a

ount the tempo-rary topologi
al 
onstraints (\entanglements") for dense systems, oneobtains the reptation model [2, 3℄.For the SAW Rouse model we observe that the 
hain 
onformationsshould relax on the same time s
ale as is needed for translational motion
bduenweg2.tex; 27/01/2003; 20:00; p.8
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elerated Algorithms 2 9on the s
ale of the 
oil size. Thus, if D is the translational di�usion
oeÆ
ient of the 
hain, then D� / R2 / N2� . However, in the Rousemodel the fri
tion 
oeÆ
ients of the segments just add up, and hen
eD / 1=N . For these reasons, � / N1+2� .In the reptation model, it is assumed that the topologi
al 
onstraintsenfor
e a motion whi
h is essentially 
urvilinear on time s
ales below� , with a 
urvilinear di�usion 
oeÆ
ient D
urv / 1=N (as in the Rousemodel). The path whi
h must be followed until a new 
onformationis attained is proportional to N , and hen
e D
urv� / N2. Combiningthese results, we �nd � / N3.Thus, in all 
ases we �nd an unfavorable power law dependen
eof the relaxation time vs. N , if the slow physi
al dynami
s is fol-lowed. Polymers 
an therefore be 
onsidered as prototypi
al examplesof 
riti
al slowing down. Hen
e, the general approa
hes outlined inthe previous se
tions should work for polymers, too. Indeed, for 2dSAWs the author has shown that the strategy of Fourier a

elerationis appli
able [4℄. There is however quite a number of algorithms whi
hspe
i�
ally exploit the 
hain stru
ture and are more eÆ
ient. A few ofthese shall be presented below; the reader should note that this is justa small sele
tion whi
h by far does not 
over the �eld exhaustively.5.2. Algorithms for Single ChainsThe simplest approa
h to sample the 
onformation statisti
s of a SAWwould be to take a 
hain and move it through its 
onformation spa
eby lo
al updates. This, however, 
orresponds to slow Rouse dynami
s(� / N1+2�), and hen
e the range of a

essible 
hain lengths is lim-ited. Alternatives are to either generate new 
onformations 
ompletely\from s
rat
h" (stati
 methods), or to move the 
hain in a non{lo
alfashion. We will only give a brief sket
h; for a mu
h more 
omprehensiveoverview the reader is referred to the review by Sokal [13℄. Let us �rstdis
uss the stati
 methods.It is immediately obvious that \simple sampling" (i. e. \blind" gen-eration of a RW, whi
h is dis
arded whenever there is an overlap)
annot work. Indeed, the a

eptan
e probability is given by pa

 =ZSAW=ZRW / N
�1 exp(�
onst.N) and hen
e ex
eedingly small for allbut very short 
hains. In 
ontrast, the dimerization algorithm [13, 14℄is based on a re
ursive buildup: A SAW of length N = 2M is generatedby 
on
atenating two SAWs of length M , i. e. 
hains for whi
h non{overlap has been 
he
ked already before. In 
ase of an overlap, bothsub
hains are dis
arded, and the pro
edure is attempted again. Thetwo sub
hains, in turn, are generated by pre
isely the same pro
edureout of even shorter 
hains, and so forth.
bduenweg2.tex; 27/01/2003; 20:00; p.9



10 B. D�unwegIn order to estimate the eÆ
ien
y of this s
heme [13℄, we note thatthe a

eptan
e probability of the dimerization step is given bypa

 = ZSAW (N)[ZSAW (N=2)℄2 = 
onst. �0NN
�1�0NN2
�2 = 
onst.N�(
�1); (17)i. e. a weak power{law de
ay. From this, we 
an 
on
lude the followingre
ursion formula for the CPU time to generate one walk:TCPU (N) = 2TCPU (N=2) 
onst.N
�1: (18)From this, one shows by indu
tionTCPU(N) = 
onst.Nf(N) (19)f(N) = 
 � 12 log2N + 
onst.:This is a power law modi�ed with a N 
 lnN behavior, i. e., for very long
hains, more unfavorable than any of the dynami
 methods, whi
h s
alewith pure power laws. However, the power law itself is only a moderatein
rease in N . Furthermore, the prefa
tor of the log2N term in f(N)is quite small, su
h that the logarithmi
 modi�
ation is felt only forquite long 
hains. For these reasons, dimerization is a quite 
ompetitivemethod for moderate 
hain lengths up to a few thousand.Turning to the non{lo
al dynami
 methods, let us �rst 
onsiderthe simple \slithering{snake" algorithm [13, 15℄. The trial move is torandomly sele
t an end monomer, to 
ut it o�, and to atta
h it tothe other end with a random bond orientation. The EV intera
tions
ontrol if this move is su

essful. In order to 
ompare the s
aling ofthis algorithm with Rouse dynami
s, we 
an estimate the relaxationtime � via D
urv� / N2, as in reptation theory. However, the s
alingof D
urv is now mu
h more favorable: Firstly, one elementary moveshifts the 
hain by one unit, and se
ondly, the unit time is given byperforming N su
h elementary moves (note that in Rouse dynami
sthe 
omputer has to work on N monomers in order to move the 
hainone time step ahead). Therefore, the mean square 
urvilinear displa
e-ment in one time unit is of order N , su
h that D
urv / N+1! Forthese reasons, � / N , i. e. the algorithm is by a fa
tor of N2� moreeÆ
ient than Rouse dynami
s. While this is less eÆ
ient than the pivotalgorithm (see below) for single 
hains, the slithering{snake algorithmis an ex
ellent 
hoi
e for (moderately) dense systems, where exa
tlythe same s
aling 
onsiderations apply. However, one has to take intoa

ount that in a dense matrix the a

eptan
e rate is rather small, su
hthat the s
aling law is hampered by a rather unfavorable prefa
tor.In the so{
alled \pivot algorithm" [13, 9, 10℄ a monomer (the \pivot"monomer) and a rotation axis going through that monomer are sele
ted
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A

elerated Algorithms 2 11at random, and either the \left" or the \right" tail attempts to rotateby a random angle. This move is su

essful if permitted by the EVintera
tions. In another variant, the rotation axis is de�ned as the linegoing through two randomly sele
ted monomers.Let us try to analyze the eÆ
ien
y of this method [13℄. Negle
tingthe 
orrelations between the two tails of length L and N � L, we 
anestimate the a

eptan
e rate by assuming a 
on
atenation:pa

(L) = ZSAW (N)ZSAW (L)ZSAW (N � L) = 
onst. [Nx(1� x)℄�(
�1) (20)with x = L=N . Averaging over x yields pa

 / N�(
�1), as in dimeriza-tion. Empiri
ally [13℄, one rather �nds an N�p � N�0:11 law, but thismay perhaps not be the true asymptoti
 behavior.The eÆ
ien
y of the pivot algorithm is due to the fa
t that the large{s
ale variables are de
orrelated after a small number of steps, whi
h(at least in good approximation) does not depend on N . Unless spe
ialtri
ks are applied [13℄, one step takes a CPU time of orderN , and hen
e,for 
omparison with Rouse dynami
s, we should identify the unit timewith one (attempted) pivot step. Combining this 
onsideration withthe a

eptan
e rate, we �nd � / Np for the 
orrelation time, whi
his very eÆ
ient. There is, however, a severe 
aveat: The 
onsiderationapplies only to large{s
ale variables, while a full de
orrelation will onlyhave taken pla
e if the 
onformations are also relaxed on small s
ales,i. e. if, on average, ea
h monomer has been visited on
e as a pivot.This deteriorates the eÆ
ien
y by another power of N , resulting in� / N1+p. For these reasons, it is often advisable to 
ombine the pivotalgorithm with a lo
al Rouse{type dynami
s in a hybrid s
heme.5.3. Algorithms for Dense SystemsIn the previous subse
tion, we have already mentioned the slithering{snake algorithm as an eÆ
ient method for dense systems, whi
h ishowever hampered by a small prefa
tor. Another (in prin
iple ratherold) strategy is to alter the 
onne
tivity, i. e. to 
ut the 
hains intopie
es, and re{
onne
t them in a di�erent way. The most re
ent versionsof these algorithms, with spe
ial emphasis on appli
ability to modelswith detailed atomisti
 stru
ture, have been developed by the groupof Theodorou and 
o{workers under the names \end bridging" [11℄and \double bridging" [8℄. In what follows, we shall attempt to brie
ydis
uss these methods, in a simpli�ed version whi
h disregards theatomisti
 stru
ture and would be appli
able to highly 
exible 
hains.The end{bridging algorithm randomly sele
ts a monomer at theend of a 
hain, plus two other monomers (usually not at some 
hain
bduenweg2.tex; 27/01/2003; 20:00; p.11



12 B. D�unwegend) whi
h are (i) dire
tly 
onne
ted with ea
h other, (ii) 
lose to theend monomer, and (iii) not dire
tly 
onne
ted with the end monomer.Usually, this pair of monomers will reside on a di�erent 
hain, butthis 
ondition is not ne
essary. As an attempted Monte Carlo move,this pair is broken, and the end monomer is 
onne
ted to one of thenow free monomers. Care must be taken that the a

eptan
e 
riterionsatis�es the 
ondition of detailed balan
e (the rea
tion paths in bothdire
tions must be 
onsidered expli
itly), but this 
an be done in astraightforward way with some book{keeping. These updates must be
ombined with some 
onventional Mole
ular Dynami
s or Monte Carlomoves, sin
e otherwise the monomers would always keep their positions.The biggest disadvantage of this algorithm is that it does not 
on-serve the 
hain length distribution, whi
h is rather a result of thealgorithm itself. Usually, the pro
edure is adjusted in order to keep thedistribution reasonably narrow. However, it is impossible to simulate astri
tly monodisperse system where only one 
hain length o

urs.Empiri
ally it has been found that this method is very eÆ
ient,but this question has not yet been studied systemati
ally in terms ofs
aling laws. In what follows, we will attempt this analysis; however,the presented results should be viewed as tentative. We assume thatthe main relaxation me
hanism is the di�usion of the \hot spots",whi
h are moved by roughly one monomer unit within one elemen-tary update. Su
h an update 
an be viewed as a 
omplete MonteCarlo or Mole
ular Dynami
s 
y
le throughout the system (to movethe monomers), followed by end{bridging attempts wherever they arepossible. As the density of \hot spots" is of order 1=N , the CPU e�ortof the latter updates 
an be 
ompletely negle
ted in the long{
hainlimit. We now envision the \hot spots" as random walkers whi
h s
anthe system, and assume that the system is relaxed if every monomer hasbeen visited on
e. Now, three{dimensional random walks have only fewoverlaps with ea
h other, and also only few self{overlaps. It is thereforereasonable to assume that the whole system has been visited after atime of order N . We thus 
on
lude � / N , as for the slithering{snakealgorithm.In the double{bridging algorithm, the same idea is applied, but thedisadvantage of a polydisperse system is removed. Again, the algorithmsele
ts a pair of 
onne
ted monomers (say, i� j). Instead of a rea
tionwith a nearby end monomer k as in end{bridging, it here attempts area
tion with another 
onne
ted pair (k� l) lo
ated nearby. This otherpair must not be dire
tly 
onne
ted to i � j. Now, a new 
onne
tiv-ity is attempted (either i � k and j � l or i � l and j � k). This isalways reje
ted whenever a 
hain with length 6= N would be 
reated;otherwise the 
ondition of detailed balan
e must be taken into a

ount.
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A

elerated Algorithms 2 13By 
onstru
tion, monodispersity is 
onserved. This results either in arearrangement within one 
hain, or in an ex
hange of the tails of two
hains.Again, the s
aling behavior of the algorithm is not yet known, andwe shall tentatively attempt it here. Obviously, the relaxation is againgoverned by the \hot spots" (i. e. the lo
al regions where the move 
anbe su

essful) and their density, but here we have to distinguish betweenintra{
hain and inter{
hain 
ontributions. The inter{
hain density isproportional to 1=N , as one 
an see from the following 
onsideration:For a given bond i � j, we 
an move a neighboring 
hain with aslithering{snake motion until the 
ondition of tail length �ts. Fromthis we see that the probability of a �tting tail length is proportional to1=N . For the intra{
hain density the length 
ondition is automati
allysatis�ed, and hen
e it is 
ontrolled by the probability of self{overlapof a RW, whi
h, in three dimensions, is proportional to N�1=2 (thedensity of a RW is proportional to N=R3 / N=N3=2 = N�1=2). Theintra{
hain density of \hot spots" is therefore proportional to N�1=2,i. e. mu
h larger than the inter{
hain density. Nevertheless, one 
annotexpe
t that the intra{
hain moves are able to relax the system fully; thisis rather a

omplished by the slower inter{
hain me
hanism. Moreover,in the double{bridging 
ase the \hot spots" are neither 
onserved nor
ontinuously moving in spa
e, and therefore a di�usion pi
ture doesnot apply. They are rather 
reated and destroyed at a 
ertain 
onstantrate. Again assuming that the system is relaxed when every monomerhas been at a \hot spot", we arrive at � / N=r, where r is the 
reation/ destru
tion rate, and the fa
tor N takes into a

ount the 1=N s
alingof the \hot spot" density. Assuming that the rate r is independent of
hain length N , one would again arrive at � / N .However, this latter assumption may be overly optimisti
 [5℄. Onehas to take into a

ount that � is a
tually given by the mean time thata given bond i�j needs to �nd a rea
tion partner, and this is governedby the monomer motion. In three dimensions the monomers have totravel a typi
al distan
e of order N1=3 (the mean distan
e between\hot spots", as one 
on
ludes from the density). If we now assumethat the 
hanging of the 
onne
tivity does eliminate the reptation{likeslowing down, but keeps the Rouse{like slowing down (neither of theseassumptions is 
ompletely obvious), then the time would be given by� / N4=3 (note that in Rouse dynami
s, the mean square displa
e-ment of a monomer s
ales as t1=2 [3℄, resulting in �1=4 / N1=3). Sothis s
aling argument indeed produ
es some slowing down 
omparedto the end{bridging 
ase, whi
h is expe
ted to a 
ertain extent, inview of the monodispersity 
onstraint whi
h is absent for end{bridging.Nevertheless, the de�nitive resolution of the question of the s
aling of
bduenweg2.tex; 27/01/2003; 20:00; p.13



14 B. D�unwegthese algorithms will probably have to wait until a

urate data on theperforman
e have been produ
ed.A
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