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Abstract. We present a novel scheme for the simulation of polymers in solution,
including hydrodynamic interactions via coupling to a Lattice Boltzmann back-
ground. This is applied to a system of 50 chains of length N = 1000, thus allowing
for the first time to study the crossover from Zimm to Rouse dynamics when the
concentration is increased and the hydrodynamic interaction is screened. Our results
are in agreement with de Gennes’ picture, and indicate a time-delayed screening,
which is related to the entanglement-driven screening mechanism.

An important goal in polymer physics is understanding the Brownian
motion of flexible chains in solutions or dense melts. This is of immediate
practical relevance for rheology, since the thermal motion of the chains also
governs the thermal fluctuations of the internal stresses, which in turn, via
linear-response theory, directly control the viscoelastic behavior of the fluid
[1]. We are here concerned with three-dimensional polymer solutions in the
dilute and semidilute regime in good solvent, in the absence of any long-range
electrostatic interactions. The meaning of these terms is as follows: Dilute so-
lutions are those where the concentration is so low that the individual chains
have no overlap and thus assume the conformation of a self-avoiding ran-
dom walk (SAW), where the typical chain extension R (for example, the
root mean square end-to-end distance) scales as R o« N” with v ~ 0.59, N
denoting the number of monomers of the chain. The chain flexibility (confor-
mational entropy) favors such a random conformation, while the good solvent
quality leads to chain swelling relative to the random walk (RW, R o N%-?)
via excluded volume interactions (if the solvent were poor, the chain would
rather be a collapsed dense globule, R o« N'/3). Semidilute solutions are
characterized by an extremely low monomer concentration ¢, while neverthe-
less the chains are long enough to generate strong overlap. These solutions
therefore have, besides the chain extension R, and the monomer size a (or
persistence length, i. e. the length scale beyond which the bond vector orien-
tations can be considered as random), another relevant length scale &, which
can be viewed as the correlation length of concentration fluctuations (i. e. the
solution is homogeneous on length scales beyond &), or as the typical mesh
size of the temporary network formed by the chains. In the semidilute limit,
a € £ € R. Tt is well-known that, due to an entropic packing effect [2], the
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excluded-volume interactions are effectively screened beyond the length scale
&, such that RW statistics applies there. The concentration dependence of &,
which is also called the “blob size”, directly results from noting that a blob
contains (£/a)'/¥ monomers, i. e. ¢ ~ £73(&/a)'/¥. The overall chain is a RW
of blobs with R? ~ £2N/(¢/a)'/".

Except for static screening, there is also the concept of dynamic screening,
i. e. screening of hydrodynamic interactions, which induces a concentration-
driven dynamic crossover from Zimm to Rouse dynamics (see below). The
physics of this screening is considerably less-well understood.

The Rouse and the Zimm model both aim at the description of polymer
Brownian motion. Starting from the observation that the conformational de-
grees of freedom are by far the slowest in the system, one writes down an
overdamped Langevin equation for the monomer coordinates r; (here in a
discretized form with a finite time step h), which in its most general form
reads

ri(t+h) =ri(t) + > i Fih+ o (1)
J

Here F; is the (effective) force acting on the jth monomer, due to interactions
with other monomers (connectivity and excluded volume). ;Zj is the mobility
tensor, which describes the velocity response of monomer i to a force on

monomer j. Finally, @; is the stochastic displacement of monomer i, with
(@i) = 0 and

>
(0 ® @) = 2kpT ji;; h=2Dyj h (2)

(fluctuation-dissipation theorem). Rouse and Zimm model differ with respect
to their assumptions concerning ﬂ_:] The Rouse model simply assumes that

the stochastic displacements are uncorrelated, /Zj: o T d;;, while the Zimm
model takes into account that in dilute solutions there occurs fast diffu-
sive momentum transport through the solvent which introduces correlations,
which can be approximately calculated within the framework of low Reynolds
number hydrodynamics:

1

<~ >
Hij= podij 1 + (1 — ;) STy

>
(1 +75 @ f'ij) ; (3)
where 1 denotes the solvent viscosity. The Coulomb-like 1/r interaction is
genuinely long-ranged, and thus places the Zimm model into a different dy-
namic universality class than the Rouse model. Starting from the scaling
assumption that the internal relaxation of the conformation of a single test
chain happens on the same time scale 7 as the time needed for the chain to
move its own size, one easily derives the scaling laws 7 o« R* with z = 3 for
the Zimm model (regardless of chain statistics) and z = 2+1/v (i. e. z = 4 for
the RW case) for Rouse dynamics. It is important to note that Zimm motion
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can in essence be viewed as the motion of a Stokes sphere with size R. The
exponent z then shows up in the sub-diffusive behavior of the single-monomer
mean square displacement, (Ar?) o t2/% for a®> < (Ar?) < R?, correspond-
ing to Tmic K t < 7, where Ty is the “microscopic” time scale associated
with single-monomer motion. Similarly, one has for the single-chain dynamic
structure factor

S(k,t)=N"" Z (exp {ik - (ri(t) — r;(0))}) oc k™" f(k7t) (4)

for R « k < a~ ' and Tie € t < 7 (note that the prefactor k—1/¥ gives
direct information on the chain statistics and can be used to distinguish the
RW and SAW regimes in semidilute solutions — RW for k¢ < 1, SAW for
k€& > 1). For further details, see [1].

It is known from experiments and simulations that Zimm dynamics ap-
plies for dilute solutions, while Rouse dynamics holds for dense systems as
long as the chains are short enough to prevent reptation [1]. Therefore the
hydrodynamic interactions must be unimportant, or screened, in dense melts,
while in semidilute solutions there is a crossover. The physical mechanism is,
strictly spoken, unknown. In our opinion, it is most probably the microscopic
mechanism of momentum transfer: While in dilute solutions the momentum
in essence propagates linearly (more precisely, according to the solution of
the Stokes equation), this cannot happen in dense melts: Here, a chain-chain
collision in essence leads to propagation along the backbone, due to the con-
nectivity forces. This induces a randomization and effective removal of the
dynamic correlations.

A simplistic picture of screening arises from the notion of Darcy flow.
Here, one considers a random array of fized obstacles of concentration c,
through which the solvent flows. Assigning a friction coefficient ( to each
obstacle, one arrives at a modified Stokes equation

ou

ot
where ¢ denotes the solvent mass density. This yields a modified hydrody-
namic interaction exp(—r/&m)/r with nég”> = (e, i. e. a screening length
whose scaling (£ o ¢ 1/2) differs from that of the static length (£ o
¢ »/(3»=1))_ De Gennes [3] has however argued that, apart from prefactors,
&g and € should coincide. The physical essence of this argument is based on
the observations that (i) the polymer chains move, and thus one cannot use
a picture of fixed obstacles; that (ii) Zimm chains behave like rigid Stokes
spheres, and thus ezactly oppositely as fixed obstacles (i. e. embedded in the
flow); and that (iii) the entanglements, i. e. the strong coupling of the chain
to the temporary matrix, prevent unrestrained Zimm motion and rather tend
to confine the blobs. Thus the physical objects which actually serve as obsta-
cles to generate Darcy-type flow are the blobs. However, Stokes’ law implies

=nVu - (cu, (5)
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Fig.1. (S(k,t)/S(k,0) in the RW regime 0.2 < k < 0.45 with both Zimm and
Rouse scaling, using a representation which emphasizes the short-time behavior

that the blob friction coefficient is ~ n¢, while the blob concentration is £ 3.
Thus, using the analogous reasoning as for fixed obstacles, one obtains

nE" ~nEES ~ e, (6)

Furthermore, this picture necessarily implies that screening is an intrinsically
dynamic phenomenon with a time delay before screening comes into play. This
has so far not been noticed in such an explicit fashion. On time scales below
the crossover time, which is just the Zimm relaxation time of a blob, ¢, o &3,
a single test chain will simply not feel the surrounding chains. They just
contribute to the overall flow. Only after t., the entanglements become (on
average) important, such that the chain can no longer follow the flow. After
that, there is a substantial velocity difference, which generates a counter flow
or Darcy-type screening. The consequence is that the dynamics is Zimm-like
as long as t < t., regardless of length scales, i. e. even for the RW regime
k€ < 1 (in the SAW regime k& > 1, i. e. within the blob, this is obvious).
For t > t., the dynamics crosses over to Rouse-like motion; on these time
scales the semidilute solution can be viewed as a Rouse melt of blobs.

Our large-scale simulation [4], which is the first to be able to study the
dynamic crossover between Zimm and Rouse, supports these arguments. For
the first time, the described time delay was not only observed, but also in-
terpreted within the outlined picture. In our opinion, previous experiments,
which indicated Zimm behavior on long length scales [5,6], have been inter-
preted incorrectly by not taking the time dependence properly into account.
Thus we believe that a reasonably consistent description of hydrodynamic
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screening has been obtained. Figure 1 shows S(k,t)/S(k,0), with k restricted
to the RW regime, for both Zimm (%£?t?/3) and Rouse (k*t'/?) scaling. Clearly
there is a time-dependent crossover from Zimm to Rouse.

Our simulation method [7] is based on the following considerations: In or-
der to resolve both the SAW and the RW regime, we need rather long chains.
Guided by the idea that we should have at least 30 blobs of 30 monomers each
available, we chose N = 1000. Furthermore, the desired blob size defines the
concentration, while the condition of avoiding “wrap-back” conformations
gives us the minimum size of the required periodic box, and the number of
chains. We thus simulated a system of 50 chains. Directly implementing (1)
is impossible for 5 x 10* Brownian particles, since in every time step one has
to calculate the square root of a matrix of that size. We therefore explicitly
simulate the solvent degrees of freedom. Doing this via Molecular Dynamics
(i. e. by introducing many solvent particles around the chains) is again ex-
ceedingly difficult: Firstly, we found that Molecular Dynamics is roughly a
factor of 20 slower than our algorithm [7], which is based upon coupling the
polymer system to a stochastic Navier-Stokes background. More important,
however, is the fact that the surrounding particles introduce a slight change
in the chain conformations, compared to “vacuum”, while the Navier-Stokes
background does not. Therefore, our approach allows us to equilibrate the
polymer system without the solvent, and to use efficient Monte Carlo moves
(slithering-snake moves on the scale of the blob) for that purpose. Only after
equilibration the polymer system is coupled to the solvent, such that from
then on the short-time regime of the dynamics can be studied. It was thus
possible to observe the crossover from Zimm to Rouse, while running the
polymer plus solvent system beyond the overall chain relaxation time would
simply have been much too expensive. Our practical implementation uses
the Lattice Boltzmann method as the Navier-Stokes equation solver. The
lattice constant roughly matches the bond length, such that our largest lat-
tice contains 882 sites. The coupling is purely dissipative, and based upon
introducing a monomer friction coefficient. For further details of the method,
and our results, see [4,7].
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