
Simulation of a Single Polymer Chain in Solution by Combining Lattice Boltzmannand Molecular DynamicsPatrick Ahlrichs, Burkhard D�unwegMax Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany(May 9, 1999)In this paper we establish a new e�cient method for simulating polymer{solvent systems whichcombines a lattice Boltzmann approach for the uid with a continuum molecular dynamics (MD)model for the polymer chain. The two parts are coupled by a simple dissipative force while thesystem is driven by stochastic forces added to both the uid and the polymer. Extensive tests ofthe new method for the case of a single polymer chain in a solvent are performed. The dynamic andstatic scaling properties predicted by analytical theory are validated. In this context, the inuenceof the �nite size of the simulation box is discussed. While usually the �nite size corrections scaleas L�1 (L denoting the linear dimension of the box), the decay rate of the Rouse modes is onlysubject to an L�3 �nite size e�ect. Furthermore, the mapping to an existing MD simulation of thesame system is done so that all physical input values for the new method can be derived from pureMD simulation. Both methods can thus be compared quantitatively, showing that the new methodallows for much larger time steps. Comparison of the results for both methods indicates systematicdeviations due to non{perfect match of the static chain conformations.I. INTRODUCTIONThe complexity and variety of soft condensed matteris largely due to the fact that length scales of di�erentorders of magnitude are present1;2. When dealing withpolymers in computer simulations, one therefore often in-tends to analyze the scaling behavior, where the natureof the underlying chemistry becomes unimportant1;3.When constructing models for these systems it is crucialto coarse{grain the details and to keep the relevant lengthscales in order to observe the phenomena one is interestedin. Since bead{spring models in MD simulations are anappropriate means to yield the right universal laws, theyhave been widely used to simulate the scaling behavior ofpolymers and much progress has been made using thesemodels4{9.While in some systems, e. g. in highly concentratedsolutions or in melts, the dynamic properties are not af-fected by the solvent | such that these can be simulatedby conventional bead{spring models without explicitlytaking into account the solvent | there are many phe-nomena in polymer science where the inuence of thesolvent on the polymer dynamics cannot be neglected.For example, in dilute or semi{dilute polymer solutions,the dynamical behavior is changed and even dominatedby hydrodynamic interaction between di�erent parts ofthe polymers. This eventually leads to a long{range in-teraction which is mediated by the solvent1;3. With thispaper, we want to provide a new e�cient method forthe simulation of polymer systems where hydrodynamicsplays a role. The idea is to focus on the really necessaryparts only, i. e. the hydrodynamics of the solvent and the(Brownian) motion of the polymer chains, thereby try-ing to keep the computational costs at a minimum. Ourtest case is the dynamics of a single chain in a solvent.This problem has continuously attracted the attentionof MD researchers7{9, mainly because existing analytical

theories10{12 rely on uncontrollable assumptions that canbe tested using computer simulations.Simulating such systems by MD is only possible if oneintroduces explicit solvent particles. Hence one has toface the problem that almost all CPU time goes into thepropagation of the solvent particles, while one is mainlyinterested in the chain properties. However, there arealso other computational methods than MD available forsoft condensed matter systems where hydrodynamics isimportant, not only in the �eld of polymers but for ex-ample also in colloidal suspensions. These include Brow-nian Dynamics simulations13{16, and Dissipative Parti-cle Dynamics (DPD)17{23. Both of them have inherentstrengths, but also some disadvantages: The �rst tech-nique must face the problem that the algorithm scalesas the cube of the number of particles, and the latter(like MD) simulates the solvent particles explicitly, lead-ing to simulations of several thousand particles even fora single chain of, say, 30 monomers. Compared to MD,DPD has the advantage of much larger time steps, mainlybecause of the use of very soft potentials19. A lot ofprogress in the theoretical framework of the method hasbeen achieved20{22, but some practical problems remain,like the time step dependent temperature and the smallSchmidt number19. Recently, however, some e�ort hasbeen made to �ll this gap23.In this paper we use a recently proposed method24that couples a lattice Boltzmann approach for the uidto bead{spring polymer chains. The lattice Boltzmannmethod (LBM)25;26 was developed to simulate hydrody-namics on a grid. The LBM was shown to be an e�ectiveand fast method for simulating uid ows, comparable to�nite{di�erence27 or spectral methods28. Ladd appliedthe LBM successfully to colloidal systems27;29: The col-loidal particles are simulated as hard spheres by usingstick boundary conditions. This leads to a very e�cientalgorithm: Its CPU cost scales linearly with the num-1



ber of particles, and it uses a \minimal" model to sim-ulate the uid. Besides, Ladd also showed29 that uc-tuations can be incorporated into the LBM in the spiritof Landau{Lifshitz uctuating hydrodynamics30, whichis essential if one wants to investigate Brownian motion.Now one might think of a direct application of Ladd'smethod to polymer{solvent systems. However, usinghard spheres to model the monomers is not necessaryhere, as rotational degrees of freedom as well as stickboundary conditions are not relevant: On the largelength and time scales we are interested in, like the ra-dius of gyration and the Zimm time of the polymer, itis su�cient that hydrodynamic interaction has evolved.The \microscopic details" of the coupling should thennot play a role. In this spirit, we couple the LBM tobead{spring polymer chains by a simple friction ansatz,thereby treating the monomers as point particles for theuid. We will show that this ansatz is su�cient to sim-ulate both the static and dynamic scaling behavior ofthe polymer. The simulation of the uid by LBM ratherthan explicit particles and the simple friction ansatz leadto a large speedup in computer time of about a factor of20 when compared to pure MD, or even more if one iswilling to be satis�ed with less accurate data.Additionally, we map our method to a pure MD simu-lation, i. e. we show how to determine all physical inputvalues from the results of MD, allowing us to compare ourresults to an existing MD simulation with explicit solventparticles7. In other words, the uid in the new methodcan be viewed as a coarse{grained MD uid, and thereexists a well{de�ned procedure for how to do the coarse{graining. Of course, in using such a mesoscopic approachit is no longer possible to include detailed chemistry likein atomistic MD simulations. This is, however, a quitecommon feature of mesoscopic simulation methods; DPDsimulations do not include atomistic details either.The remainder of this article is organized as follows:We outline the method in Section II, and present the nu-merical results in Section III, which are compared to pureMD in Section IV. In Section V we conclude with some�nal remarks and an outlook to further studies.II. THE SIMULATION METHODA. The Lattice Boltzmann Method for the SolventThe lattice Boltzmann method is a discrete formula-tion of the Boltzmann equation on a lattice, leading tothe Navier{Stokes equations in the incompressible limitby means of a Chapman{Enskog expansion25;26. It hasbeen successfully applied to a variety of uid ow prob-lems, and it is especially well{suited for complex uidsbecause of the possibility of straightforward implementa-tion of complex boundaries. The central quantity of thealgorithm is ni(r; t), the number of particles in a volume

a3 at the grid point r at time t, which have the veloc-ity ci a� (i = 1; ::; b), where a is the lattice spacing, � thetime step and ci a vector leading to the ith neighbor ona grid with unit lattice constant. The evolution equationfor ni(r; t) is the lattice Boltzmann equationni(r+ cia; t+ �) = ni(r; t) (1)+ bXj=1 Lij �nj(r; t) � neqj (�;u)� :The last term expresses the relaxation of ni towards alocal pseudo{equilibrium, which resembles a Bhatnagar{Gross{Krook (BGK) collision operator31 in the contin-uum Boltzmann equation. The constant matrix Lij canbe interpreted as the scattering between particle popu-lation i and j. Its eigenvalues can be determined fromphysical and numerical arguments, such that its explicitform is not necessary for the simulation algorithm29. Thelocal pseudo{equilibrium distribution neqi (�;u) dependson the density �(r; t) =Pi ni(r; t)�=a3 and uid currentj(r; t) � �u = Pi ni(r; t)ci�=(�a2) only. Here, � is themass of a uid particle. The usual functional form forneqi (�;u) is assumed26:neqi (�;u) = ��Aq +Bq (ci � u) + Cqu2 +Dq (ci � u)2� :(2)The coe�cients Aq , Bq , Cq and Dq (which depend onthe sublattice q, i. e. the magnitude of ci) are deter-mined to reproduce the correct macroscopic hydrody-namic behavior. Note that this is contrary to contin-uum kinetic theory, where the Maxwell{Boltzmann dis-tribution is determined by entropy considerations andthe Navier{Stokes equations follow naturally by theChapman{Enskog expansion32;33. Hence it is calledpseudo{equilibrium. Explicit values for the coe�cientsAq ,Bq,Cq and Dq are known for di�erent lattices34.Here, we implement the 18{velocity model of Ref. 29,which corresponds to the D3Q18 model in the nomencla-ture of Ref. 34. The set of ci consists of the 6 nearest and12 next{nearest neighbors on a simple cubic lattice. Viaa Chapman{Enskog expansion one can show that thismodel leads to the Navier{Stokes equations in the limitof small Knudsen and Mach numbers25, and derive a re-lation between the kinematic viscosity � and the non{trivial eigenvalue � of Lij belonging to the eigenvectorci�ci� ; (�; � = x; y; z; � 6= �)34,� = �16 � 2� + 1� a2� : (3)In this paper, we always deal with low Reynolds num-ber ow, hence the linearized Navier{Stokes equationsare su�cient. For this reason, we neglect the nonlinearterm in the equilibrium distribution (2), i. e. we e�ec-tively set Cq = Dq = 0, thus obtaining a simpler andfaster algorithm29.2



Fluctuations can be incorporated into the lattice Boltz-mann method29. The central idea is to add uctuationsto the uxes of the conserved variables, i. e. the stresstensor, and not to the hydrodynamic �elds � and j. Inthis way, local mass and momentum conservation can beguaranteed30. The uctuating lattice Boltzmann equa-tion readsni(r+ cia; t+ �) = ni(r; t) (4)+ bXj=1Lij �nj(r; t)� neqj (�;u)�+ n0i(r; t)with the stochastic termn0i(r; t) = �DqX�� �0��ci�ci� : (5)The random stress uctuations �0�� are assumed to havewhite noise behavior
�0��(r; t)�0�(r0; t0)� = A�rr 0�tt0 (6)������ + ����� � 23������ :By solving the resulting discrete Langevin equationfor the current one �nds the uctuation{dissipationrelation29 for this system; the noise strength A is givenby A = 2�kBT�2a3� ; (7)where � � �� is the dynamic viscosity.The LBM was tested extensively, compared to otherNavier{Stokes solvers and found to have comparablespeed and accuracy (see for example Refs. 25, 27{29).B. The Bead{Spring Model for the Polymer ChainThe polymer model consists of repulsive Lennard{Jones monomers connected via non{harmonic springs(FENE potential)6:VLJ = 4����r �12 � ��r �6 + 14� (r < 21=6�) (8)VFENE = �kR202 ln 1�� rR0�2! (r < R0):In order to model the excluded volume e�ect theLennard{Jones potential acts between all monomers. Asusual, the parameters �, � and the mass m of themonomer de�ne our unit system. Therefore we wrotethe LBM in dimensional form in the last section, ratherthan using the usual dimensionless lattice units. Theequations of motion resulting from these potentials areintegrated using the velocity Verlet algorithm35 with a

time step �t. Note that there is a priori no need to set�t = � and we will exploit this fact below.The polymer model has been applied successfully tothe simulation of many systems4{6 including a singlechain in explicit solvent7, so that we can compare chainproperties in using these potentials.C. Coupling of Fluid and MonomerAs mentioned above, for the length and time scales ofthe polymer chain, the \microscopic" details of the cou-pling should not play a role, as long as one assures thathydrodynamics evolves in the uid on time scales fasterthan the di�usion time scale of the monomers. It is notnecessary to resolve the shape of the monomer for theuid. Thus, we can treat one monomer as a point par-ticle. In analogy to the Stokes formula for a sphere in aviscous uid, we assume the force on the monomer ex-erted by the uid to be proportional to the di�erence ofthe velocity of the monomer V and the uid velocity uat the monomer's position,Ffl = �� [V � u(R; t)] : (9)Here, � is a proportionality coe�cient which we will referto as the \bare" friction coe�cient. This ansatz has alsobeen used in the simulation of sedimentation36.Because the uid velocity is only calculated at the dis-crete lattice sites in the simulation, one has to interpolateto get u(R; t) at the monomer's position. We implementa simple linear interpolation using the grid points on theelementary lattice cell containing the monomer: Denot-ing the relative position of the monomer in this cell by(�x;�y;�z), with the origin being at the lower left frontedge (see Fig. 1), we can de�ne�(0;0;0) = (1��x=a)(1��y=a)(1��z=a); (10)�(1;0;0) = �x=a � (1��y=a)(1��z=a);etc. The formula for the linear interpolation then readsu(R; t) = Xr2ng �ru(r; t) (11)where ng denotes the grid points on the considered ele-mentary lattice cell.In order to conserve the total momentum of uid andmonomer we have to assign the opposite force to the uidin that cell. Note that then the interaction is purely local.In particular, the force density �Ffl=a3 which is to begiven to the uid leads to a momentum density transferper MD time step �t of�Ffl=a3 = �j�t = Xi;r2ng�ni(r; t)ci �a2��t : (12)The last equation has to be satis�ed for the change inthe number of particles �ni of the grid points on the ele-mentary lattice cell in order to exchange the momentum3



density �j. Besides, one must also ensure mass conser-vation in the uid,Xi;r2ng�ni(r; t) = 0: (13)The way how to calculate the corresponding �ni at thenearest grid points is not unique; one possibility was pre-sented in Ref. 24. Here, we follow a di�erent approachwhich seems slightly more natural: For given hydrody-namic �elds �(r; t) and j(r; t) at a certain grid point r,the equilibrium distribution can be calculated accordingto Eq. 2. The change in the equilibrium distribution atthe points r 2 ng due to the presence of the monomer cantherefore be determined: � stays constant (mass conser-vation), while j ! j + �r�j. Here �r is the fraction (10)of the total �j which is given to the speci�c grid point r.Therefore, by requiring that ni�neqi remains unchanged,we obtain �ni(r) = Bq�r�j � ci; (14)where again the nonlinear part of Eq. 2 has been ne-glected, consistent with our overall procedure. Moreaccurate algorithms (which would however be computa-tionally more expensive) could be constructed, using themethod proposed in Ref. 37; however, this is not neces-sary for our purposes: Our simple approach is consistentwith locality of the interaction, plus momentum conser-vation, and should therefore su�ce to build up hydrody-namic interactions in the correct manner.As we discussed in Ref. 24, one has to take care whenadding stochastic terms to the system. Due to the dis-sipative nature of the coupling, it is necessary to incor-porate uctuations to both the uid and the monomers,i. e. to the LBM like in Eq. 4, and to the monomers byextending Eq. 9 toFfl = �� [V � u(R; t)] + f : (15)Here f is a stochastic force of zero mean andhf�(t)f�(t0)i = �(t� t0)2���kBT�: (16)The momentum transfer to the uid for the uctuatingcase is calculated in the same way as described abovewithout the uctuations. For this reason, the total mo-mentum of uid and polymer is conserved locally also inthe uctuating case. One can show analytically that withthis method the uctuation{dissipation relation holds forthe continuum limit of the model, where the coupling tothe LBM uid is replaced by the analogous coupling to aNavier{Stokes uid with thermal uctuations of the ow�eld. For the velocities of the monomers and the uidow velocity, the equilibrium distribution is then given bythe Maxwell{Boltzmann distribution, while the confor-mational statistics of the chain is given by the Boltzmanndistribution, i. e. governed by the intra{chain potentialsVLJ and VFENE , see Eq. 8. This should be contrasted

with the MD case, where the potential due to the solventparticles has an additional inuence. For the discretecase, one can check the uctuation{dissipation relationby investigating the velocity relaxation of one (initiallykicked) monomer in the uid on the one hand, and thevelocity autocorrelation, if uctuations are added, on theother hand. The two quantities coincide for our model24,which is expected from linear response theory. It is alsointeresting to note that in the overdamped limit for themonomer motion, and the continuum limit for the uid,our approach is identical to the Oono{Freed equations ofmotion38, which are commonly used in polymer solutiontheory.The main justi�cation of our approach relies on thefact that a hydrodynamic (Navier{Stokes) description ofthe uid works down to very short (actually, surprisinglyshort) length and time scales. Therefore, one should ex-pect that the ow around a monomer should be describ-able by the solution of the Navier{Stokes equation assoon as the distance is larger than a few lattice spacings.The same argument holds for the analogous MD system,where one expects Navier{Stokes behavior beyond a fewparticle diameters. Therefore, we may say that any twolocal couplings (for example, our LBM friction ansatz vs.MD) are equivalent as soon as they produce the samelong{range ow �eld. If this is the case, then the hydro-dynamic interaction between two monomers (as long asthey are not too close) will be identical, and the single{monomer mobilities will also match (note that for a par-ticle which is pulled through the uid at constant velocityby a constant force, the friction coe�cient is determinedby the energy dissipated in the surrounding ow �eld).This latter property actually allows for an easy deter-mination of the simulation parameter �, which we willnow, for the sake of clarity, denote by the symbol �bare.A heuristic procedure, which was followed in Ref. 24, isto vary this parameter in a set of simulations of a sin-gle monomer in solvent (which can be done very easily),and to measure the momomer di�usion coe�cient D0,until the latter has the desired value. If viscosity anduid density match as well, then the long{range parts ofthe ow �elds (beyond a few lattice spacings) must lookthe same. It should be noted that the Einstein relationD0 = kBT=�e� thus de�nes an e�ective or renormalizedfriction coe�cient, which di�ers from the original bareone, as it contains all the backow e�ects. Since thesetend to increase the mobility, one has �e� < �bare. Morequantitatively, one can argue as follows: Let us considera particle which is pulled through the solvent at constantvelocity V by an external force F. Then, rewriting Eq.9, we �nd V = 1�bareF+ uav; (17)where uav is the ow velocity averaged over the nearestlattice sites of the particle, as implemented by our inter-polation procedure. However, to a good approximation,the ow �eld should be given by the Oseen tensor:4



u = 18��r (1+ r̂
 r̂)F; (18)where r is the distance from the particle. Hence the aver-aged ow �eld should | in our case of averaging roughlyat a distance a from the particle | have the formuav = 1g�aF; (19)where g is an unknown numeric constant describing thedetails of the lattice geometry and of the averaging pro-cedure. For example, doing the average over a sphereof radius d, one would directly obtain uav = F=(6��d),from which one easily derives Stokes' law. Combiningthese results and using �e�V = F one obtains1�e� = 1�bare + 1g�a ; (20)i. e. the overall mobility is simply the sum of the baremobility and a hydrodynamic, Stokes{type contribution,where the lattice discretization serves to provide an ef-fective Stokes radius of the monomers. This relation hasbeen tested by running several simulations at di�erentbare couplings and di�erent lattice constants; the agree-ment is remarkable, as seen from Fig. 2, where we plot�a=�e� as a function of �a=�bare. The parameter g is thusfound to have the value g � 25 for our method.The lattice constant a hence appears not only as a pa-rameter which controls how accurately the Navier{Stokesequation is solved (this is the usual case for Navier{Stokesequation solvers), but it is being assigned an additionalmeaning as an e�ective Stokes radius. For that reason,it cannot be varied arbitrarily, but only within limits: Atoo small lattice constant would result in an unphysicallylarge particle mobility, even if �bare is very large. This isquite di�erent from conventional Navier{Stokes equationsolving, where one obtains systematically better resultswhen a is decreased, and can be viewed as the price whichhas to be paid for introducing the simple and computa-tionally fast concept of a point particle, which is however,strictly spoken, unphysical. It should be noted that �barecontrols the degree of coupling to the ow �eld: For small�bare, one has �e� � �bare, while for large �bare the Stokescontribution prevails, �e� � g�a. It should have becomeclear that hence �bare has no real physical meaning what-soever; it is really the e�ective friction which matters forthe coupling.III. SINGLE CHAIN SIMULATIONA. Input ParametersThe present model is intended to represent the samephysical situation as an existing pure MD simulation7.We therefore choose the physical input values for the newmethod as obtained by the former (all values are given in

the unit system speci�ed in Sec. II B). The uid is char-acterized by the the temperature kBT = 1:2, the density� = 0:864, and the kinematic viscosity � = 2:8. Theparameter � (the uid particle mass) is unimportant; itsvalue can be absorbed in a re{de�nition of the ni. Thelattice constant a of the grid is set to unity; this is roughlythe same as the bond length of the polymer chain, andthe interparticle distance of the MD uid. As in the pureMD simulation, we study chains of length Nch = 30; 40and 60. The corresponding grid sizes (which are impor-tant parameters, since they determine the hydrodynamicinteraction of the chain with its periodic images, see Ref.7) are L = 18, 18, and 22, respectively, which is roughlyidentical to the corresponding MD box sizes.The parameters for the FENE potential are taken fromthe MD simulation as R0 = 2:0 and k = 7:0. As alreadydiscussed in Sec. II C, this does however not assure thatthe static conformations are identical: In the MD case,there is also the inuence of the solvent, which is absentin the present method. Actually, the data show a sys-tematic deviation, which is however not very large (seeSec. III B).The mass of the monomers was set to unity. This ac-tually di�ers from the MD case where the monomer masshad been set to two. However, we also used a monomerof mass one in order to determine the \bare" friction co-e�cient �bare, using the procedure outlined at the endof Sec. II C, such that we found �bare = 20:8 from therequirement that the monomer di�usion coe�cient hasthe value known from MD, D0 = 0:076. Had we used amonomer of di�erent mass, we would also have obtaineda slightly di�erent value for �bare (these are very smalle�ects, beyond what the simple picture which underliesEq. 20 can capture). Since however on the time scale ofBrownian motion it is only the parameter �e� = kBT=D0which matters, we expect an inuence of the mass param-eter only for short times, where the dynamics di�ers fromMD behavior anyways.It remains to specify the time steps �t and � . A choiceof �t = 0:01 is optimal for the MD part6. Concerningthe LBM time step � it is desirable to make it as largeas possible because the uid calculation is the CPU in-tensive part of the method. Test simulations showed thelimiting factor to be that ni is getting negative for toolarge time steps due to increasing uctuations, in par-ticular near the monomers. This situation, however, canalways happen, although with decreasing probability forsmaller time steps. We found that using a time step of� = 0:05 only approximately each 104th random num-ber one ni became negative, while for � = 0:01 sucha case never occurred during the observation time. Wedecided to generate new random numbers in such rarecases, which of course slightly changes the distributionof the simulated noise, but is justi�ed if the probabilityfor negative ni's is low enough. We ran the simulationsat � = 0:05 and also did a simulation for the smallestsystem (Nch = 30, L = 18) using � = 0:01 in order tocheck the results.5



Furthermore, we should comment in some more detailon the lattice constant a. The choice a = 1 seems intu-itively reasonable, since this matches the bond length andthe interparticle distance in the MD system. However,one would in principle like to make the lattice spacing aslarge as possible, since, for constant overall volume, thecomputational e�ort scales as a�3. For this reason, wealso did a test run with a = 2 for the Nch = 30 system,where we of course had re{adjusted the bare friction, seeend of Sec. II C. It turned out that the decay of thedynamic structure factor looks quite similar. However,there are systematic discrepancies (see Sec. IVB), suchthat the gain in speed is paid for by a certain loss in ac-curacy. In what follows we will always refer to the casea = 1, unless explicitly stated otherwise.An important point concerning the comparison withanalytical theory should be mentioned here. It is usuallyassumed in these theories that the time scale for the evo-lution of the hydrodynamic interaction is much smallerthan the di�usion time scale of a monomer, i. e. theSchmidt number Sc = �D0 � 1. This parameter can beset arbitrarily in our method: � is an input parameterand D0 can be tuned by choosing �bare. In our case, wehave Sc � 32. B. Chain StaticsThe results for the chain lengths of Nch = 30, 40 and60 are listed in Table I. The measurement of the chain'stemperature provides a �rst consistency check of the al-gorithm. The values for kBTmeasured � 23NchEkin show adiscretization error of 5% for the large time step � = 0:05.For the small time step � = 0:01 the error decreases sig-ni�cantly.The radius of gyration
R2G� = 12N2ch Xij 
r2ij� ; (21)with rij = jri � rj j, and the end{to{end distance
R2e� = D(rNch � r1)2E (22)are related to the number of monomers by the static ex-ponent �, 
R2g� / 
R2e� / N2�ch ; (23)for a self{avoiding walk � � 0:588 from renormalizationgroup theory methods and Monte Carlo simulation39. Inprinciple, � can be obtained from the scaling law (23);however, this would require simulations covering a widerange of Nch. Hence, it is advantageous to use the staticstructure factorS(k) = N�1ch Xij hexp(ik � rij)i (24)= N�1ch Xij � sin(krij)krij � ;

which probes di�erent length scales even for a single poly-mer. In the scaling regime R�1g � k � a�10 (a0 being amicroscopic length of the order of the bond length) therelation S(k) / k�1=� (25)holds3. By �tting a power law to our data (see Fig. 3) weget the values for � of Table I which are about 6% higherthan the asymptotically correct value, resulting from the�nite chain length. In Fig. 3 we also include data whichhave been generated from a simulation of a single chainwithout surrounding LBM uid. The conformations mustbe the same, i. e. the structure factors must coincide (upto discretization errors, which may look somewhat di�er-ent for the chain coupled to the LBM uid). As is seenfrom the �gure, the agreement is very good, i. e. themethod is validated to produce correct static conforma-tions.The hydrodynamic radius� 1RH �1 = 1N2ch Xi 6=j � 1rij � (26)is an interesting quantity because the Kirkwood predic-tion for the di�usion of the chain's center of mass10;11DCM = D0Nch + kBT6�� � 1RH �1 (27)depends on it. This formula, however, is only correct fora single chain in an in�nite medium. In a �nite box onehas to take into account the hydrodynamic interactionwith the periodic images. This will eventually lead to a�nite{size corrected hydrodynamic radius. Quite gener-ally, one must expect a �nite size e�ect of order L�1 forevery dynamic quantity, corresponding to the slow r�1decay of hydrodynamic interactions. A detailed descrip-tion can be found in Refs. 7, 40, so that we can restrictourselves to the essential points. Within the Oseen ap-proximation, the di�usion tensor is given byDij � D(rij) = kBT�L3 Xk6=0 1� k̂
 k̂k2 exp(ik � rij) (28)for i 6= j, where k = 2�n=L (n being a vector of inte-gers) runs over the reciprocal lattice vectors and k̂ is aunit vector in the direction of k. For i = j, one has themonomeric di�usion coe�cient D0, plus the contributiondue to the hydrodynamic interaction of that bead withits own periodic images,Dii = D01+ limr!0�D(r)� kBT8��r (1+ r̂
 r̂)� : (29)6



The last two expressions can be calculated e�ciently us-ing the Ewald summation technique. The center of massdi�usion constant is given byDCM = 1N2ch Xij 13Tr hDiji : (30)Inserting Eqs. 28 and 29 one obtains7DCM;L = D0Nch � 2:837 kBT6��LNch + 13Nch2 Xi 6=j Tr hDiji ; (31)which de�nes, by comparison with the Kirkwood formula(27), a �nite size corrected hydrodynamic radius:DCM;L � D0Nch + kBT6�� � 1RH �L : (32)RH is thus e�ectively increased by the periodic images.For our box sizes, the discrepancy between 
R�1H �L and
R�1H �1 amounts to approximately a factor of two (cf.Table I). This is in agreement with the corrections foundin Ref. 7. C. Chain DynamicsThe dynamic scaling picture for Zimm dynamics3starts from the prediction DCM / R�1g (cf. Eq. 27).The Zimm time �Z , i. e. the longest relaxation time ofthe chain, is given by the condition that the chain hasmoved its own size during �Z , or DCM�Z / R2g , implying�Z / R3g , which de�nes the dynamic exponent z = 3.This exponent then quite generally relates times to cor-responding lengths, such that, for example, the meansquare displacement of a monomer on time scales below�Z , but above the microscopic time scales �0, should beproportional to t2=z = t2=3. For a chain without hydro-dynamic interaction (Rouse model), where DCM / N�1ch ,one �nds z = 2 + 1=� from analogous considerations.Figure 4 shows the mean square displacement of thechain's center of massg3(t) = D(RCM(t0 + t)�RCM(t0))2E : (33)By �tting a power law we obtain the exponents and thedi�usion constants shown in Table I. Obviously, the ex-ponents support the prediction of simple di�usive behav-ior (t1). One would expect theoretically that two di�u-sive regimes exist, both exhibiting t1 behavior but dif-ferent prefactors, with a smooth crossover around theZimm time. The accuracy of the data does not allowto support this crossover, which is not surprising as theshort{time and long{time di�usion constant are expectedto be rather close to each other16;41;42. In principle, thescaling behavior of DCM provides a test of the Zimm pre-diction DCM / N��ch . But there are large corrections to

scaling due to �nite chain length and bead size e�ects7;43.Therefore it is more useful to analyze the non{asymptoticrelation (31) by comparing the values for D0 that can beobtained from Eq. 31, where �nite chain length and �nitebox size are taken into account, with the input value ofD0 = 0:076. The values are also listed in Table I show-ing quite reasonable agreement. Without the �nite sizecorrections, the agreement is unacceptable, such that anegative value for D0 would be obtained.The mean square displacement of a single monomer i(which should only be evaluated for monomers near thecenter of the chain to eliminate end e�ects)g1(t) = D(ri(t+ t0)� ri(t0))2E (34)is plotted in Fig. 5. In the time regime below the Zimmtime and above the ballistic regime, the scaling behav-ior g1(t) / t2=3 is predicted. The corresponding �t toour data yields the exponents of Table I. The values ob-viously favor the Zimm model compared to the Rousemodel, which predicts g1(t) / t2=z = t0:54.The Zimm time can be estimated from the mean squaredisplacement of a monomer in the center of mass system,g2(t) = h ([ri(t+ t0)�RCM(t+ t0)] (35)� [ri(t0)�RCM(t0)])2E ;which is depicted in Fig. 6. Theoretically, a crossoverto a plateau should evolve at the Zimm time. However,the crossover is quite extended in our simulation, makingit di�cult to extract a speci�c time for it. We thereforeestimate the Zimm time from�Z = 
R2g�6DCM ; (36)which yields the values shown in Table I.It is interesting to perform a Rouse mode analysis. Forthis purpose one de�nes the Rouse modes as44Xp = N�1ch NchXn=1 rn cos� p�Nch (n� 12)� : (37)It is well known that these modes are the (indepen-dent) eigenmodes of the random walk Rouse model3.However, for reasons of translational symmetry alongthe chain, one must expect that the cross correlationhXp(t+ t0)Xq(t0)i (p 6= q) is at any rate quite weak,regardless of chain statistics and dynamics, such thatthe modes can be viewed as independent modes even be-yond the random walk Rouse case. For a ring polymer,this can be shown rigorously, since in this case there isstrict invariance under the transformation n ! n + 1,such that the Rouse modes (which are then de�ned withan exp (ip�n=Nch) factor) are eigenfunctions under thistransformation. Hence, if end e�ects are not too strong,one should also expect for our case an independence of7



the Rouse modes. Indeed, within the accuracy of ourdata, the cross correlation terms are zero.Furthermore, within the approximations of the Zimmmodel, the autocorrelation function of the modes shoulddecay exponentially3,hXp(t+ t0)Xp(t0)i
X2p� = exp(�t=�p): (38)In Fig. 7, we therefore plot, for p � 1, the normalizedautocorrelation function semi{logarithmically as a func-tion of properly scaled time. Firstly, we estimate �p viathe initial decay rate��1p = �p = � ddt  hXp(t)Xp(0)i
X2p� !�����t=0 ; (39)which can, within the framework of Kirkwood{Zimm the-ory, be calculated in terms of purely static averages,i. e. from the chain conformations in combination witha model di�usion tensor, for which we use Eqs. 28 and29. The details of this approach are described in Ap-pendix A. Interestingly, it turns out that this quantityis only subject to an L�3 �nite size e�ect (which weneglect), in contrast to the usual L�1 behavior. Thisresult holds beyond the various approximations of Ap-pendix A; our interpretation is that any contribution ofglobal center{of{mass motion of the chain is being sub-tracted, such that the leading{order hydrodynamic in-teraction with the periodic images cancels out, and onlya dipole{type interaction remains. In the upper part ofFig. 7, we thus plot the autocorrelation as a function of�pt, where �p was calculated directly from the simulatedchain conformations, in combination with the Oseen ten-sor. It is seen that the Oseen formula describes the decayquite well; however, the data collapse is not particularlygood. There is also some curvature, indicating a non{exponential decay. The middle part of the �gure thenuses the scaling argument pz�t. This p{dependence re-sults from the calculation of �p, where instead of the ac-tual chain conformations asymptotic self{avoiding walkstatistics is employed (see Appendix A), as the leadingpower law. This corresponds to simple dynamic scaling,which views the pth mode as equivalent to a chain oflength Nch=p, such that �p / (Nch=p)�z. However, themore detailed calculation of Appendix A yields an addi-tional weak p{dependence, i. e. a correction factor r(p),whose presence indicates, in our opinion, that the simplepicture of subchains of length Nch=p is not fully justi�ed.Taking this correction into account, we obtain a verynice data collapse (see lower part of Fig. 7). This is quiteremarkable; one would of course expect the best data col-lapse for the uppermost part which involves the smallestnumber of approximations. It seems that there are vari-ous errors involved which somehow happen to cancel out.As far as the absolute value of the decay rate is concernedwe �nd reasonable agreement: While the lower part ofFig. 7 shows a decay rate of roughly 3 � 10�4p3�r(p),

Eq. A21 predicts a decay rate of order 5:4� 10�4p3�r(p)where we have for simplicity used the random walk valuefor the constant A, and b3 = 2:0 (extracted from theresults for R2e via R2e = b2N2�).The dynamic structure factorS(k; t) = 1Nch Xij hexp (ik � [ri(t)� rj(0)])i (40)is predicted3 to exhibit the scaling behaviorS(k; t) = S(k; 0)f(kzt) (41)if both wavenumber and time are in the scaling regime,i. e. R�1g � k � a�10 and �0 � t � �Z . It is evenpossible to calculate explicit formulas (rigorously for therandom walk Rouse model and using the linearizationapproximation in the Zimm case)3;45;46, which suggestthat there is an exponential dependency on (kzt)2=z for�kt � 1, where �k is the (k{dependent) decay rate.Hence a plot of S(k; t)k1=� against (kzt)2=z should |for the correct model | collapse to a straight line in alog{linear representation. For Nch = 60, the results areshown in Fig. 8 (the plots for the other chain lengths lookquite similar). The data were restricted to the scalingregime 20 � t � 80 and 0:7 � k � 2. These ranges wereobtained from the single{monomer mean square displace-ment, Fig. 5, and from the static structure factor, Fig. 3,respectively. Values of S(k; t) below 0:01 were discarded,for reasons of statistical accuracy. It is clearly visiblethat the simulation shows Zimm rather than Rouse be-havior. A dynamic exponent of z = 2:8 yields the bestdata collapse. Such an e�ective value, which is, due tocorrections to scaling, somewhat smaller than the cor-rect asymptotic one, is quite usually observed, not onlyin simulations8, but also in experiments1.Concerning �nite size e�ects, one has for a �nite boxsize S = S(k; t; L), and scaling is corrupted by the secondlength L in the problem. The inuence can be estimated,in close analogy to the procedure presented in AppendixA, by studying the Akcasu formula for the k{dependentdi�usion coe�cient46;47,D(k; L) = Pij Dk̂ �Dij � k̂ exp(ikrij)EPij hexp(ikrij)i ; (42)which is L{dependent because of the �nite size form (28)of Dij. D(k; L) is related to the initial slope of the dy-namic structure factor viaD(k; L) = � limt!0 1k2t ln� S(k; t; L)S(k; 0; L)� (43)We do not present the details of our semi{quantitativeanalysis here since they have been outlined in Ref. 7 al-ready. The result is a k{independent correction termof order L�1 (note that S(k; t) does contain the overall8



chain motion, for every wavenumber). As the leading{order (L = 1) term is proportional to k in the scalingregime, the conclusion is that scaling is corrupted, butthe relative contribution of the �nite size correction getsweaker with increasing k. For the k ! 0 limit �nite sizecorrections amount to roughly 100%, as has been shownby the calculations for the hydrodynamic radius in Sec.III B. In the scaling regime the corrections are muchsmaller, because it is closer to the kL ! 1 limit. Thisis, in our opinion, the main reason why the data collapseworks so nicely.IV. COMPARISON TO THE CORRESPONDINGMD SYSTEMA. E�ciencySince the system is highly dilute, the CPU cost for theMD part for the polymer chain is negligible, and the lat-tice Boltzmann part uses up practically all computationalresources. It should be noted that this part can be op-timized by choosing appropriate simulation parameters;our choice (a = 1, � = 0:05) is probably not the moste�cient one. Firstly, it is possible to increase the latticespacing somewhat, without substantial loss in accuracy.For example, going from a = 1 to a = 2 reduces the com-putational e�ort by a factor of eight. This increase seemshowever to be slightly too large already; as outlined inSec. IVB, a = 2 produces less accurate data. Secondly,one can try to exploit Eq. 3 by varying � or a while keep-ing � = 2:8, such that the simulation runs at � = �1,for which the LBM algorithm takes a particularly simpleform in which a substantial number of operations can besaved29. Further speedup can be expected if the require-ment � = 2:8 and D0 = 0:076 (for mapping to MD) werereleased. However, we have not checked these questionsin a systematic fashion; in particular, our discussion hasnot taken into account that the limit of stable time steps� depends on both a and � in a non{trivial way. Wehence want to simply state that our present choice of pa-rameters is not yet a fully optimized one; therefore thenumbers given below (for a = 1 and � = 0:05) shouldbe viewed as a lower bound of the e�ciency which themethod can attain.On one EV5.6 processor of a 433 MHz DEC Alphaserver 8400 (for a typical box size of L = 40) our codeobtains 3:1 � 105 grid point updates per second. Inorder to compare this number with the molecular dy-namics system, we note that one grid point correspondsto 0:86 solvent particles for � = 0:86 and a = 1:0.Therefore, the e�ciency of the code in MD units is3:1� 105� 0:86 � 2:7� 105 particle updates per second.This number should be contrasted with the e�ciency ofoptimized MD codes for short{range LJ uids, which is48(on the same machine) 2:1�105 particle updates per sec-ond, using the code described in Ref. 49. Thus, the LBM

would run by a factor of 1:3 faster than MD if the sametime step were used. However, the lattice Boltzmanntime step � = 0:05 is more than an order of magnitudelarger than for the pure MD system: The latter must berun without friction and noise, i. e. in the microcanonicalensemble, in order to strictly conserve momentum (other-wise the hydrodynamic interaction would be screened50).Such a simulation can only be stable on long time scalesif the time step is su�ciently small; according to ourexperiences44, one needs �t = 0:003. Taking these fac-tors into account, we obtain a net speedup of a factor of22, which, as outlined above, can be increased further bychoosing a coarser lattice, i. e. by trading in accuracyfor speed. A detailed comparison with the \competitor"DPD17{23 is highly desirable, but not done here, last notleast because the match of the viscosity is much less triv-ial in DPD21;22. From what we know from the literature,we expect that the two methods would be roughly com-parable in speed, at least by order of magnitude.B. Static and Dynamic BehaviorIn order to check how well the new method producesthe same physics as the original MD model7, from whichall simulation parameters were derived, we focus on thecomparison of the structure factor S(k; t) for both meth-ods, as shown in Fig. 9 (time dependence at constant k),Fig. 10 (k dependence at constant time), and Fig. 11(time dependence for the normalized structure factor).Let us �rst consider the static case t = 0. The corre-sponding plot (Fig. 10, uppermost part) for Nch = 30shows systematic deviations. These manifest for exam-ple in the discrepancies of the static scaling exponent(� = 0:59 for the pure MD simulation, � = 0:62 : : : 0:64for the new method); the chain is more stretched usingthe new method. The absolute values for the static struc-ture factor di�er up to about 25%. Similar results holdif one compares other static quantities like the radius ofgyration or the end{to{end distance. It can be veri�edthat the discrepancies show no signi�cant dependencyon the chain length for the range investigated here (30{60). Moreover, they are not due to a discretization errorin time, as the plots for � = 0:05 and � = 0:01 show.The reason is rather simply the fact that the MD chainis subject to a di�erent potential (intra{chain plus sol-vent) than the LBM chain (intra{chain only). For thatreason, there is a systematic di�erence in the static con-formations, which then, in turn, will also a�ect the dy-namic properties somewhat. For example, the Nch = 60chain has a gyration radius 
R2g�1=2 = 5:79, while thecorresponding MD chain7 has a gyration radius of only4:78. It is hence not surprising that the larger chain isalso somewhat slower, as the comparison of the di�usionconstants con�rms (DCM = 3:39 � 10�3 for the largerLBM chain, and DCM = 4:25� 10�3 for the smaller MDchain). Therefore, in order to achieve a better match of9



static and dynamic properties, it would be necessary tore{adjust the potential for the LBM chain such that theconformations are more similar. This is possible, but notcompletely trivial, and has not been attempted in thiswork. On the other hand, for the dynamics parameters(i. e. the viscosity and the friction coe�cient), it is quiteeasy to achieve matching, as has been described in Sec.III A.Turning to the decay of S(k; t), we �rst note that thedirect comparison of the data (Fig. 9 and 10) yields sim-ilar discrepancies of up to 25% as for the static case. Theoverall agreement is however quite reasonable. In orderto divide out the trivial amplitude e�ect, we also plotS(k; t)=S(k; 0) for three di�erent k values in Fig. 11. Fork in the scaling regime, the agreement is much better,with di�erences of a few percent only. This is not toosurprising, since in this regime the decay rate should inessence be given by k3kBT=� times a numerical prefactorwhich depends only weakly on the details of the chainstatistics46;47. In the long{wavelength regime (inset ofFig. 11) the decay is given by exp ��DCMk2t�, which isnicely con�rmed by the data, and thus the ratio of thedecay rates is just the ratio of the di�usion constants,i. e. there is again a discrepancy of roughly 20 % (this ishardly visible in Fig. 11, due to noise in the MD data).To summarize, we �nd that both methods are well{suited for quantitatively reproducing the dynamics ofpolymer chains in solvent, and both reveal Zimm behav-ior very nicely. The discrepancies which we �nd in thedynamic properties can be directly traced back to thenon{perfect match of the static conformations. If thosehad been matched by an adjustment of the potential,then the agreement would probably be close to perfect.Finally, let us discuss in more quantitative terms theinuence of the lattice spacing. To this end, Fig. 12compares the decay of the normalized dynamic structurefactor of an Nch = 30 chain for three k values, obtainedby running the same system with two di�erent latticespacings a = 1 (as discussed previously) and a = 2. Allother simulation parameters (in particular the box vol-ume, and the monomeric di�usion coe�cient D0 | notthe bare coupling �bare) were left identical. As one seesfrom the �gure, the larger lattice spacing induces decayswhich are systematically slower, by roughly 20 % to 25%.It is thus a question of desired accuracy if one wants toconsider these results as still acceptable or not. The ob-served e�ect goes in the direction which one expects, forthe following reasons: As soon as the lattice spacing ex-ceeds the size of the chain, there will be no hydrodynam-ics left and one will observe pure Rouse dynamics, whichis slower. Of course, this must be a systematic crossoveras a function of lattice spacing. Thus one expects a de-crease of the hydrodynamic correlations with increasinga (also consistent with the reasoning at the end of Sec.II C), and hence a systematic slowdown of the dynamics.

V. CONCLUSION AND OUTLOOKWith this paper we have established a new method tosimulate polymer{solvent systems. The solvent is mod-eled by the lattice Boltzmann method and the polymerby a continuum bead{spring model. The two parts arecoupled using a simple dissipative friction ansatz whichlocally conserves mass and momentum. The driving forceof the system are thermal uctuations which are addedto both the uid and the polymer. The main advantageof the new method compared to MD is its computationale�ciency, which amounts to a factor of 20, or even more,if one is willing to be satis�ed with less accurate results.As described in Sec. III A, it is possible to obtain thephysical input parameters for the new method from re-sults of existing MD simulations. Therefore, one can viewthe present method as a coarse{graining procedure whereone goes in a well{controlled way from small length andtime scales to larger ones. As the results show, this ispossible without substantial loss of information about thestatics and dynamics on the mesoscopic scale.The input which is needed from a more microscopic ap-proach consists of: (i) E�ective potentials for the coarse{grained monomers such that the static chain conforma-tions are roughly reproduced (this was the part to whichwe did not pay much attention, with the result that thisis the largest source for the observed deviations); (ii) thesolvent temperature, density and viscosity, and (iii) themonomeric di�usion coe�cient, from which one adjuststhe coupling.It seems that a lattice spacing which roughly matchesthe chain's bond length and the interparticle distance ofthe solvent is optimal. A lattice constant which is chosentoo large will result in underestimated hydrodynamic in-teractions, as seen from the data with a = 2, while a toosmall lattice spacing will result in a large computationale�ort, plus (if it becomes very small) a monomeric di�u-sion coe�cient which will exceed any realistic value, dueto an e�ective Stokes radius which is too small.We have chosen the parameters of Ref. 7 for our simula-tion and performed a detailed quantitative comparison ofthe results. The main deviations result from insu�cientmatch of the static conformations. The current modelis therefore as appropriate as the original MD model forveri�cation of Zimm dynamics in dilute polymer solu-tions. The dynamic scaling laws (in particular the k3tdecay of the dynamic structure factor) could be observed,and there is good agreement with the decay rates pre-dicted by the Zimm model, if the �nite box size e�ectsare taken into account. Interestingly enough, the decayof the Rouse modes is only subject to an L�3 �nite sizee�ect, while most other decay rates have a large L�1 �-nite size correction, due to the r�1 behavior of the Oseentensor.After having tested the method successfully futurework can now deal with more controversial problems,like the inuence of hydrodynamics on the motion of10



a semi{exible chain or the hydrodynamic screening insemidliute solutions. It should however be kept in mindthat the algorithm in its current version is only suit-able for problems where the polymer concentration islow. The coupling only takes into account the momen-tum transfer between monomers and solvent. Excluded{volume e�ects between solvent particles and monomers,which are very important for processes like, e. g., the pen-etration of solvent into a dense polymer matrix, are notproperly modeled. A study of such topics would requirea generalization of the algorithm which would assign a�nite volume to the monomers.It is a pleasure to thank Ralf Everaers and AlexanderKolb for helpful discussions, and the latter for a criticalreading of the manuscript.APPENDIX A: INITIAL DECAY RATE OFROUSE MODESIn this appendix we outline the details of the calcu-lation of �p, i. e. the initial decay rate of the autocor-relation function of the Rouse modes for p � 1, wherewe treat the general case of a chain whose statistics isdescribed by an exponent � (i. e. � = 0:5 for a randomwalk (RW), and � = 0:6 for a self{avoiding walk (SAW)).We start by stating the result of linear response theory3,�p = � ddt  hXp(t)Xp(0)i
X2p� !�����t=0 (A1)= 1
X2p� Xi;j;�;�;�@Xp@ri� Dij�� @Xp@rj� � ;where Greek indices again denote Cartesian coordinates.Evaluating the derivatives of the Rouse modes, one ob-tains �p = 1
X2p�N2ch Xi;j cos� p�Nch (i� 1=2)� (A2)cos� p�Nch (j � 1=2)�Tr hDiji :From the de�nition of the Rouse modes, Eq. 37, one�nds
X2p� = 1N2ch Xij hri � rji cos� p�Nch (i� 1=2)� (A3)cos� p�Nch (j � 1=2)� ;which is evaluated via (b is the bond length)ri � rj = 12 hr2i + r2j � (ri � rj)2i (A4)0 = NchXi=1 cos� p�Nch (i� 1=2)� (A5)D(ri � rj)2E = b2 ji� jj2� (A6)

(note that the last relation holds only asymptotically forlarge ji� jj). Approximation by an integral yields
X2p� = � b22N2ch Z Nch0 dx Z Nch0 dy jx� yj2� (A7)cos� p�Nchx� cos� p�Nch y� :Furthermore, we use the relationcos� cos� = 12 [cos (�� �) + cos (�+ �)] (A8)and transform to the variablesu = p�Nch (x� y); v = p�Nch (x+ y): (A9)Exploiting the symmetry of the integrand with respectto u, and performing the integration over v, we �nd
X2p� = b2N2�ch2(p�)1+2� f(p) (A10)withf(p) = 1p� Z p�0 duu2� [sinu� (p� � u) cosu] : (A11)For the RW case, f(p) is exactly unity, while for the SAWcase a weak dependence on p remains; however, also inthis case f(p) is close to one. Using the MAPLE softwarepackage, we have numerically evaluated this function; forthe �rst 20 Rouse modes it is tabulated in Table II.The calculation of the numerator of Eq. A2 is per-formed using precisely the same procedure, the only dif-ference being that D(ri � rj)2E is replaced by Tr hDiji,which we calculate using the �nite box size form, Eq. 28:Tr hDiji = kBT��2 Z 1k0 dk hexp(ik � rij)i ; (A12)where we have replaced the summation over wavenum-bers by an integral1L3 Xk6=0! 1(2�)3 Z 1k0 4�k2dk; (A13)k0 = 2�=L denoting the cuto� wavenumber due to the�nite box size.The factor hexp(ik � rij)i describes the structure of thechain, and must, for reasons of scaling1, asymptoticallyhave the formhexp(ik � rij)i = g �k2b2 ji� jj2�� : (A14)11



It should be noted that, for reasons of inection symme-try, g must depend on k2, and that g(0) = 1. We furtherintroduce the constantsA = Z 10 dwg(w2) (A15)B = dg(w2)dw2 ����w=0 : (A16)For example, for a random walk one has g =exp ��(b2=6)k2 ji� jj�, i. e. g(w2) = exp(�w2=6), A =p3�=2, B = �1=6. We now calculate Tr hDiji by per-forming a Taylor expansion with respect to k0 = O(L�1);the result isTr hDiji = kBT��2 � Ab ji� jj� � k0 � B3 b2 ji� jj2� k30�+O(k50): (A17)Interestingly, the linear term does not depend on themonomer indices at all. From this, we conclude that thelinear L�1 contribution to the decay rate exactly van-ishes, due to Eq. A5, and that the leading order �nitesize e�ect is actually of order L�3, i. e. quite small. Inwhat follows we will therefore only concentrate on theleading{order term for an in�nite box. Using the sameprocedure as for 
X2p�, one �ndsZ Nch0 dx Z Nch0 dy 1jx� yj� cos� p�Nchx� cos� p�Nch y� == N2��ch(p�)1�� h(p) (A18)withh(p) = 1p� Z p�0 du 1u� [(p� � u) cosu� sinu] : (A19)This function also exhibits a weak p{dependence, see Ta-ble II, even for a RW. Finally, introducingr(p) = h(p)=f(p); (A20)also tabulated in Table II, we can write the result for �pas �p = A 2�2 kBT�b3 � p�Nch�3� r(p): (A21)The leading power{law dependence on p and Nch is ex-actly what one expects from dynamic scaling. The func-tion r(p) is a correction to scaling. As far as the numer-ical prefactor is concerned, we get (in the RW case) arelaxation which is roughly the same as that calculatedin the textbook by Doi and Edwards3.
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Chain length 30 30 40 60LB time step � 0:05 0:01 0:05 0:05exponent � 0:621 � 0:004 0:620 � 0:002 0:637 � 0:002 0:637 � 0:002
R2e� 94 � 5 90 � 4 134� 4 217 � 10
R2g� 14:3 � 0:5 13:9 � 0:4 20:6� 0:3 33:5 � 0:9
 1RH �1 0:299 � 0:005 0:300 � 0:005 0:261 � 0:005 0:215 � 0:004
 1RH �La 0:1512 0:1525 0:1179 0:0986kBT 1:139 � 0:003 1:2056 � 0:003 1:139 � 0:003 1:139 � 0:003g3-exp.b 0:9951 � 0:0004 1:009 � 0:0002 1:0001 � 0:0001 1:006 � 0:003g1-exp.b 0:6415 � 0:001 0:6747 � 0:001 0:6630 � 0:0006 0:6704 � 0:002DCM 6:533 � 10�3 � 1� 10�5 6:102 � 10�3 � 1� 10�5 4:860 � 10�3 � 2� 10�5 3:387� 10�3 � 1� 10�5D0c 0:081 0:062 0:076 0:054�Z (estimate) 365 380 705 1650TABLE I. Single chain propertiesano error due to complicated calculationbexponent obtained by �tting a power law in the sub-di�usive scaling regime t 2 [20 : 80]ccalculated using Eq. 31
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RW SAWp h(p) = r(p) f(p) h(p) r(p)1 1.040901 1.229939 1.531335 1.2450492 1.155368 1.096321 1.671897 1.5250073 1.186325 1.099453 1.711021 1.5562484 1.203640 1.075431 1.732468 1.6109525 1.213328 1.077224 1.744639 1.6195696 1.220118 1.067140 1.753074 1.6427787 1.224789 1.068286 1.758929 1.6464968 1.228399 1.062691 1.763420 1.6593919 1.231138 1.063494 1.766850 1.66136310 1.233376 1.059915 1.769636 1.66960111 1.235174 1.060514 1.771886 1.67078112 1.236696 1.058018 1.773782 1.67651513 1.237967 1.058484 1.775371 1.67727814 1.239069 1.056638 1.776745 1.68150815 1.240014 1.057013 1.777926 1.68202916 1.240849 1.055589 1.778967 1.68528317 1.241579 1.055899 1.779880 1.68565418 1.242234 1.054765 1.780696 1.68823919 1.242815 1.055026 1.781422 1.68851020 1.243341 1.054101 1.782079 1.690615TABLE II. The functions f(p), h(p), and r(p), as de�ned in the text, for both the RW and the SAW case.
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FIG. 9. The dynamic structure factor S(k; t) for the new method with � = 0:05 (circles) and � = 0:01 (line) compared topure MD simulation (crosses) for three di�erent k values (Nch = 30).
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