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Abstract

A brief general introduction into Molecular Dynamics
methods for polymers is given. For the statics and dynam-
ics of an isolated chain, a simple microcanonical algorithm is
severely hampered by ergodicity problems due to mode con-
servation. Coupling the system to a Langevin heat bath solves
this problem, but also screens hydrodynamic interactions for a
chain in a bath of solvent molecules. Rouse scaling laws should
hold whenever long-range interactions and entanglements are
not important; this is important for controlling the relevant
time scales as well as for checking the correctness of simula-
tion algorithms. As an application, a single chain in a bath of
solvent particles is discussed. In this system, the long-range
nature of the hydrodynamic interaction induces pronounced
finite size effects, which are analyzed using Ewald summation
methods. Furthermore, simulations on the dynamics of entan-
gled melts are considered. Starting from the reptation picture,
we discuss the difficulties to observe this behavior, even with
state—of-the—art hardware and simulation methods. New and
improved data on long runs of melts of chains of up to 350
monomers are presented.

Keywords

Molecular Dynamics, Stochastic Dynamics, Polymer Dynamics, Rouse

Model, Zimm Model, Hydrodynamic Interaction, Reptation Model

*Max Planck—Institut fir Polymerforschung, Ackermannweg 10, D-55128
Mainz, Germany

TCorporate Research Science Laboratory, Exxon Research and Engineering
Company, Annandale, NJ 08801, USA



1 Introduction

Computer simulations in polymer science pursue a two—fold goal. The
first is to understand (and, as a long-term goal, even reliably pre-
dict) the properties of real materials like polyethylene, based on the
details of the chemical structure. Secondly, there are still a number
of unsolved questions which are not related to specific materials, but
rather of a quite general and fundamental nature, and whose solution
is, to our minds, indispensable for real progress in our ability to pre-
dict material properties. While there has been considerable progress
in understanding some aspects of polymer behavior using universal
scaling laws [1], there remain many unresolved problems. To mention
just a few examples: The structure of polyelectrolyte solutions as a
function of fundamental parameters like concentration, chain length,
and charge density, is only understood in limiting cases. Similarly,
the viscoelastic behavior of neutral polymer melts is still under de-
bate: While the reptation model [2] provides a very useful and simple
picture about the microscopic and macroscopic consequences of the
impossibility of chains crossing each other, its predictions are only
partly in agreement with experimental findings — most famous is the
prediction for the viscosity to scale with the third power of the chain
length, while experiments find an exponent of 3.4. Another example
is the dynamics of polymer solutions. There is no clear explanation
why the hydrodynamic interaction, which governs the behavior in
the dilute limit, is completely screened at higher concentrations, al-
though the solution as a whole is of course still a viscous fluid with
hydrodynamic fluctuations [2].

Computer simulations can make very useful contributions to ques-
tions like these, since they can study very simple well-defined model
systems (with many of the experimental difficulties removed) in con-
siderable detail. The main advantage is that all degrees of freedom
are known explicitly, such that questions of microscopic structure
and mechanisms of motion can be answered, while experiments of-
ten have only limited and indirect access to the pertinent quantities.
For example, in a simulation it is very easy to measure the hydro-
dynamic radius of a chain as a static quantity, while light scattering
experiments can only measure it indirectly as a dynamic quantity.
In polymer melts, neutron scattering experiments allow only indi-
rect conclusions about the possible dominance of curvilinear motion,
while in a simulation this can be seen directly. Of course, there are
strong limitations with respect to both system size and (even more
severely) observation time, since the relaxation time increases very



strongly with chain length.

In general, there are two types of computer simulation algorithms,
Molecular Dynamics (MD), based on the solution of Newton’s equa-
tion of motion, and Monte Carlo (MC), based on a Markov process
in configuration space. There is no general answer to the question
which method is “better”; to a large extent, this depends on the sys-
tem under consideration, and, even more so, on the scientific question
which one would like to answer. Some comments on this issue can be
found at the end of Sec. 2.

Since we cannot cover all MD simulations which have been done
on simple polymer models, we restrict ourselves to a brief summary of
two large—scale simulations which have been done on the dynamics of
dilute polymer solutions [3, 4] (Sec. 4) and dense melts [5, 6] (Sec. 5).
In the latter case we mainly present new and improved data which
have not yet been reported elsewhere. Prior to this in Secs. 2 and 3
we discuss the Rouse and Zimm model, respectively, with emphasis
on the methodological implications for simulations.

For more information, we refer the reader to a recent collection
of reviews [7] on polymer simulations, as well as to the proceed-
ings of recent summer schools on computer simulations in general
[8, 9]. For more “technical” information on MD simulation meth-
ods see Refs. [10-12]. Apart from the cases already mentioned, MD
simulations (partly in combination with MC) have been successfully
applied to polyelectrolyte solutions [13-15], networks [16-21], teth-
ered chains [22] as well as polymer blends and block copolymers [23].
An important field whose impact will increase in the future, due
to the advent of modern parallel computers, is the method of non—
equilibrium Molecular Dynamics (NEMD). For an overview, we refer
the reader to the article by Hess in Ref. [8]. This method has been
successfully applied to polymeric liquids both in the regime of dilute
solutions [24, 25] as well as to entangled melts [26].

2 Rouse behavior and simulation algorithms

A valid algorithm for the simulation of the generic features of the sto-
chastic Brownian motion of polymer chains should, in certain limiting
cases, be able to reproduce the behavior predicted by the scaling laws
of the Rouse model [2, 27]. This model starts from the description
of the chain conformation as a self-similar random fractal described
by a universal exponent v [1]: For the end-to-end distance R and

—

the gyration radius Re (R = 7y — 7 for an N-monomer chain, while



R = (1/2)N=232,(r — 7)*) the scaling laws (R?) oc (RZ) o< N
hold, where v = 1/2 for a random walk and v = 0.59 for a self-
avoiding walk in three spatial dimensions. The same scaling holds,
of course, for the relation between monomer—monomer distances and
the corresponding lengths along the chain. For this reason, the single—
chain static structure factor

S(k) = N1y (exp(ik - 73;) ) (1)

satisfies the scaling relation S(k) oc £~'/% in the wavenumber regime
RZ' < k < a~', a being the segment length. The second ingre-
dient of the model is the assignment of a friction constant ¢ to the
monomers, while the third assumption consists of statistically inde-
pendent stochastic monomer moves p; in a short time interval h, such
that

it + h) =7 (t) + ¢ Fh 4 fi. (2)

The force F; on the ith monomer is a thermodynamic driving force
to which in general also entropic effects contribute:

R 0 -
Fy= _373(]({”}) (3)
where
P ({ri}) cexp (=U ({7i}) /ksT) (4)

is the equilibrium distribution function of the chain conformations.
Here it is assumed that the effective potential U contains only short—
range interactions. The stochastic displacements satisfy the usual
fluctuation—dissipation theorem

(7) =0 (5)

and .
(7 @ pi) = 2Dohdy; 1, (6)

where the monomeric diffusion constant D, is related to the friction
constant via the Einstein relation Dy = kgT'/(.

On sufficiently long length and time scales, this model should
provide a wuniversal description of polymer dynamics as soon as
one deals with short-range interactions, uncorrelated displacements,
and flexible polymer chains. The usual “coarse-graining” procedure
[1] unites several subsequent chemical units to an effective coarse—
grained monomer, with an effective friction constant and an effective



interaction. If this is done well beyond the persistence length, the
picture becomes rather simple: For a random walk, P becomes a
Gaussian, and Fiis just the force resulting from entropic springs [1, 2].
In the case of a self-avoiding walk, excluded volume forces contribute
too. Thus the long—wavelength, long—time properties of the original
chain and the coarse-grained chain (which is, in essence, a bead-
spring model) should coincide, and the non—universal parameters of
the latter (bead size and bead friction) just define the microscopic
length and time scales beyond which universal behavior sets in.

From the above equation of motion, Eqn. 2, one immediately
finds for the center of mass of the chain, ]%CM =Nty 7%,

éCM(t+h) ZECM(t)+N_IZ@7 (M)

since the force contributions exactly cancel. This, however, means
that the diffusion constant of the chain is simply a factor of N smaller

than Dy:
D
Doy = WO x R,

(8)

The longest relaxation time, the so—called Rouse time 7z, is when the
chain has diffused its own size, i. e. Doy 7r & R% or

TR X R2G+1/V x Nt+Zv, (9)

This consideration has yielded the dynamic exponent z of the Rouse
model, z = 24 1/v [2]. Explicitly, one has 7 x R x N? (z = 4)
in the random walk case, while 75 & R% o N?18 (z = 3.69) in
the good solvent regime. More generally, z connects relaxation times
with the corresponding length scales. In particular, for time scales
Ty € t < T (70 being a microscopic time, which is roughly given by
the time a monomer needs to feel its connectivity to its neighbors),
the mean square displacement of a monomer behaves sub—diffusively,

g1(t) = ((Fi(t) = 7:(0))?) oc £2/% (10)

(i. e. a t'/? behavior in the random walk case, and t"** for self—
avoiding walks), while for times ¢ > 7 the monomer of course moves
with the overall diffusion of the chain. A similar result holds for the

single—chain dynamic structure factor

S(k, 1) :N—lz<exp{ﬁ€- (7 (1) = 75(0)} ), (11)



which in the scaling regime R;' < k < a™%, 7y < t < Ty satisfies
the scaling relation

S(k,t) = k=1 f(k°1). (12)

Physically, the Rouse model provides a good description of the
dynamics for short—chain melts. In melts, the excluded volume in-
teraction is completely screened [1], such that the random walk case
v = 1/2 applies. This is the only case where the dynamics can be
solved ezactly' [27]. However, from a fundamental point of view, it
remains unclear why the complicated many—body effects in a melt can
be simply replaced by a homogeneous viscous background. In long—
chain melts, entanglement effects become important, and the dynam-
ics is expected to be described by the reptation model [2]. Similarly,
in dilute solutions hydrodynamic effects become important, and the
dynamics is described by the Zimm model [2, 28-30], which will be
explained in more detail below.

However, apart from being of physical importance for real sys-
tems, the Rouse model also provides a well-defined test for simu-
lation algorithms, which should reproduce the above scaling laws in
case one simulates a single chain in “vacuum”, using uncorrelated dis-
placements. For the stochastic dynamics algorithm to be described
below, this detailed test was done in Ref. [31], and similar analyses
have also been done for lattice models which employ local Monte
Carlo moves [32]. Without going into further detail, we just want to
point out here that suitable lattice Monte Carlo models can be used
for a valid description of polymer dynamics both in the Rouse as well
as the reptation regime, and have quite successfully been applied to
the dynamics of polymer melts [33-35].

Note, however, that in either case the correct reproduction of
Rouse behavior is less trivial than one might expect at first glance. In
the case of lattice models [32], simple “kink—jump” moves introduce
an artificial conservation law which results in unphysical dynamical
behavior. The walk is built up from elementary steps l_;, such that the
end—to—end vector is R = > li. A kink—jump move in the inner part
of the chain simply exchanges two subsequent steps [; and l:_H, such
that the set of bond vectors {l:} remains unchanged. This conserva-
tion law, combined with the excluded—volume constraint, prevents, in
essence, the annihilation of kink—antikink pairs, which can hence only
be removed via diffusion out of the chain. Therefore, a reptation—like

LOften the term “Rouse model” is only used for this special case. However,
we use it here more generally to denote a dynamic universality class.



scaling 7 o« N? (see Sec. 5) results, which is of course unphysical for
single-chain systems [32, 36]. It turns out that the inclusion of 90°
“crankshaft” moves (on the three-dimensional simple cubic lattice)
is sufficient to relax the chain in a Rouse-like way [32], since this

—

destroys the conservation of the set of bond vectors {ll}

Similarly, for the continuum Molecular Dynamics, a single-chain
simulation quickly runs into problems of ergodicity, very similar to
those which were found by Fermi, Pasta, and Ulam in the pioneer-
ing days of computer simulations [10]. The reason for this is that
any model for a flexible polymer chain can, by coarse—graining, be
mapped onto a bead-spring model (if it is not one already). Such a
Hamiltonian is in turn very close to a harmonic system. Harmonic
systems not only exhibit simple energy and momentum conservation,
but rather the amplitude of every single normal mode is separately
conserved. This means that the phase—space trajectory, instead of
scanning the whole energy hypersurface, only visits a small subset of
states such that time averages differ from microcanonical ensemble
averages. For a weakly anharmonic system, the conservation laws
of course no longer hold exactly. Nevertheless the mode amplitudes
decorrelate only very slowly, such that one needs extremely long runs
to obtain reasonable sampling properties. Of course, all these con-
siderations do not hold for dense many—chain melts [5, 6], or a single
chain surrounded by solvent particles [3, 4, 37, 38]. In these cases,
the interaction with the surrounding particles provides sufficient non-
linearity to ensure good ergodicity.

Let us illustrate the effect of approximate mode conservation by
a simple example. We model a two—dimensional ring polymer as a
chain of 16 beads with mass m. Between each monomer, there is a
purely repulsive Lennard—Jones potential

4e ()7 = (2 £ L] p <2,
ULJ(r):{O (7= () +4] s (13)

to model the excluded volume interaction. This potential defines the
unit system via setting the mass scale m, the length scale o, and
the energy scale £ to unity, such that time is measured in units of
7 = (mo?/2)Y/?. Bonded monomers are connected along the chain
via a FENE backbone potential

k., r?
Uen(r) = —5 1 In (1 — ?) : (14)
0

which for small distances behaves like a harmonic spring, while di-
verging for r — R,. Parameters which have proved rather useful are
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Figure 1: The total potential between two bonded monomers, result-
ing from the repulsive part Uy ; and the attractive part U.;,. Energies
are in units of ¢, distances in units of o.

ko?/e =30, Ry/o = 1.5. They have also been used in the simulation
of melts, and are based on the following considerations: one would
like to make k rather large and R, small, in order to introduce a
high energy barrier for self-crossing (this is particularly important in
three dimensions). However if k is too large, the interaction between
two monomers which are attached becomes very stiff resulting in high
frequency modes which can only be integrated accurately with a very
small time step. The parameters given are optimized with respect to
both properties [31]. The total bond potential is shown in Fig. 1.

Figure 2 shows results of the time development of the ring poly-
mer analog of the end-to—end distance. First the system is run at
temperature T' = 1.0¢/kp with stochastic dynamics based on the Ver-
let algorithm (details see below), using a time step A = 0.017 and a
friction constant ( = 0.5¢7 /02, which are also typical values for melt
simulations. ? At time t = 100007 the coupling to the heat bath
is turned off (( = 0) and the system is run microcanonically. While
the fluctuations of R? are quite efficiently sampled for nonzero (, it
varies on a much slower time scale for { = 0.

At this point, it is necessary to explain the details of the simula-
tion algorithms. Let us start with the case of purely microcanonical
MD. The equations of motion for positions 7; and momenta p; are

d d .,

—F = pi/my —pi=F,. 15
5T = pi/m i (15)

2Tests have shown that when coupled to a heat bath, a melt simulation remains
stable even for h as large as 0.01357.
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Figure 2: Time development of R? with R = N2 — 7o of a 16—
monomer ring polymer. For 0 < ¢ < 100007 the system is coupled
to a heat bath via friction and noise, while for ¢t > 100007 the chain
is run without such a coupling.

In recent years, it has become clear that the Verlet algorithm is a
particularly well-suited differential equation solver for Hamiltonian
equations of motion, as given above [39]. This is because it is time-
reversal symmetric and conserves the phase—space volume, just as
the real dynamics does. A systematic drift in, say, the total energy
can therefore not occur, since this would mark the two directions of
time as not equivalent. Hence, the algorithm is exceptionally stable,
allowing for rather large time steps.

A particularly straightforward way to see this is provided by the
Liouville operator formalism, where for simplicity we consider one
coordinate z with corresponding momentum p, such that the actual
trajectory is given by &(t), p(t), starting at time t = 0 at z = x,,
p = po. The corresponding phase—space density is then

3z — &(t)3(p — p(t)) = exp(—iLt)d(z — 20)d(p — po),  (16)

where the Liouville operator is given by
— il =—il, —il,=——— — F(z)=. (17)

Since L is self-adjoint,

[da [ riig = [do [ diye. ()



the time evolution operator exp(—iﬁt) is unitary, which shows di-
rectly both phase—space volume conservation as well as time—reversal
symmetry. The Verlet algorithm replaces this, for a small time step
h, by

S(h) = exp(—iL,h/2) exp(—iLyh) exp(—iL,h/2), (19)

which is manifestly time-reversal symmetric, and unitary, corre-
sponding to the velocity—Verlet updating scheme:

et h) = x(t)—i—h]%—l—%F(x(t)) (20)
PR = P+ S [P+ F et h)]. (1)

This is the simplest algorithm which is “symplectic”, i. e. has
the desired properties of time-reversal symmetry and phase—space
volume conservation (for each conjugate pair of coordinate and mo-
mentum separately). Higher—order symplectic schemes have been
constructed on the basis of the same formalism [40]. However, al-
though such an algorithm would permit a larger time step, it would
also need several force calculations per time step, and is therefore not
considered very useful for MD applications.

Improved stability (i. e. even larger possible time steps) is ob-
tained if one couples the system via friction and noise to a heat bath,
i. e. simulates a Langevin equation in a “stochastic dynamics” sim-
ulation [41]

&=p/m p=F—C(p/m+f. (22)

Here, we consider again for simplicity only one degree of freedom,
and have introduced a parameter {, which is the friction constant
which controls how fast the system relaxes into equilibrium — the
simulation scheme actually produces states which are distributed ac-
cording to the canonical ensemble. The temperature results as the
ratio of noise strength to friction, via the fluctuation—dissipation the-
orem: The stochastic force f is a random variable satisfying (f) = 0,
(f()f(t)) =2CkpTé(t—t"). For more information on Langevin equa-
tions, and the corresponding Fokker—Planck equation, see e. g. Ref.
[42].

A possible numerical implementation starts from the observation
that in the limit ¢ = 0 the Langevin simulation reduces to standard
microcanonical MD, and that hence one should use the Verlet algo-
rithm also in the “noisy” case. One simply replaces the term Fh,

10



which is the displacement in momentum space in the microcanonical
case, by

Ap=Fh—¢Lh 4 J2hgTh (23)
m
where r is a random number with (r) = 0, (r?) = 1. The pref-

actor of the stochastic term is chosen such that the mean square
stochastic momentum displacement has just the value prescribed by
the fluctuation—dissipation theorem. It should be pointed out that
the details of the distribution function of r do not matter, as long as
the first two moments are zero and one, respectively, and the higher
moments exist. This is a straightforward consequence of the Central
Limit Theorem [43]. Thus, for simplicity, one should use uniform
random numbers.

The reason why this algorithm is even more stable than simple
microcanonical MD with the Verlet algorithm is that the stochastic
dynamics thermostats every degree of freedom individually. Loosely
speaking, the noise will “heat up” particles which are “too cold”,
while the friction will “cool down” particles which are “too hot” and
hence would have a tendency to cause instabilities, due to too inaccu-
rate simulation of collision—like processes. This is in marked contrast
to the Nose—Hoover thermostat [44], in which only the overall system
is thermostatted, without additional stability.

Let us now compare the method to other simulation approaches.
The “big competitor” is, of course, Monte Carlo (MC) simulations.
MC methods are amenable to a number of tricks, which, in many
cases, allow for a more efficient sampling of static properties. To men-
tion just a few, one can try to “shortcut” the slow physical dynamics
by accelerated simulation schemes (in the case of single self-avoiding
walks, the pivot algorithm is a typical example; see the contribu-
tion of Sokal in this volume and in Ref. [7]). Moreover, there are
several reweighting schemes available (umbrella sampling, simulated
tempering, multiple Markov chains, etc. [8, 9]), which are, in part,
also covered in this volume. However, for MC to also obtain realistic
dynamic information, one has to follow the slow physical path. In
this case MC is no longer generally superior to MD, particularly for
simulations in the continuum. MC codes tend to be slightly more
difficult to vectorize and parallelize than MD programs. Good ef-
ficiency of MC algorithms is often only obtained when applied to
lattice models; however, in many cases the continuum provides con-
siderable flexibility which is hard to attain on a lattice. In particular,
one can easily simulate other ensembles including constant pressure
or constant stress following the schemes first proposed by Andersen
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[45] and Parrinello and Rahman [46]. Moreover, MC on a lattice with
local moves requires sufficient amount of free sites in order to keep
the acceptance rate high; i. e. for very dense systems a continuum
simulation is usually more efficient. The only way out would be to
employ an event—driven scheme on the lattice [47], which is however
rather complicated.

Similar comments also hold for the comparison with Brownian
Dynamics, in which one simulates the overdamped Langevin equation

Co= ) (24)
dt

(same meaning of symbols as above). This algorithm is often ham-
pered by large discretization errors, and is in spirit quite similar to
a MC simulation. One can also combine Brownian Dynamics with
Monte Carlo in the so—called “Force-biased Monte Carlo” scheme,
where the Brownian Dynamics step is re-interpreted as a Monte Carlo
trial move, and, with certain probability, accepted or rejected in or-
der to satisfy detailed balance [48]. However, there are cases where
the physics simply requires some variant of MD algorithm, and MC
cannot describe the phenomena. Loosely speaking, this always occurs
whenever momenta are important; this is usually the case whenever
hydrodynamics (i. e. momentum transport) plays a role. An impor-
tant case is the dynamics of dilute polymer solutions, where hydro-
dynamic interactions dominate the Brownian motion of the polymer
chains: The fast momentum transport mediated by the solvent par-
ticles introduces dynamic correlations into the monomers’ stochastic
displacements, such that one basic assumption of the Rouse model,
Eqn. 6, does not hold. Instead, the pertinent model is a modified
Rouse model which includes hydrodynamics, the Zimm model [2, 30],
which will be described below. In this case, it turns out that even
stochastic dynamics alters the dynamics so strongly that it cannot
be used to obtain dynamical data.

A last important point concerning simulation methods is, of
course, the optimization of the programs. For MD the most time—
consuming part is the force calculation. We found it very efficient to
use a standard Verlet table, which stores the particle pairs within the
interaction range r., plus an additional safety margin r,. This table
is reconstructed as soon as a particle has moved more than r, /2, and
for this reconstruction we first decompose the system into sub—cells
with linear size > r. 4 r,, such that only the neighboring cells have
to be searched and the algorithm scales linearly with the system size.
It is possible to set up the table in such a way that the procedure

12



can be completely vectorized; for more details and a variant of the
approach see Refs. [49, 50]. Meanwhile, the scheme has also been
quite efficiently parallelized using a geometric decomposition.

3 Zimm model, failure of stochastic dynamics
for dilute solutions, and long—range interac-
tions

As already mentioned in the previous section, the momentum trans-
fer through the solvent introduces correlations into the stochastic
displacements. The standard theory [2] describes this effect via mod-
eling the momentum transport through the solvent by low—Reynolds
number hydrodynamics of an incompressible fluid, i. e. the Navier—
Stokes equation for the solvent flow field 4

0 n

—

—id=-Ad 25

where n is the solvent viscosity and p the mass density. The parame-
ter 17/p, the so—called kinematic viscosity 7|, has the dimension of a
diffusion constant; from the formal analogy of Eqn. 25 to the standard
diffusion equation it is obvious that the momentum propagates diffu-
sively with a “diffusion constant” ny;,,. For an almost incompressible
fluid this mechanism is much faster than the monomer motion (i. e.
Nkin > Do). One can therefore still describe the polymer motion
via stochastic hops whose correlations are determined just by the
instantaneous monomer positions.

Instead of Eqn. 2 one now has

F(t+h) =)+ Sty Fih+ (26)
J
with
(i) =0 (27)
and .
(p; @ p;) =2 Dij h, (28)

A4
where diffusion tensor D;; and mobility tensor ﬁij are related via
A4 Ad
Dij=kgT t;;, while the Oseen tensor

0= T (1 — 6. 1 o Tij O 29
M= (" 0 1 +( ”)877777‘2;7 1 +—— (29)
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is obtained from the solvent flow field at 7; induced by a point force
at 7.

Following the same reasoning as in the Rouse case to obtain the
center—of—mass diffusion constant, one finds the Kirkwood formula

Dy kBT< 1 >
D=—+—(— 30
N + 6mn \Ry /'’ (30)

where the hydrodynamic radius of the chain is given by

()= w5 o

Strictly speaking, this formula holds only in the short—time limit
of Eqn. 26: The deterministic force contribution to the center—of—
mass displacement is now N~} > ,ljij F}h, which, in contrast to the
Rouse case, does not vanish exactly. However, this term scales only
linearly with h, while the stochastic contribution is proportional to
Vh. Hence, for short times this latter part dominates and results
in Eqn. 30. The difference between the short-time and long—time
diffusion constant is rather small, and the important result is that the
diffusion constant now is inversely proportional to the hydrodynamic
radius Ry, which is just another measure of the chain dimension.
Hence, D o< R;" (note however that there are very strong corrections
to scaling), and, in strict analogy to the Rouse case, = = 3. This
means that all the dynamic scaling laws which have been derived
in the previous section hold, but with a dynamic exponent which
is smaller due to the hydrodynamic correlations which, on average,
speed up the motion of the chain. For example, the subdiffusive
behavior of the mean square displacement is now governed by a /3
law irrespective of chain statistics, while in the Rouse case one has
t'/2 or %% for random walks and self-avoiding walks, respectively.

It is important to note that a simulation which takes both the
monomers as well as the solvent particles explicitly into account and
also uses stochastic dynamics for every particle cannot describe the
hydrodynamic correlations properly. This is immediately evident
from the fact that the stochastic dynamics destroys the global mo-
mentum conservation, which is the basis for hydrodynamic behavior.
Usual Newtonian dynamics for the particle velocities ;,

S = F/m, (32)
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directly leads, via coarse—graining, to the Navier—Stokes equation for
the velocity flow field 1,

S
= <A 33

and its Oseen type Green’s function (in Fourier space),

o 1 kT [ ,-l—k®k o
Conversely, Langevin dynamics,
d_ = .7
%Ui:Fi/m_ (¢/m)i; + fi/m, (35)

induces a modified Navier—Stokes equation

0
Oazai-Sa (36)
ot p m

The frictional term survives the coarse-graining, while the random
term averages out. Hence, the original Laplacian is replaced:

Asa-P A (37)
nm

and the k% in the diffusion tensor is replaced by k? + k2. Therefore,
the hydrodynamic interaction is screened on a characteristic length

scale

bh=rt= |, (38)

28

in close analogy to electrostatic screening. However, this means that
the most important property of the hydrodynamic interaction, its
long-range nature, is lost. The intuitive picture of this mechanism is
that collisions from particle to particle do not propagate arbitrarily
far, but rather are dampened out by the friction and noise, such that
after a certain number of events, described by the length scale [y, the
memory of the original momentum is lost. A more formal derivation
of this result is found in Ref. [51].

If one carries out a simulation (i. e., studies Brownian motion
in an explicit bath of solvent particles), the MD algorithm has, of
course, only to deal with short-range interactions. However, the data
analysis is severely afflicted by the long-range character of the hydro-
dynamic interaction. Quite generally, the problem about long—range
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interactions is that the simulation box is practically always too small
to accomodate them by just the “minimum image convention”, which
takes into account only the interactions within the box itself, and the
immediately neighboring periodic images. Rather, one has to sum
up the interactions with the infinitely many periodic images. This is
usually done by the Ewald summation method [52], which splits the
interaction up into a first part, which decays quickly and is summed
up in real space, and a second part, which decays slowly but varies
smoothly and can hence be summed up efficiently in Fourier space.
Such an efficient algorithm is extremely important for the simulation
of charged systems [13, 14], but also for the analysis of dynamic sim-
ulation data of a single chain in solution Ewald sums have proven
extremely useful. In order to take the long—range nature of the hy-
drodynamic interaction into account, one has to replace the Oseen
tensor by its Ewald sum analogue, the formula of which has been
given in Ref. [53]. This redefines the hydrodynamic radius, which
then becomes an L-dependent effective Ry (L), where L is the linear
system size. Since the periodic images effectively increase the chain
size, and since the 1/r behavior of the Oseen tensor introduces a 1/L
finite size effect, one has, in leading order [4],

(Ry'), = (Ryg'),_.. — const.Rg/L. (39)

As will be demonstrated in the following section, this finite size cor-
rection is extremely large for systems which can be simulated today,
since it is simply impossible to make L orders of magnitude larger
than Rg. Even for the particles of a simple fluid this finite size effect
of the diffusion constant can be observed, although it is of course
much weaker than for a polymer chain. It was shown in Ref. [4] that
the data both for solvent particles as well as for the polymer chain
are in quantitative agreement with the hydrodynamic theory, with
essentially no adjustable parameters.

4 A single chain in a bath of solvent particles

In this section, we briefly summarize the main results of an MD simu-
lation designed to test the predictions of the Zimm model as carefully
as possible. A detailed account has been given in Ref. [4], and hence
we restrict ourselves only to the main points.

A single chain of up to N = 60 monomers was simulated in a
bath of up to 7940 solvent particles. To model the excluded volume
interactions, the same repulsive Lennard—Jones potential, Eqn. 13, is
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introduced between all particles. Since this potential is the same
for all particles, this corresponds to an ideal good solvent. The
chain structure corresponds to a self-avoiding walk. The temper-
ature T = 1.2¢/kp, and the fluid density was chosen rather high
(po® = 0.864), in order to approximate the ideal of incompressible
flow as closely as possible. The system size was L = 210, and self-
overlap effects in the static structure were not observed (R /L =~ 0.2).
The FENE potential parameters were slightly different from those for
melt simulations (ko?/e =7, Ry = 20), and the monomer mass was
twice the solvent particle mass. The exact choice of these parame-
ters is of technical relevance but not important for the main results.
While stochastic dynamics was used to generate starting states, the
dynamics was analyzed from microcanonical runs.

The most important result is that the Zimm prediction z = 3 is
verified. Figure 3, showing the scaling of the dynamic structure factor
for N = 60, demonstrates this very clearly. However, when one tries
to test the Kirkwood prediction for the diffusion constant, Eqn. 30,
finite size effects resulting from the long—range nature of the hydrody-
namic interaction show up very clearly. The actual diffusion constant
is obtained from the mean square displacement of the center of mass,
while the solvent viscosity is calculated via Green—Kubo integration
of the time autocorrelation function of the off-diagonal elements of
the pressure tensor (see, e. g., Ref. [54]). Moreover, the hydrody-
namic radius is obtained via direct averaging of ri_jl as a purely static
quantity, and Dy is estimated via the diffusion constant of the solvent
particles. The naive comparison fails completely, the actual diffusion
being much slower than the naive Kirkwood prediction. However,
when one takes into account the periodic images, i. e. replaces Ry
by its Ewald—sum corrected value, the agreement between theory and
simulation is nearly perfect. Figure 4 demonstrates that the finite size
effect is extremely large. A system which would be large enough to
suppress the finite size effect down to 10% would have to contain
3 x 10° solvent particles for the shortest chain N = 30!

A similar analysis can be also be done for the generalization of the
Kirkwood formula to finite wavenumbers. As Akcasu et al. [55-57]
have shown, the Zimm dynamics, Eqn. 26, results in an initial decay
rate of the dynamic structure factor

- = = .
sl Bl Do)
dt S(k,0) ], i) <exp(ilg- Fm)>

This defines a k—-dependent diffusion constant D(k), which, in the

(40)
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Figure 3: The dynamic structure factor of the N = 60 chain, in the
scaling regime 0.7 < k < 3 and 20 < t < 80, plotted in the scaling
form k¥ S(k,t) vs. k°t, using 2 = 2+ 1/v = 3.7 (Rouse scaling) in
the upper plot, and z = 3 (Zimm scaling) in the lower one.
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Figure 4: The effective inverse hydrodynamic radius of the N = 30
chain, as a function of inverse linear box size, L=!. These data were
obtained by putting the configurations of the chain into virtual boxes
of size L, and evaluating the Ewald sum average for Ry in each box.
The condition of the actual simulation is indicated by an arrow.

0.08

0.06 r

A
A

!gx;ﬂ .‘n
0.04 +

D(K)

0.02 t o

0.00 . . .

0 2 4 6

k
Figure 5: The k-dependent diffusion constant D(k), as defined in
Eqgn. 40. Full symbols: Upper bound on D(k), obtained from the
actual dynamics. Open symbols: Evaluation of the rhs of Eqn. 40,
And

using the Ewald sum for D;;. Data for various chain lengths are
shown: N = 30 (circles), N = 40 (triangles), and N = 60 (diamonds).
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limit & — 0, reduces to the center—of-mass diffusion constant. In
the same limit, the right hand side reduces to the Kirkwood formula
for Dcypr. The comparison is shown in Fig. 5. One sees that the
dynamics data, while in good agreement with the static prediction
for k — 0, differ considerably for larger k from the Akcasu prediction.
We believe that this is due to more complex dynamics, which cannot
be described by simple hydrodynamics, since the length scales are
too close to the microscopic ones (note that the typical interparticle
distance is of the order of 1, in our units). For a more detailed
discussion, see Ref. [4].

5 Entangled melts

In a melt of identical chains the motion of a monomer is, similar to
solutions, the result of many complex interactions. The connectivity
of the chain plays the same role as before, as a monomer is coupled
to its chemical neighbors. The structure of the “solvent”, however, is
much more complicated, as it consists of other polymer chains rather
than small solvent particles. This has many drastic consequences. A
fortunate one is that hydrodynamic interactions can be neglected for
the study of the monomer motion. The chains strongly interpenetrate
and screen the excluded volume interaction. Thus one recovers the
random walk exponents for the static properties, e. g.

(R*(N)) & N. (41)

For the dynamics the situation is more complicated. The motion of
the monomers is a result of a complicated interplay of collisions and
(temporary) constraints. Beyond the connectivity of the monomers
under consideration as well as all the other collision partners, the
chain topology should play a dominant role. However, as it turns out
experimentally, for short chains all these correlations in the forces
acting on the monomers average out to a thermal noise which fluc-
tuates very fast compared to the characteristic time for a monomer
to diffuse its own diameter. Hence the Rouse model provides a very
good description of the dynamics of short polymer chains in a melt
of other similar chains. This is an experimental justification of this
model rather than a derivation from first principles. It is (probably)
impossible to prove the picture, and the Mori-Zwanzig projection
operator formalism, which has been applied to the dynamics of poly-
mer melts in the work by Hess [58] and Schweizer [59-62], should
be viewed mainly as the proper mathematical language which allows
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one to express the physical assumptions as approximations to the
full many-body dynamics. However, a rigorous justification of these
approximations is not available.

For such melts one finds for the diffusion constant, the viscosity,
and the longest relaxation time, respectively, the Rouse scaling laws

kgT

D = I (42)
n x N (43)
TR o N2 (44)

While the center of mass is expected to follow a standard diffusion
behavior, one finds for the monomers

1/2
a1 (t) = ((F(0) ~ 7(0))?) { W T )
Here 74 is the microscopic time, which characterizes the onset of the
chain constraints. For intermediate times ¢, () « t*/* (Eqn. 10) with
z = 4, while for large times the free diffusion takes over.

This is observed, with surprisingly small deviations, for all poly-
mers. When the chains become much longer, i. e. when they signifi-
cantly exceed a characteristic molecular weight M, (or characteristic
number of monomers NN, ), the dynamics is dramatically slowed down.
The viscosity changes from n o« N to n o« N3% and the diffusion
constant from D oc N7t to D o« N=2. This characteristic molecular
weight, which can, via dy = R(V, ) x Nel/z7 also be viewed as a length
scale dp, differs from polymer to polymer, e. g. M. ~ 850 for poly-
ethylene (PE), and M, ~ 13500 for polystyrene (PS) for 7' = 413K
[63]. M. turns out to be extremely temperature—dependent. With
increasing T the chains coil more strongly (i. e. R? decreases), lead-
ing to an increased entanglement molecular weight. For example, at
T = 448K the entanglement molecular weight of PE is M, ~ 1350,
while for PS M, ~ 18000 at 7' = 485K [64, 65]. There have been
many attempts to describe this dynamics. The most successful so far
is the reptation model [2]. For short chains the connectivity is respon-
sible for the screening of the hydrodynamic interactions. The chains
must still be free enough to allow for a slowed down but still isotropic
Rouse-like motion. As the chain length increases, the topological con-
straints, formed by the surrounding chains on intermediate time and
length scales, live longer than the time which one monomer needs to
escape this “cage” via Rouse-like motion. According to this picture,
actually originally applied to networks, the chain is forced to move
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Figure 6: Center—of-mass diffusion constant, normalized by the
short—chain Rouse value, as a function of normalized chain length
N/N.. Data taken from this work (closed circles), from MC simula-
tions of the bond fluctuation model at volume fraction 0.5 [33, 34]
(open squares), and from hard chain MD simulations by Smith et al.
[66, 67] at volume fraction 0.45 (open circles).

mainly along its own coarse-grained backbone (one coarse-grained
bond corresponds to N, monomers). This dominance of curvilinear
motion leads to a completely different behavior, which is well sup-
ported by both simulation and experiment.

The reptation scenario can be described as follows. The chain
moves in a diffusive way along its own backbone, while the curvi-
linear diffusion constant D,,,, is proportional to N~!, due to one—
dimensional Rouse motion. The longest relaxation time, the so—
called “disengagement time” 7,, is determined by the requirement
that within 7; the chain has moved its own size. For curvilinear
motion, this means however D.,,,7; o N2?. Thus one concludes
74 x N3 o< RS, i. e. z =6 in the language of the preceding sections.
Hence the viscosity in the reptation model also scales as n oc N3 [2],
while experimentally one finds 1 oc N34, which is commonly viewed
as the biggest deficiency of the model, the reasons being still under
debate. There are several attempts to include chain end effects (con-
straint release [58], double reptation [68-72]), as well as alternative
models, which do not explicitly take into account the non—crossability
of the chains (in particular the mode-mode coupling theory [59-62]).
However the most successful so far is the reptation concept. In par-
ticular, the experimental finding D o N~2 is in very good agree-
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ment with the reptation model. Since the diffusion constant in real
space must satisfy Dry o< R%, D « Rz* o« N~2. Figure 6 shows
this crossover from Rouse behavior to reptation, for data taken both
from MD as well as MC simulations. Since, however, most experi-
ments can either test only single aspects of the reptation scenario or
give rather indirect information, simulations should help to under-
stand the motion of highly entangled polymers. On the other hand,
simulations are somewhat limited in the range of chain lengths and
the time regime they can study. It is therefore particularly impor-
tant for simulations to understand the implications of reptation on
the intermediate time scales.

For the anisotropic motion of the chain and of the monomers,
the reptation model can be described as follows. The topological
constraints are pictured in terms of a constraining tube with diameter
dp o N2?. There are three important crossover times involved:
7. x N2 7r o« N? and 74 o N3/N,. For N > N, 7. < 7r < 74, while
for N ~ N, all three times coincide. For short chains, N < N,, one
has Rouse behavior and hence only one time 7. The entanglement
time 7, is the Rouse time of a subchain of length N_; for times smaller
than 7. the monomers do not feel the constraints and hence have
Rouse-like motion. The transversal fluctuations of the monomers in
the tube have relaxed on the time scale of the Rouse time 75, and
for times larger than 7z the motion is completely dominated by the
reptation mechanism, i. e. curvilinear diffusion. Finally, after the
disengagement time 7, the motion is simply free diffusion. In terms
of the mean square displacement of a monomer, ¢, (t), as defined in
Eqn. 45, and the mean square displacement of the center of mass,

() = ( (Fou(t) = e () ), (46)

this picture means that for ¢ < 7, (disregarding the microscopic time
7o) one has simply Rouse behavior, i. e. g;(¢) o t/? and g5(t) o t.
For ¢ > 7 the chain moves along its backbone, while fluctuations
within the tube give only negligible contributions. For such a type of
motion, ¢3(t) o t, with the asymptotic diffusion constant D o« N~2
(this can be shown very easily by considering a “slithering snake”
type of motion, where a randomly chosen segment at one of the two
ends is removed and attached at the other end), while g, (¢) oc t'/2.
This latter behavior is due to the fact that a motion of the chain
along the backbone by a distance [ corresponds only to a distance of
o v/ in real space, due to the random walk structure of the backbone.
Of course, this holds only up to 7, when the overall diffusion takes
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over, such that ¢, (¢) ~ g3(t) o<t for ¢t > 7,. Finally, for the crossover
regime 7, < t < T we note that the results obtained so far imply

g1 (1) o< di x N, (47)
and
r 1/2 Ne 1/2
() = g1 () (-R) x N (—) x (NNY?, (48)
Td N
while
93(7e) < 7./N < N2/N (49)
and
TR
93(Tr) X g5(74) (T—) x N.. (50)
d

This is only consistent if in the crossover regime the time behavior is
g1 (1) oc tY/* and gs(t) o t1/2.
Let us summarize these findings:

2 o<t <7, x N2
Y <t < TR x N?

t 51
gi(t) o< 1?2 rp<t<Tix N3/N, (51)
tt T <t
and
tt t<T1.x N2
gs(t) x ¢ 1?2 . <t<TRx N? . (52)

tt TR <1

Due to the detailed sequence of crossovers given by Eqn. 51, ¢, (¢)
is clearly one of the most important quantities to measure. In order
to obtain maximum statistics, one would of course average it over all
monomers in the system. However, the ends of the chain fluctuate
much more strongly than the monomers near the center. Since the
theoretical models are for the asymptotic limit of very long chains,
it is important to minimize the effect of the chain ends, since the
chains which can presently be studied on modern computers are not
so highly entangled. Thus, for the remainder of this paper, we average
the displacement of the monomers only over the inner monomers,
excluding the chain ends. For N even, we usually average over the
inner 5 monomers,

N/2+2
a) =5 > {0 -7©)). 53)
i=N/2-2
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Other quantities of interest are of course the mean square dis-
placement of the center of mass, ¢3(¢), whose long-time behavior
yields the diffusion constant D = lim,_,., g5(t)/(6t), and the mean
square displacement of a monomer relative to the motion of the cen-
ter of mass,

N/2+2

> <(ﬁ(t)_J§CM(t)—5(0)+J§CM(0))2>7 (54)

i=N/2-2

92(t) =

| =

where, for the same reasons as above, we restrict our attention only
to the inner monomers. Usually it was assumed [6, 34] that g.(f)
follows the same time behavior as ¢, (t) up to 7x, while for ¢ > 75 it
was usually assumed to be constant. This corresponds to the sequence
t1/2 114 %, However this leads to an inconsistency: In the long-time
regime, the correlation to the original conformation is lost, such that

o N/2t2 B )
gz(t—>oo):g Z <(F}—RCM) >o<<R2G>o<N. (55)
i=N/2-2

Thus if ¢2(¢) were already constant at 7x, this constant should be
92(Tr) = g1(TR) (NNe)l/2 < N (cf. Eqn. 48, [6]). Therefore,
we conclude that ¢,(¢) should follow the behavior of g, (t) up to the
disengagement time 74, i. e. that a second t'/? regime should occur
between 7r and 7,. However, so far no indication of this regime has
yet been observed. We believe that this is due to a strong “smearing
out” of the time behavior, induced by the final crossover to the t°
regime.

All three displacements allow the definition of a characteristic
relaxation time [34] via

g1(m1) = (RE), (56)
() = S(R2) (57)
93(73) = g2(73). (58)

This is motivated by the observation that in the ideal Rouse model
for noninteracting Gaussian coils all these relaxation times are pro-
portional to each other and the Rouse time 7, 7, = C;7r, where
C ~ 0.2410, ¢y ~ 0.2033, and C3 ~ 0.75. Taking the ratio of these
times to eliminate the unknown quantity 7g, the Rouse model pre-
dicts that 75/7 ~ 0.846 and 75/7; ~ 3.112. We compare these ratios
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to the results from our MD simulations and from the bond fluctua-
tion simulations of Paul et al. [34] below. The reptation prediction
is 7 o Ty o T3 < 74 o< N3, where we again have assumed that the
final crossover of ¢,(t) occurs at 7.

In order to observe reptation unambiguously, one should make
the ratio N/N, as large as possible. Firstly, one should try to make
N, small, i. e. simulate the system at high density, since then the
tube diameter is expected to be small. Secondly, one should try to
simulate long chains. This is however limited by several severe con-
straints. Large N also means large R, and this in turn means a large
simulation box. In order to avoid artifacts both in the statics and
the dynamics due to the chain seeing itself via the periodic boundary
conditions, one chain has to fit nicely into the box. A reasonably
large system size is certainly necessary if one attempts to prove or
disprove by simulation recent ideas about correlation—hole effects on
the long—time dynamics [73]. We view a system size of L =7 — 10R
as the minimum size where one can assume to be rather safe; how-
ever, we have usually not been able to reach this goal. Hence, the
volume is L3 o« R2, o« N3/2 i. e. the number of chains, M, scales
as L3/N o« N'/2. To give an example from our standard MD model,
(R%Z) = 0.28(N — 1)o?, i. e. Rg/o = 3.6, 5.2, and 7.5 for N = 50,
100, and 200, respectively. L = TRs would require M = 270,410,
and 610 chains, which nowadays could just be done with a big parallel
machine. The largest system (with respect to number of monomers)
which has been simulated so far contained M = 120 chains of length
N =350 in a box of L = 36.70,1i. e. L/Rgs =~ 3.8 (in practice, we
traded in some “safety” with respect to system size for the ability to
go to longer chains at all). For the motion of the internal distances,
e. g. the onset of the t'/* regime, this is certainly sufficient, while for
the overall diffusion some reservations remain.

Moreover, one has to run the system for several disengagement
times, such that the cpu time (of an efficient linear algorithm) scales
as L37; o« N*5 (or N*?, using the experimental viscosity exponent
3.4). This very high power has severely limited the chain length
to typically 6 — 8 N.. Increasing the chain length by a factor of 2
requires more than a factor of 23 more cpu time, if one wants to cover
the entire relaxation spectrum. Thus most simulations give a very
precise description for shorter times, while the accuracy significantly
decreases for longer times. This is because for smaller times more
statistically independent “events” contribute to, say, ¢;(¢) than for
longer times. Fortunately, ¢, (t) is a self-averaging quantity, since it
refers only to a single chain. Hence, one can improve the statistics by
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simply increasing the number of chains, i. e. the relative statistical
error is proportional to M~/?. Nevertheless, in order to obtain the
full dynamical information, each chain must be observed for a time of
several 74. The number of statistically independent events per chain
contributing to ¢; (m7,) (m > 1) can then be crudely estimated as
T./(m74), where T; is the total run length, and prefactors of order
unity are ignored. Hence it makes no difference if one improves the
statistics via increasing the number of chains, or by increasing the
length of the run. However, a larger system size is more amenable to
modern massively parallel computers. Note however that this helps
to increase the number of chains, but the maximum chain length will
still remain limited. Even in the limit of infinitely many available
processors, one node still has to treat a sizeable number of monomers
in order to keep the communication costs down. Thus the cpu time
per processor still scales as 7, with chain length.

Slightly different considerations apply if one is also interested in
quantities which are not self-averaging. These are all quantities which
are based on collective fluctuations of the overall system. Typical
examples would be the specific heat, the £ — 0 limit of the collec-
tive (i. e. many-—chain) structure factor, or the viscosity obtained
from equilibrium data via Green—Kubo integration [54], the latter of
course being of great interest for studies of polymer dynamics. In
this case, the only way to improve the statistics is via longer runs.
So far, it has been impossible to obtain reliable viscosity values from
equilibrium simulations in the entangled regime. Non—equilibrium
MD measurements of the viscosity have been attempted for melts of
up to N =400 [26]. A crossover from Rouse-like behavior to repta-
tion was observed for N ~ 3N,. However, since for the long chains
the shear rate was significantly larger than the chain relaxation rate
1/74, this simulation was also not able to obtain the asymptotic zero—
frequency viscosity. An extrapolation to zero shear must explicitly or
implicitly make use of model assumptions on the long—time dynamics,
and is moreover severely hampered by chain—stretching effects etc.

The practical conclusion of this discussion is that one needs long
runs for medium-sized (with respect to number of monomers) sys-
tems. On modern parallel computers with distributed memory there
are certainly some lower bounds to the system size. For M N = 10°
we found on a Cray T3D a performance of 0.34 steps per second on
one processor. On 64 processors this number is 14 steps per second
(i. e. roughly 40 times as fast), while on 256 processors we obtained
45 steps per second (i. e. only 130 times as fast). This is the usual
sub—linear speedup due to increased amount of communication over-
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Table 1: Simulation details for a melt of M chains of length N at
a monomer density pe® = 0.85 and temperature T = ¢/kp, in a
simulation cell of linear size L. Data were taken from runs of total
time T, /7 after equilibration. All of the results are for one continuous
run for a single ensemble except for M = 20 and N = 50 which is
an average over b independent starting states. Results for the mean
square radius of gyration (R%), the mean square end-to-end distance
(R?), and the diffusion constant D are given.

M/N Ljo T/t (RZ)/o? (R*)Jo* 6Dt/o*

200/5 10.6  2.60 x 10* 0.9 5.1 8.6 x 1072
100/10  10.6 1.30 x 10° 2.2 13.0 4.3 x 1072
80/25 13.3 2.60 x 10° 6.2 37.6 1.4 x 1072
50/40  13.3  2.60 x 10° 10.4 62.8 7.7 x 1073
20/50  10.6 3.38 x 10° 13.4 80.8 5.0 x 1073
40/50  13.3  1.95 x 10° 13.2 79.4 5.8 x 1073
100/50  18.1 3.25 x 10° 13.3 80.1 5.8 x 1073
20/100 13.0 6.50 x 10° 27.8 168.4 2.1 x 1073

100/100 22.7 3.90 x 10° 27.7 167.3 2.1 x 1073
100/200 28.7 5.68 x 10° 60.4 345.7 5.5 x 107*
120/350 36.7 3.84 x 10° 93.0 551.7 —

head when one increases the number of processors. While for 256
processors already roughly half of the cpu time is lost in communi-
cation overhead, we view the communication losses at 64 processors
as still acceptable. This means a minimum number of roughly 1500
monomers per processor. Note also that even if one is willing to trade
in more computing power for a faster throughput, there will finally
be a regime where adding yet another processor will actually decrease
the performance.

In order to further improve on our previous data given in detail
in Ref. [6] we carried out a series of new runs for a polymer melt of
entangled chains. The system is the same that we have studied in the
past, namely a homopolymer melt of linear bead—spring chains at a
density po® = 0.85. Taking advantage of improved algorithms and
the lower cost of multi-processor systems, we have studied larger
systems for longer times. All of this new data were collected on a
Cray 916 (about the speed of an XMP processor) and on a Silicon
Graphics Challenger with R4400 processors. The data for the system
of 100 chains of length 200 took approximately 85 days of cpu time

28



on the Cray 916. A summary of our results is presented in Table 1.
The data were obtained using a velocity Verlet algorithm to integrate
the equations of motion with a time step h = 0.0137. The friction
constant of the stochastic dynamics was ¢ = 0.5e7/0% All of the
data except for the M /N = 20/50 system are the result of one long
run for a single system. The data for the 20/50 system are an average
over 5 independent starting states in which four were run for a total
time T3 /7 = 5.2 x 10° and the fifth run for 7, /7 = 1.3 x 10°. To study
finite size effects we studied three system sizes, M = 20, 40, and 100,
for N = 50 and two system sizes, M = 20 and 100 for N = 100. Most
of our earlier data were for M = 20 [6]. Previously we also studied
a system of M = 100 chains of 200 but the total length of the run
was considerably shorter than presented in Table 1. For the static
quantities, like the mean square radius of gyration (R%) and end—to—
end distance (R?), the new results are in very good agreement with
the earlier results. There are no detectable finite size effects for the
static quantities as the results for M = 20 agree very well with those
for M = 100 for N = 50 and 100. For the five independent starting
states for M = 20 and N = 50, the mean values for both (R?*) and
(R%) for each sample were all within 1% of the average over the five
samples.

The mean square displacements g; (¢) and g¢5(¢) for the inner 5
monomers of the chain and g¢3(¢) are shown in Fig. 7 for N = 100 and
200. Because of the new, longer runs, this data is of considerably
higher quality than data from only a few years ago [6]. While the
diffusion constant can be extracted from either g (¢) or gs(¢) in the
limit of long time, our discussion above suggests that ¢3(t) reaches the
asymptotic limit more rapidly. This can easily be verified by plotting
gi(t)/t vs Int/7 for i =1, 3 as shown in Fig. 8. Apart from plots of
this type, we also use plots of g3(¢)/t vs. 1/t and extrapolate 1/t — 0,
as done in Fig. 9. The results, which are given in Table 1, are the
same within the statistical error for the two methods, provided that
the runs are long enough to reach well into the linear regime. The
run for the largest system, N = 350, is not long enough to reach
the asymptotic linear regime and as such we cannot give a reliable
estimate of D for this case. We note that these values are higher
by about 8 — 20% compared to the values obtained earlier [6], the
difference being simply related to the fact that the earlier runs were
significantly shorter and on smaller systems than the new ones pre-
sented here. Using subsets of our data comparable to the run times
presented in Table Il of Ref. [6], we find values for D comparable
to those presented in our earlier study. Since the total lengths T
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Figure 7: Mean square displacements g, (¢) (o), g-(t) (O) for the inner
5 monomers and gs(t) (A) of the center of mass for a system of 100
chains of length N =100 (a) and N =200 (b).
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Figure 8: Mean square displacement g, (¢)/t for the inner 5 monomers
and gs(t)/t of the center of mass for a system of 100 chains of length
N =50 (x), 100 (O), and 200 (A). The upper curve in each case
corresponds to ¢, (t)/t.
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Figure 9: g5(t)/t plotted as a function of 1/¢, for 100 chains of length
N =50, 100, 200. The limiting value for 1/t — 0 is 6D.
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of those earlier runs were less than those presented here, the maxi-
mum time one could measure g;(¢) was likewise shorter, giving rise
to the underestimation of D. Our estimated statistical error in D is
about 5% for small N and 10% for large N. However there may be
systematic errors, including finite—size effects, which are difficult to
estimate. To obtain an estimate of the sample to sample fluctuations
in D for small samples, for the system of M = 20 chains of length
N = 50, five independent starting states were run. The results for
6D7/0? x 10° varied from 4.8 to 5.3, with an average value of 5.0.
All of the runs gave values systematically lower than those found for
the larger systems (M = 40 and 100). A possible explanation of this
finite size effect may be related to the fact that we measure g3(¢) rel-
ative to the diffusion of the overall system which arises from the use
of the stochastic dynamics algorithm. The motions of the chains are
of course correlated, since a monomer must push away its neighbors
in order to move. It is well conceivable that for a small number of
chains these correlations extend over a significant fraction of the over-
all system. Hence, a significant part of the chain’s own motion might
be subtracted, resulting in a systematic underestimation of D. Due
to limitations on computer time, multiple runs from different starting
states were not made for larger M to check the size of the system to
system fluctuation in D. However the difference in the value of D
between the M = 20 system and the M = 40, 100 systems for this
case suggests that additional runs for more values of M are needed
before we can completely quantitify the systematic error which arises
from finite size effects. The fact that within our error bars we find
the same value for both M = 40 and M = 100 suggests that these
are likely to be already in the asymptotic large-M regime.

Our MD results for the diffusion constant, normalized by DR 5e
are compared to the bond fluctuation MC simulations of Paul et al.
[33, 34] for a volume fraction ® = 0.5 and the hard—chain simulations
of Smith et al. [66, 67] for & = 0.45 in Fig. 6. From this figure it
is clear that for small N the diffusion constant scales with N=! as
expected. For larger NV there is a clear crossover to a slower diffusion.
The data is consistent with the reptation prediction that D oc N~2,
but is not for sufficiently long chains to prove that the power is 2.
Note that all three simulations cover the same range in terms of N/N,,
namely 6 — 7. At the present time it is still not possible to increase
this number by a significant amount.

To test the reptation and mode coupling models of the dynamics,
it is important to examine the intermediate time regimes. These are
shown in Fig. 10 for ¢, (¢) for N = 25, 50, 100, 200, and 350. For short

32



In g,(t)

0 . . | . | . | .
4.0 6.0 8.0 10.0 12.0 14.0

In t/7

Figure 10: Mean square displacement g, (¢) of the inner 5 monomers
for five values of the chain length N = 25 ({), 50 (x), 100 (O),
200 (A) and 350 (). The solid line has a slope 1/4.

times, the data for all systems fall on top of each other, as expected
from theory. This is because for short times the inner monomers not
yvet know what the total length of their chain is. With increasing
time for N = 25, there is a direct crossover from the ¢'/? regime to
free diffusion. However as N increases, there is a definite decrease of
the slope of the intermediate regime. Our data give a slope in the
intermediate regime of about 0.30 & 0.03. This slope agrees better
with the predictions of the mode coupling theory [59, 60] (9/32) than
reptation theory (1/4), though the chain lengths are too short to say
for sure that one theory is preferable over the other. As the apparent
slope in the intermediate region is clearly decreasing as NV increases,
it is difficult to determine what the true slope is, in the limit of very
large N. Similiar values for the slope of the intermediate time regime
have been reported by Skolnick and Kolinski [74], Paul et al. [33],
Shaffer [75], and Smith et al. [66, 67]. The onset of the ¢'/* regime
is identified as 7., giving 7. ~ 18007 for our model. Assuming that
T, is the relaxation time of a Rouse chain of N, monomers, one gets
g1(1e) = 2(R%(N.)). This gives N, ~ 35. Since the longest chains
which can be fully equilibrated are only of length N = 200, the second
t'/? regime is expected to be too small to be detected. Reptation
theory predicts that it extends from 7z o< N? to 74 ~ N3/N_, which
for N = 200 is much less than a decade. For large ¢, g;(t) crosses
over to diffusion behavior.

Recently Smith et al. [66, 67, 76] observed plateaus in ¢, (t) versus
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Figure 11: Mean square displacement g, (¢) of the inner 5 monomers
for M =100 chains of length N =100 (O) and 200 (A).

t for the inner monomers for their 192-mer fluids. They interpreted
these plateaus in terms of intermolecular knots. We looked for evi-
dence of this extra structure in ¢, (¢) in our new data and found none.
In Fig. 11, we re—plot our data from Fig. 10 on a linear—linear scale.
The data are presented out to times which are well within the lin-
ear late—time regime. From this figure, we see no evidence for extra
structure which one could identify as a plateau in ¢, (¢). This result is
in agreement with results of Trautenberg et al. [35] who found that
they observed similar behavior in their bond—fluctuation simulations
of long chains which disappeared or were not reproducible once the
system size was increased. Moreover, a direct statistical analysis re-
veals that the error bar for the data presented in Refs. [66, 67, 76] is
expected to be significantly larger than the suggested effect.

Results for the mean square displacement of the center of mass
g3(t) are shown in Fig. 12 for the same five values of N. A slowed
down motion for long chains at intermediate times is clearly observ-
able, both in the present MD simulations as well as in previous MC
studies [34]. The deviations from Rouse behavior for short times (i. e.
t < 1. for entangled chains, ¢ < 7 for Rouse-like short chains), i. e.
a slope g3(t) o t"® instead of ¢!, are found in both MD and MC
simulations, and are presently not fully understood.

From data such as that presented in Fig. 7 we can easily determine
the relaxation times 7;. The results are presented in Table 2, where
we used the ¢ (t) and g»(t) averaged over the inner 5 monomers to
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Figure 12: Mean square displacement g¢3(¢) of the center of mass
versus t/7. The symbols are the same as in Fig. 10. The solid lines
have a slope of 1 and 1/2.

Table 2: Simulation results for the three relaxation times 7;, as de-
fined in Eqs. 56-58.

M/N /T /T T3/T1 Ti/T3

200/5 — — — —
100/10 1.0 x 10t 1.1 2.8  4640.0
80/25 1.2 x 102 1.3 2.5 870.0
50/40 3.7 x 10? 1.1 2.8 250.0
20/50 7.0 x 10* 0.9 3.0 1600.0
40/50 6.4 x 10? 1.0 3.0 101.5
100/50 5.9 x 10* 1.0 2.9 190.0
20/100 3.9 x 10° 0.8 3.3 51.5
100/100 3.3 x 10®> 0.9 3.3 35.8
100/200 2.7 x 10* 0.7 3.3 6.4
120/350 1.7 x10° 0.5  3.0° 0.8
“ The value for 75 for N = 350 is determined by extrapolation of ¢ ()
and gs(t) and as such is not as reliable as for N < 200.
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In N

Figure 13: Relaxation time 7; (O) and 73 (O) as a function of the
chain length N. The lines are best linear least square fits to the data
for 50 < N < 350. The slope of the solid line is 2.9 for both 7, and

73.

determine 7;. In Fig. 13 we present our results for 7, and 73 as
function of N. As seen from the figure, the data are fitted by a
power law 7; o N%, with ¢ = 2.9+ 0.1. A similar plot for 75 gives a
slope of 2.6 £ 0.1. The ratios for 7o/, and 73/7; are consistent with
those reported by Paul et al. [34] for the bond fluctuation model.
The data agree very well with the reptation prediction for 7 and
73, at least for the limited range of N studied. However N is not
large enough to rule out a 3.4 power as observed experimentally. The
exponent ¢ = 2.6 for 75 does not agree very well with the reptation
prediction; this is probably due to the very smooth crossover behavior
of g2(t). Larger N are clearly needed to distinguish crossover effects
from asymptotic behavior, particulary when examining the largest
relaxation times in the system.

As discussed above, in order to obtain full dynamical information,
one would like to determine the mean square displacement ¢, (t) out
to a time of order 107,4. In order to estimate the quality of the data,
it is important to measure the length of the run 7; in terms of the
longest relaxation time in the system. We use 73 as an estimate of 7,
since this is always the largest of the three values as seen in Table 2.
From these results, we see that for N < 100, all of the simulations
met our desired target of T,/73 > 10, while the run for N = 200 was
somewhat less, T, /73 = 6.4. Thus all of the runs for N < 100 were of
sufficient length to be able to average the mean square displacement
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Figure 14: Semilog plot of the normalized coherent single—chain struc-
ture factor S(q,t)/S(q,0) as a function of scaled time ¢*t'/2/6 for
N = 350. Only the inner N, = 50 monomers have been taken into
account. The three curves correspond to different values of go = 0.6,
0.8, and 1.0 (top to bottom). The slowing down for long time is a
clear signature of non—Rouse behavior.

of the inner monomers g, (¢) and the center of mass ¢3(¢) out to a time
greater than 1073 and thus well into the linear time domain, while
the same two quantities for N = 200 could only be measured with
reasonable accuracy out to about 373. The run for N = 350, though
very long, was clearly too short to give an accurate estimate of the
long time diffusion constant, though it was long enough to examine
the intermediate time domain. These results clearly demonstrate the
difficulty in going beyond the present limitation of 6 — 7N.. The
relaxation times simply increase so rapidly that only an increase of
N to 10N, would take considerable computational resources, which
are available today only on the largest multi-processor platforms.
Figure 14 shows the decay of the single—chain intermediate coher-
ent scattering function S(q,t)/S(¢,0), which can be measured by neu-
tron spin echo experiments [77-79]. The slowdown of the monomer
motion due to the topological constraints shows also up in this func-
tion, however, in a similar fashion as for the mean square displace-
ments, end effects tend to blur the signature of reptation. Hence it is
important to go well into the entangled regime (N = 350 was chosen
for Fig. 14), and again restrict attention only to inner monomers.
Hence, only the 50 inner monomers contribute to the scattering func-
tion. This is of experimental relevance since one can label the inner
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part of the chain by deuteration. The wave numbers ¢ in Fig. 14 have
been chosen well within the scaling regime where the static structure
factor decays as ¢~2.

decay

In this regime, the Rouse model predicts a
S(q,1t)
S(q,0)

which however in Fig. 14 holds only in the short—time regime t < 7.
For longer times, the curves split up and exhibit a much slower decay,

= exp (—Const.qztl/z) , (59)

which is an indication of reptation. For a more detailed discussion, see
Ref. [6]. A detailed comparison of the intermediate coherent scatter-
ing function for the bond fluctuation model and the double reptation
theory of des Cloizeaux [68-72] was recently presented by Wittmer,
Paul and Binder [80].

As seen from this brief summary of work on simulations of entan-
gled polymer melts, it is clear that in the past few years there has been
considerable progress in the understanding of melt dynamics through
MD simulations. The simulations clearly show that the entanglement
length is the unique length scale which governs the slowing down of
the overall motion of the polymers. However the data are not accu-
rate enough to distinguish between the predictions of the reptation
scheme and mode coupling approaches. It should however be kept in
mind that the mode coupling theory does not take into account the
non—crossability of the chains. Applied to polymer networks, where
the reptation model originates from, the mode coupling theory nec-
essarily leads to incorrect results [16, 19-21]. To distinguish these
models, longer chains are needed. However there is a significant hur-
dle to overcome to extend the simulations beyond the present limit
of 6 — 7 entanglement lengths. As seen from the work presented here,
increasing the chain length to 10 entanglement lengths is quite cpu
intensive. Unfortunately chains of 10N, are not really long enough
to settle many of the open questions. To do this, we estimate that
chains of at least 20N, are needed, because for shorter chains the
power law regime between the ¢'/# regime and the linear diffusive
time regime is simply too short to determine the exponent unam-
biguously. Chains of this length are also needed to distinguish the
reptation prediction for the longest relaxation time, 7, oc N3, from
the experimental result, N34. Using the time estimates for the Cray
T3D discussed above, we estimate that about 1300 cpu hours on 256
processors would be required to run a system of 100 chains of 20 en-
tanglement lengths (N = 700) for a time of order 73, assuming the
N3 scaling persists for larger N. Further program optimizations on
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production machines are expected to give some speedup of roughly a
factor of two. Thus, even though there have been significant advances
with respect to both hardware performance as well as program devel-
opment, studies of this type are currently not feasible, as a run of 73
is clearly not sufficient to obtain good averaging with only M = 100
chains. However, on future parallel machines with significantly in-
creased single—processor performance, the interesting regime might
come well into reach. Major breakthroughs in our understanding of
polymer dynamics, not only for melts but also for semi—dilute solu-
tions, are expected. Thus it is clear that this is an exciting time for
polymer simulations and the future looks encouraging.

References

[1] P. G. de Gennes, Scaling Concepts in Polymer Physics (Cornell
University Press, Ithaca, 1979).

[2] M. Doi and S. F. Edwards, The Theory of Polymer Dynamics
(Clarendon Press, Oxford, 1986).

[3] B. Diinweg and K. Kremer, Phys. Rev. Lett. 66, 2996 (1991).
[4] B. Diinweg and K. Kremer, J. Chem. Phys. 99, 6983 (1993).

[6] K. Kremer, G. S. Grest, and 1. Carmesin, Phys. Rev. Lett. 61,
566 (1988).

[6] K. Kremer and G. S. Grest, J. Chem. Phys. 92, 5057 (1990).

[7] Monte Carlo and Molecular Dynamics Simulations in Polymer
Science, edited by K. Binder (Oxford University Press, New
York, 1995).

[8] Monte Carlo and Molecular Dynamics of Condensed Matter Sys-
tems, edited by K. Binder and G. Ciccotti (Italian Physical So-
ciety, Bologna, 1996).

[9] Computer Simulation in Chemical Physics, edited by M. P. Allen
and D. J. Tildesley (Kluwer Academic Publishers, Dordrecht,
1993).

[10] Molecular—Dynamics Simulation of Statistical-Mechanical Sys-
tems, edited by G. Ciccotti and W. G. Hoover (North—Holland,
Amsterdam, 1986).

39



[11] M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids
(Clarendon, Oxford, 1987).

[12] D. C. Rapaport, The Art of Molecular Dynamics Simulation
(Cambridge University Press, New York, 1995).

[13] M. J. Stevens and K. Kremer, Phys. Rev. Lett. 71, 2228 (1993).
[14] M. J. Stevens and K. Kremer, J. Chem. Phys. 103, 1669 (1995).
[15] U. Micka and K. Kremer, 1996, preprint.

[16] E. R. Duering, K. Kremer, and G. S. Grest, Phys. Rev. Lett. 67,
3531 (1991).

[17] G.S. Grest, K. Kremer, and E. R. Duering, Europhys. Lett. 19,
195 (1992).

[18] E. R. Duering, K. Kremer, and G. S. Grest, Macromolecules 26,
3241 (1993).

[19] E. R. Duering, K. Kremer, and G. S. Grest, J. Chem. Phys. 101,
8169 (1994).

R. Everaers and K. Kremer, Macromolecules 28, 7291 (1995).
R. Everaers and K. Kremer, 1996, preprint.
G. S. Grest and M. Murat, in Ref. [7].

G. S. Grest, M.-D. Lacasse, K. Kremer, and A. Gupta, 1996,
preprint.

[24] C. Pierleoni and J.-P. Ryckaert, Phys. Rev. Lett. 71, 1724
(1993).

[25] C. Pierleoni and J.-P. Ryckaert, Macromolecules 28, 5087
(1995).

[26] M. Kroger, Rheology 95 5, 66 (1995).
[27] P. E. Rouse, J. Chem. Phys. 21, 1272 (1953).
[28] J. G. Kirkwood and J. Riseman, J. Chem. Phys. 16, 565 (1948).

[29] J. J. Erpenbeck and J. G. Kirkwood, J. Chem. Phys. 29, 909
(1958).

[30] B. H. Zimm, J. Chem. Phys. 24, 269 (1956).

40



[31] G. Grest and K. Kremer, Phys. Rev. A 33, 3628 (1986).
[32] K. Kremer and K. Binder, Comp. Phys. Reports 7, 259 (1988).

[33] W. Paul, K. Binder, D. W. Heermann, and K. Kremer, J. Phys.
II (Paris) 1, 37 (1991).

[34] W. Paul, K. Binder, D. W. Heermann, and K. Kremer, J. Chem.
Phys. 95, 7726 (1991).

[35] H. L. Trautenberg, M. Wittkop, T. Holzl, and D. Géritz, Phys.
Rev. Lett. 76, 4448 (1996).

[36] H.J.Hilhorst and J. M. Deutch, J. Chem. Phys. 63, 5153 (1975).

[37] C. Pierleoni and J.-P. Ryckaert, Phys. Rev. Lett. 61, 2992
(1991).

[38] C. Pierleoni and J.-P. Ryckaert, J. Chem. Phys. 96, 8539 (1992).

[39] M. Tuckerman, G. J. Martyna, and B. J. Berne, J. Chem. Phys.
97, 1990 (1992).

[40] H. Yoshida, Phys. Lett. A 150, 262 (1990).

[41] T. Schneider and E. Stoll, Phys. Rev. B 17, 1302 (1978).

[42] H. Risken, The Fokker—Planck Fquation (Springer, Berlin, 1984).
[43] B. Diinweg and W. Paul, Int. Journ. Mod. Phys. C 2, 817 (1991).
[44] S. Nose, J. Chem. Phys. 81, 511 (1984).

[45] H. C. Andersen, J. Chem. Phys. 72, 2384 (1980).

[46] M. Parrinello and A. Rahman, Phys. Rev. Lett. 45, 1196 (1980).

[47] A. B. Bortz, M. H. Kalos, and J. L. Lebowitz, J. Comp. Phys.
17, 10 (1975).

[48] D. Ceperley, M. H. Kalos, and J. L. Lebowitz, Macromolecules
14, 1472 (1981).

[19] G. S. Grest, B. Diinweg, and K. Kremer, Comp. Phys. Comm.
55, 269 (1989).

[50] R. Everaers and K. Kremer, Comp. Phys. Comm. 81, 19 (1994).

[51] B. Diinweg, J. Chem. Phys. 99, 6977 (1993).

41



[52] B. R. A. Nijboer and I'. W. de Wette, Physica 23, 309 (1957).
[53] C. W. J. Beenakker, J. Chem. Phys. 85, 1581 (1986).

[64] J. P. Hansen and 1. R. McDonald, Theory of Simple Liquids
(Academic Press, New York, 1986).

[65] A. Z. Akcasu, M. Benmouna, and C. C. Han, Polymer 21, 866
(1980).

[56] C. C. Han and A. Z. Akacsu, Macromolecules 14, 1080 (1981).
[57] M. Benmouna and A.Z. Akcasu, Macromolecules 13, 409 (1980).
[58] W. Hess, Macromolecules 21, 2620 (1988).

[59] K. Schweizer, J. Chem. Phys. 91, 5802 (1989).

[60] K. Schweizer, J. Chem. Phys. 91, 5822 (1989).

[61] K. Schweizer, J. Non-Cryst. Solids 131-133, 643 (1991).

[62] K. Schweizer, Physica Scripta T 49, 99 (1993).

[63] L. J. Fetters et al., Macromolecules 27, 4639 (1994).

[64] D.S. Pearson, G. ver Strate, E. von Meerwall, and F. C. Shilling,
Macromolecules 20, 1133 (1987).

[65] M. Antonietti, K. J. Félsch, and H. Sillescu, Makrom. Chem.
188, 2317 (1987).

[66] S. W. Smith, C. K. Hall, and B. D. Freeman, Phys. Rev. Lett.
75, 1316 (1995).

[67] S. W. Smith, C. Hall, and B. D. Freeman, J. Chem. Phys. 104,
5616 (1996).

[68] J. des Cloizeaux, Europhys. Lett. 5, 437 (1988).
[69] J. des Cloizeaux, Europhys. Lett. 6, 475 (1988).
[70] J. des Cloizeaux, Macromolecules 23, 3992 (1990).
[71] J. des Cloizeaux, Macromolecules 23, 4678 (1990).
[72] J. des Cloizeaux, Macromolecules 25, 835 (1992).

[73] A. N. Semenov, Physica A 166, 263 (1990).

42



[74] J. Skolnick and A. Kolinski, in Advances in Chemical Physics,
edited by 1. Prigogine and S. A. Rice (Wiley, New York, 1990),
Vol. 78, p. 223.

[75] J. S. Shaffer, J. Chem. Phys. 101, 4205 (1994).

[76] S. W. Smith, C. K. Hall, and B. D. Freeman, Phys. Rev. Lett.
76, 4449 (1996).

[77] D. Richter, B. Ewen, B. Farago, and T. Wagner, Phys. Rev.
Lett. 62, 2140 (1989).

[78] D. Richter et al., Macromolecules 25, 6156 (1992).
[79] D. Richter et al., Phys. Rev. Lett. 71, 4158 (1993).

[80] J. Wittmer, W. Paul, and K. Binder, J. Phys. I (France) 4, 873
(1994).

43



