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1 IntroductionComputer simulations in polymer science pursue a two{fold goal. The�rst is to understand (and, as a long{term goal, even reliably pre-dict) the properties of real materials like polyethylene, based on thedetails of the chemical structure. Secondly, there are still a numberof unsolved questions which are not related to speci�c materials, butrather of a quite general and fundamental nature, and whose solutionis, to our minds, indispensable for real progress in our ability to pre-dict material properties. While there has been considerable progressin understanding some aspects of polymer behavior using universalscaling laws [1], there remain many unresolved problems. To mentionjust a few examples: The structure of polyelectrolyte solutions as afunction of fundamental parameters like concentration, chain length,and charge density, is only understood in limiting cases. Similarly,the viscoelastic behavior of neutral polymer melts is still under de-bate: While the reptation model [2] provides a very useful and simplepicture about the microscopic and macroscopic consequences of theimpossibility of chains crossing each other, its predictions are onlypartly in agreement with experimental �ndings | most famous is theprediction for the viscosity to scale with the third power of the chainlength, while experiments �nd an exponent of 3.4. Another exampleis the dynamics of polymer solutions. There is no clear explanationwhy the hydrodynamic interaction, which governs the behavior inthe dilute limit, is completely screened at higher concentrations, al-though the solution as a whole is of course still a viscous 
uid withhydrodynamic 
uctuations [2].Computer simulations can make very useful contributions to ques-tions like these, since they can study very simple well{de�ned modelsystems (with many of the experimental di�culties removed) in con-siderable detail. The main advantage is that all degrees of freedomare known explicitly, such that questions of microscopic structureand mechanisms of motion can be answered, while experiments of-ten have only limited and indirect access to the pertinent quantities.For example, in a simulation it is very easy to measure the hydro-dynamic radius of a chain as a static quantity, while light scatteringexperiments can only measure it indirectly as a dynamic quantity.In polymer melts, neutron scattering experiments allow only indi-rect conclusions about the possible dominance of curvilinear motion,while in a simulation this can be seen directly. Of course, there arestrong limitations with respect to both system size and (even moreseverely) observation time, since the relaxation time increases very2



strongly with chain length.In general, there are two types of computer simulation algorithms,Molecular Dynamics (MD), based on the solution of Newton's equa-tion of motion, and Monte Carlo (MC), based on a Markov processin con�guration space. There is no general answer to the questionwhich method is \better"; to a large extent, this depends on the sys-tem under consideration, and, even more so, on the scienti�c questionwhich one would like to answer. Some comments on this issue can befound at the end of Sec. 2.Since we cannot cover all MD simulations which have been doneon simple polymer models, we restrict ourselves to a brief summary oftwo large{scale simulations which have been done on the dynamics ofdilute polymer solutions [3, 4] (Sec. 4) and dense melts [5, 6] (Sec. 5).In the latter case we mainly present new and improved data whichhave not yet been reported elsewhere. Prior to this in Secs. 2 and 3we discuss the Rouse and Zimm model, respectively, with emphasison the methodological implications for simulations.For more information, we refer the reader to a recent collectionof reviews [7] on polymer simulations, as well as to the proceed-ings of recent summer schools on computer simulations in general[8, 9]. For more \technical" information on MD simulation meth-ods see Refs. [10{12]. Apart from the cases already mentioned, MDsimulations (partly in combination with MC) have been successfullyapplied to polyelectrolyte solutions [13{15], networks [16{21], teth-ered chains [22] as well as polymer blends and block copolymers [23].An important �eld whose impact will increase in the future, dueto the advent of modern parallel computers, is the method of non{equilibrium Molecular Dynamics (NEMD). For an overview, we referthe reader to the article by Hess in Ref. [8]. This method has beensuccessfully applied to polymeric liquids both in the regime of dilutesolutions [24, 25] as well as to entangled melts [26].2 Rouse behavior and simulation algorithmsA valid algorithm for the simulation of the generic features of the sto-chastic Brownian motion of polymer chains should, in certain limitingcases, be able to reproduce the behavior predicted by the scaling lawsof the Rouse model [2, 27]. This model starts from the descriptionof the chain conformation as a self{similar random fractal describedby a universal exponent � [1]: For the end{to{end distance R andthe gyration radius RG (~R = ~rN �~r1 for an N{monomer chain, while3



R2G = (1=2)N�2Pij(~ri � ~rj)2) the scaling laws hR2i / hR2Gi / N2�hold, where � = 1=2 for a random walk and � = 0:59 for a self{avoiding walk in three spatial dimensions. The same scaling holds,of course, for the relation between monomer{monomer distances andthe corresponding lengths along the chain. For this reason, the single{chain static structure factorS(k) = N�1Xij Dexp(i~k � ~rij)E (1)satis�es the scaling relation S(k) / k�1=� in the wavenumber regimeR�1G � k � a�1, a being the segment length. The second ingre-dient of the model is the assignment of a friction constant � to themonomers, while the third assumption consists of statistically inde-pendent stochastic monomer moves ~�i in a short time interval h, suchthat ~ri(t+ h) = ~ri(t) + ��1 ~Fih+ ~�i: (2)The force ~Fi on the ith monomer is a thermodynamic driving forceto which in general also entropic e�ects contribute:~Fi = � @@~riU (f~rig) (3)where P (f~rig) / exp (�U (f~rig) =kBT ) (4)is the equilibrium distribution function of the chain conformations.Here it is assumed that the e�ective potential U contains only short{range interactions. The stochastic displacements satisfy the usual
uctuation{dissipation theoremh~�ii = 0 (5)and h~�i 
 ~�ji = 2D0h�ij $1 ; (6)where the monomeric di�usion constant D0 is related to the frictionconstant via the Einstein relation D0 = kBT=�.On su�ciently long length and time scales, this model shouldprovide a universal description of polymer dynamics as soon asone deals with short{range interactions, uncorrelated displacements,and 
exible polymer chains. The usual \coarse{graining" procedure[1] unites several subsequent chemical units to an e�ective coarse{grained monomer, with an e�ective friction constant and an e�ective4



interaction. If this is done well beyond the persistence length, thepicture becomes rather simple: For a random walk, P becomes aGaussian, and ~Fi is just the force resulting from entropic springs [1, 2].In the case of a self{avoiding walk, excluded volume forces contributetoo. Thus the long{wavelength, long{time properties of the originalchain and the coarse{grained chain (which is, in essence, a bead{spring model) should coincide, and the non{universal parameters ofthe latter (bead size and bead friction) just de�ne the microscopiclength and time scales beyond which universal behavior sets in.From the above equation of motion, Eqn. 2, one immediately�nds for the center of mass of the chain, ~RCM = N�1Pi ~ri,~RCM(t+ h) = ~RCM(t) +N�1Xi ~�i; (7)since the force contributions exactly cancel. This, however, meansthat the di�usion constant of the chain is simply a factor of N smallerthan D0: DCM = D0N / R�1=�G : (8)The longest relaxation time, the so{called Rouse time �R, is when thechain has di�used its own size, i. e. DCM�R / R2G or�R / R2+1=�G / N1+2�: (9)This consideration has yielded the dynamic exponent z of the Rousemodel, z = 2 + 1=� [2]. Explicitly, one has �R / R4G / N2 (z = 4)in the random walk case, while �R / R3:69G / N2:18 (z = 3:69) inthe good solvent regime. More generally, z connects relaxation timeswith the corresponding length scales. In particular, for time scales�0 � t� �R (�0 being a microscopic time, which is roughly given bythe time a monomer needs to feel its connectivity to its neighbors),the mean square displacement of a monomer behaves sub{di�usively,g1(t) = h(~ri(t)� ~ri(0))2i / t2=z (10)(i. e. a t1=2 behavior in the random walk case, and t0:54 for self{avoiding walks), while for times t� �R the monomer of course moveswith the overall di�usion of the chain. A similar result holds for thesingle{chain dynamic structure factorS(k; t) = N�1Xij Dexpni~k � (~ri(t)� ~rj(0))oE ; (11)5



which in the scaling regime R�1G � k � a�1, �0 � t � �R satis�esthe scaling relation S(k; t) = k�1=�f(kzt): (12)Physically, the Rouse model provides a good description of thedynamics for short{chain melts. In melts, the excluded volume in-teraction is completely screened [1], such that the random walk case� = 1=2 applies. This is the only case where the dynamics can besolved exactly1 [27]. However, from a fundamental point of view, itremains unclear why the complicatedmany{body e�ects in a melt canbe simply replaced by a homogeneous viscous background. In long{chain melts, entanglement e�ects become important, and the dynam-ics is expected to be described by the reptation model [2]. Similarly,in dilute solutions hydrodynamic e�ects become important, and thedynamics is described by the Zimm model [2, 28{30], which will beexplained in more detail below.However, apart from being of physical importance for real sys-tems, the Rouse model also provides a well{de�ned test for simu-lation algorithms, which should reproduce the above scaling laws incase one simulates a single chain in \vacuum", using uncorrelated dis-placements. For the stochastic dynamics algorithm to be describedbelow, this detailed test was done in Ref. [31], and similar analyseshave also been done for lattice models which employ local MonteCarlo moves [32]. Without going into further detail, we just want topoint out here that suitable lattice Monte Carlo models can be usedfor a valid description of polymer dynamics both in the Rouse as wellas the reptation regime, and have quite successfully been applied tothe dynamics of polymer melts [33{35].Note, however, that in either case the correct reproduction ofRouse behavior is less trivial than one might expect at �rst glance. Inthe case of lattice models [32], simple \kink{jump" moves introducean arti�cial conservation law which results in unphysical dynamicalbehavior. The walk is built up from elementary steps~li, such that theend{to{end vector is ~R =Pi~li. A kink{jump move in the inner partof the chain simply exchanges two subsequent steps ~li and ~li+1, suchthat the set of bond vectors n~lio remains unchanged. This conserva-tion law, combined with the excluded{volume constraint, prevents, inessence, the annihilation of kink{antikink pairs, which can hence onlybe removed via di�usion out of the chain. Therefore, a reptation{like1Often the term \Rouse model" is only used for this special case. However,we use it here more generally to denote a dynamic universality class.6



scaling � / N3 (see Sec. 5) results, which is of course unphysical forsingle{chain systems [32, 36]. It turns out that the inclusion of 90�\crankshaft" moves (on the three{dimensional simple cubic lattice)is su�cient to relax the chain in a Rouse{like way [32], since thisdestroys the conservation of the set of bond vectors n~lio.Similarly, for the continuum Molecular Dynamics, a single{chainsimulation quickly runs into problems of ergodicity, very similar tothose which were found by Fermi, Pasta, and Ulam in the pioneer-ing days of computer simulations [10]. The reason for this is thatany model for a 
exible polymer chain can, by coarse{graining, bemapped onto a bead{spring model (if it is not one already). Such aHamiltonian is in turn very close to a harmonic system. Harmonicsystems not only exhibit simple energy and momentum conservation,but rather the amplitude of every single normal mode is separatelyconserved. This means that the phase{space trajectory, instead ofscanning the whole energy hypersurface, only visits a small subset ofstates such that time averages di�er from microcanonical ensembleaverages. For a weakly anharmonic system, the conservation lawsof course no longer hold exactly. Nevertheless the mode amplitudesdecorrelate only very slowly, such that one needs extremely long runsto obtain reasonable sampling properties. Of course, all these con-siderations do not hold for dense many{chain melts [5, 6], or a singlechain surrounded by solvent particles [3, 4, 37, 38]. In these cases,the interaction with the surrounding particles provides su�cient non-linearity to ensure good ergodicity.Let us illustrate the e�ect of approximate mode conservation bya simple example. We model a two{dimensional ring polymer as achain of 16 beads with mass m. Between each monomer, there is apurely repulsive Lennard{Jones potentialULJ(r) = ( 4" h��r �12 � ��r �6 + 14i r � 21=6�0 r � 21=6� (13)to model the excluded volume interaction. This potential de�nes theunit system via setting the mass scale m, the length scale �, andthe energy scale " to unity, such that time is measured in units of� = (m�2=")1=2. Bonded monomers are connected along the chainvia a FENE backbone potentialUch(r) = �k2R20 ln�1� r2R20� ; (14)which for small distances behaves like a harmonic spring, while di-verging for r ! R0. Parameters which have proved rather useful are7
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rFigure 1: The total potential between two bonded monomers, result-ing from the repulsive part ULJ and the attractive part Uch. Energiesare in units of ", distances in units of �.k�2=" = 30, R0=� = 1:5. They have also been used in the simulationof melts, and are based on the following considerations: one wouldlike to make k rather large and R0 small, in order to introduce ahigh energy barrier for self{crossing (this is particularly important inthree dimensions). However if k is too large, the interaction betweentwo monomers which are attached becomes very sti� resulting in highfrequency modes which can only be integrated accurately with a verysmall time step. The parameters given are optimized with respect toboth properties [31]. The total bond potential is shown in Fig. 1.Figure 2 shows results of the time development of the ring poly-mer analog of the end{to{end distance. First the system is run attemperature T = 1:0"=kB with stochastic dynamics based on the Ver-let algorithm (details see below), using a time step h = 0:01� and afriction constant � = 0:5"�=�2, which are also typical values for meltsimulations. 2 At time t = 10000� the coupling to the heat bathis turned o� (� = 0) and the system is run microcanonically. Whilethe 
uctuations of R2 are quite e�ciently sampled for nonzero �, itvaries on a much slower time scale for � = 0.At this point, it is necessary to explain the details of the simula-tion algorithms. Let us start with the case of purely microcanonicalMD. The equations of motion for positions ~ri and momenta ~pi areddt~ri = ~pi=mi ddt~pi = ~Fi: (15)2Tests have shown that when coupled to a heat bath, a melt simulation remainsstable even for h as large as 0:0135� . 8
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the time evolution operator exp(�iL̂t) is unitary, which shows di-rectly both phase{space volume conservation as well as time{reversalsymmetry. The Verlet algorithm replaces this, for a small time steph, by Ŝ(h) = exp(�iL̂ph=2) exp(�iL̂xh) exp(�iL̂ph=2); (19)which is manifestly time{reversal symmetric, and unitary, corre-sponding to the velocity{Verlet updating scheme:x(t+ h) = x(t) + hp(t)m + h22mF (x(t)) (20)p(t+ h) = p(t) + h2 [F (x(t)) + F (x(t+ h))] : (21)This is the simplest algorithm which is \symplectic", i. e. hasthe desired properties of time{reversal symmetry and phase{spacevolume conservation (for each conjugate pair of coordinate and mo-mentum separately). Higher{order symplectic schemes have beenconstructed on the basis of the same formalism [40]. However, al-though such an algorithm would permit a larger time step, it wouldalso need several force calculations per time step, and is therefore notconsidered very useful for MD applications.Improved stability (i. e. even larger possible time steps) is ob-tained if one couples the system via friction and noise to a heat bath,i. e. simulates a Langevin equation in a \stochastic dynamics" sim-ulation [41] _x = p=m _p = F � �p=m+ f: (22)Here, we consider again for simplicity only one degree of freedom,and have introduced a parameter �, which is the friction constantwhich controls how fast the system relaxes into equilibrium | thesimulation scheme actually produces states which are distributed ac-cording to the canonical ensemble. The temperature results as theratio of noise strength to friction, via the 
uctuation{dissipation the-orem: The stochastic force f is a random variable satisfying hfi = 0,hf(t)f(t0)i = 2�kBT�(t�t0). For more information on Langevin equa-tions, and the corresponding Fokker{Planck equation, see e. g. Ref.[42].A possible numerical implementation starts from the observationthat in the limit � = 0 the Langevin simulation reduces to standardmicrocanonical MD, and that hence one should use the Verlet algo-rithm also in the \noisy" case. One simply replaces the term Fh,10



which is the displacement in momentum space in the microcanonicalcase, by �p = Fh� � pmh+p2�kBTh r; (23)where r is a random number with hri = 0, hr2i = 1. The pref-actor of the stochastic term is chosen such that the mean squarestochastic momentum displacement has just the value prescribed bythe 
uctuation{dissipation theorem. It should be pointed out thatthe details of the distribution function of r do not matter, as long asthe �rst two moments are zero and one, respectively, and the highermoments exist. This is a straightforward consequence of the CentralLimit Theorem [43]. Thus, for simplicity, one should use uniformrandom numbers.The reason why this algorithm is even more stable than simplemicrocanonical MD with the Verlet algorithm is that the stochasticdynamics thermostats every degree of freedom individually. Looselyspeaking, the noise will \heat up" particles which are \too cold",while the friction will \cool down" particles which are \too hot" andhence would have a tendency to cause instabilities, due to too inaccu-rate simulation of collision{like processes. This is in marked contrastto the Nose{Hoover thermostat [44], in which only the overall systemis thermostatted, without additional stability.Let us now compare the method to other simulation approaches.The \big competitor" is, of course, Monte Carlo (MC) simulations.MC methods are amenable to a number of tricks, which, in manycases, allow for a more e�cient sampling of static properties. To men-tion just a few, one can try to \shortcut" the slow physical dynamicsby accelerated simulation schemes (in the case of single self{avoidingwalks, the pivot algorithm is a typical example; see the contribu-tion of Sokal in this volume and in Ref. [7]). Moreover, there areseveral reweighting schemes available (umbrella sampling, simulatedtempering, multiple Markov chains, etc. [8, 9]), which are, in part,also covered in this volume. However, for MC to also obtain realisticdynamic information, one has to follow the slow physical path. Inthis case MC is no longer generally superior to MD, particularly forsimulations in the continuum. MC codes tend to be slightly moredi�cult to vectorize and parallelize than MD programs. Good ef-�ciency of MC algorithms is often only obtained when applied tolattice models; however, in many cases the continuum provides con-siderable 
exibility which is hard to attain on a lattice. In particular,one can easily simulate other ensembles including constant pressureor constant stress following the schemes �rst proposed by Andersen11



[45] and Parrinello and Rahman [46]. Moreover, MC on a lattice withlocal moves requires su�cient amount of free sites in order to keepthe acceptance rate high; i. e. for very dense systems a continuumsimulation is usually more e�cient. The only way out would be toemploy an event{driven scheme on the lattice [47], which is howeverrather complicated.Similar comments also hold for the comparison with BrownianDynamics, in which one simulates the overdamped Langevin equationddtx = ��1 (F + f) (24)(same meaning of symbols as above). This algorithm is often ham-pered by large discretization errors, and is in spirit quite similar toa MC simulation. One can also combine Brownian Dynamics withMonte Carlo in the so{called \Force{biased Monte Carlo" scheme,where the Brownian Dynamics step is re{interpreted as a Monte Carlotrial move, and, with certain probability, accepted or rejected in or-der to satisfy detailed balance [48]. However, there are cases wherethe physics simply requires some variant of MD algorithm, and MCcannot describe the phenomena. Loosely speaking, this always occurswhenever momenta are important; this is usually the case wheneverhydrodynamics (i. e. momentum transport) plays a role. An impor-tant case is the dynamics of dilute polymer solutions, where hydro-dynamic interactions dominate the Brownian motion of the polymerchains: The fast momentum transport mediated by the solvent par-ticles introduces dynamic correlations into the monomers' stochasticdisplacements, such that one basic assumption of the Rouse model,Eqn. 6, does not hold. Instead, the pertinent model is a modi�edRouse model which includes hydrodynamics, the Zimm model [2, 30],which will be described below. In this case, it turns out that evenstochastic dynamics alters the dynamics so strongly that it cannotbe used to obtain dynamical data.A last important point concerning simulation methods is, ofcourse, the optimization of the programs. For MD the most time{consuming part is the force calculation. We found it very e�cient touse a standard Verlet table, which stores the particle pairs within theinteraction range rc, plus an additional safety margin rs. This tableis reconstructed as soon as a particle has moved more than rs=2, andfor this reconstruction we �rst decompose the system into sub{cellswith linear size � rc + rs, such that only the neighboring cells haveto be searched and the algorithm scales linearly with the system size.It is possible to set up the table in such a way that the procedure12



can be completely vectorized; for more details and a variant of theapproach see Refs. [49, 50]. Meanwhile, the scheme has also beenquite e�ciently parallelized using a geometric decomposition.3 Zimm model, failure of stochastic dynamicsfor dilute solutions, and long{range interac-tionsAs already mentioned in the previous section, the momentum trans-fer through the solvent introduces correlations into the stochasticdisplacements. The standard theory [2] describes this e�ect via mod-eling the momentum transport through the solvent by low{Reynoldsnumber hydrodynamics of an incompressible 
uid, i. e. the Navier{Stokes equation for the solvent 
ow �eld ~u@@t~u = ���~u; (25)where � is the solvent viscosity and � the mass density. The parame-ter �=�, the so{called kinematic viscosity �kin, has the dimension of adi�usion constant; from the formal analogy of Eqn. 25 to the standarddi�usion equation it is obvious that the momentum propagates di�u-sively with a \di�usion constant" �kin. For an almost incompressible
uid this mechanism is much faster than the monomer motion (i. e.�kin � D0). One can therefore still describe the polymer motionvia stochastic hops whose correlations are determined just by theinstantaneous monomer positions.Instead of Eqn. 2 one now has~ri(t+ h) = ~ri(t) +Xj $�ij ~Fjh+ ~�i; (26)with h~�ii = 0 (27)and h~�i 
 ~�ji = 2 $Dij h; (28)where di�usion tensor $Dij and mobility tensor $�ij are related via$Dij= kBT $� ij, while the Oseen tensor$�ij= ��1�ij $1 +(1� �ij) 18��rij  $1 +~rij 
 ~rijr2ij ! (29)13



is obtained from the solvent 
ow �eld at ~ri induced by a point forceat ~rj .Following the same reasoning as in the Rouse case to obtain thecenter{of{mass di�usion constant, one �nds the Kirkwood formulaD = D0N + kBT6�� � 1RH � ; (30)where the hydrodynamic radius of the chain is given by� 1RH � = 1N2 Xi 6=j * 1rij+ : (31)Strictly speaking, this formula holds only in the short{time limitof Eqn. 26: The deterministic force contribution to the center{of{mass displacement is now N�1Pij $�ij ~Fjh, which, in contrast to theRouse case, does not vanish exactly. However, this term scales onlylinearly with h, while the stochastic contribution is proportional toph. Hence, for short times this latter part dominates and resultsin Eqn. 30. The di�erence between the short{time and long{timedi�usion constant is rather small, and the important result is that thedi�usion constant now is inversely proportional to the hydrodynamicradius RH , which is just another measure of the chain dimension.Hence, D / R�1G (note however that there are very strong correctionsto scaling), and, in strict analogy to the Rouse case, z = 3. Thismeans that all the dynamic scaling laws which have been derivedin the previous section hold, but with a dynamic exponent whichis smaller due to the hydrodynamic correlations which, on average,speed up the motion of the chain. For example, the subdi�usivebehavior of the mean square displacement is now governed by a t2=3law irrespective of chain statistics, while in the Rouse case one hast1=2 or t0:54 for random walks and self{avoiding walks, respectively.It is important to note that a simulation which takes both themonomers as well as the solvent particles explicitly into account andalso uses stochastic dynamics for every particle cannot describe thehydrodynamic correlations properly. This is immediately evidentfrom the fact that the stochastic dynamics destroys the global mo-mentum conservation, which is the basis for hydrodynamic behavior.Usual Newtonian dynamics for the particle velocities ~ui,ddt~ui = ~Fi=m; (32)14



directly leads, via coarse{graining, to the Navier{Stokes equation forthe velocity 
ow �eld ~u, @@t~u = ���~u; (33)and its Oseen type Green's function (in Fourier space),$D= 1(2�)3 kBT� Z d3~k 1� k̂ 
 k̂k2 exp(i~k � ~r): (34)Conversely, Langevin dynamics,ddt~ui = ~Fi=m � (�=m)~ui + ~fi=m; (35)induces a modi�ed Navier{Stokes equation@@t~u = ���~u� �m~u: (36)The frictional term survives the coarse{graining, while the randomterm averages out. Hence, the original Laplacian is replaced:�! �� ���m = �� �2; (37)and the k2 in the di�usion tensor is replaced by k2 + �2. Therefore,the hydrodynamic interaction is screened on a characteristic lengthscale l0 = ��1 =sm��� ; (38)in close analogy to electrostatic screening. However, this means thatthe most important property of the hydrodynamic interaction, itslong{range nature, is lost. The intuitive picture of this mechanism isthat collisions from particle to particle do not propagate arbitrarilyfar, but rather are dampened out by the friction and noise, such thatafter a certain number of events, described by the length scale l0, thememory of the original momentum is lost. A more formal derivationof this result is found in Ref. [51].If one carries out a simulation (i. e., studies Brownian motionin an explicit bath of solvent particles), the MD algorithm has, ofcourse, only to deal with short{range interactions. However, the dataanalysis is severely a�icted by the long{range character of the hydro-dynamic interaction. Quite generally, the problem about long{range15



interactions is that the simulation box is practically always too smallto accomodate them by just the \minimum image convention", whichtakes into account only the interactions within the box itself, and theimmediately neighboring periodic images. Rather, one has to sumup the interactions with the in�nitely many periodic images. This isusually done by the Ewald summation method [52], which splits theinteraction up into a �rst part, which decays quickly and is summedup in real space, and a second part, which decays slowly but variessmoothly and can hence be summed up e�ciently in Fourier space.Such an e�cient algorithm is extremely important for the simulationof charged systems [13, 14], but also for the analysis of dynamic sim-ulation data of a single chain in solution Ewald sums have provenextremely useful. In order to take the long{range nature of the hy-drodynamic interaction into account, one has to replace the Oseentensor by its Ewald sum analogue, the formula of which has beengiven in Ref. [53]. This rede�nes the hydrodynamic radius, whichthen becomes an L{dependent e�ective RH(L), where L is the linearsystem size. Since the periodic images e�ectively increase the chainsize, and since the 1=r behavior of the Oseen tensor introduces a 1=L�nite size e�ect, one has, in leading order [4],
R�1H �L = 
R�1H �L=1 � const.RG=L: (39)As will be demonstrated in the following section, this �nite size cor-rection is extremely large for systems which can be simulated today,since it is simply impossible to make L orders of magnitude largerthan RG. Even for the particles of a simple 
uid this �nite size e�ectof the di�usion constant can be observed, although it is of coursemuch weaker than for a polymer chain. It was shown in Ref. [4] thatthe data both for solvent particles as well as for the polymer chainare in quantitative agreement with the hydrodynamic theory, withessentially no adjustable parameters.4 A single chain in a bath of solvent particlesIn this section, we brie
y summarize the main results of an MD simu-lation designed to test the predictions of the Zimm model as carefullyas possible. A detailed account has been given in Ref. [4], and hencewe restrict ourselves only to the main points.A single chain of up to N = 60 monomers was simulated in abath of up to 7940 solvent particles. To model the excluded volumeinteractions, the same repulsive Lennard{Jones potential, Eqn. 13, is16



introduced between all particles. Since this potential is the samefor all particles, this corresponds to an ideal good solvent. Thechain structure corresponds to a self{avoiding walk. The temper-ature T = 1:2"=kB , and the 
uid density was chosen rather high(��3 = 0:864), in order to approximate the ideal of incompressible
ow as closely as possible. The system size was L = 21�, and self{overlap e�ects in the static structure were not observed (RG=L � 0:2).The FENE potential parameters were slightly di�erent from those formelt simulations (k�2=" = 7, R0 = 2�), and the monomer mass wastwice the solvent particle mass. The exact choice of these parame-ters is of technical relevance but not important for the main results.While stochastic dynamics was used to generate starting states, thedynamics was analyzed from microcanonical runs.The most important result is that the Zimm prediction z = 3 isveri�ed. Figure 3, showing the scaling of the dynamic structure factorfor N = 60, demonstrates this very clearly. However, when one triesto test the Kirkwood prediction for the di�usion constant, Eqn. 30,�nite size e�ects resulting from the long{range nature of the hydrody-namic interaction show up very clearly. The actual di�usion constantis obtained from the mean square displacement of the center of mass,while the solvent viscosity is calculated via Green{Kubo integrationof the time autocorrelation function of the o�{diagonal elements ofthe pressure tensor (see, e. g., Ref. [54]). Moreover, the hydrody-namic radius is obtained via direct averaging of r�1ij as a purely staticquantity, andD0 is estimated via the di�usion constant of the solventparticles. The naive comparison fails completely, the actual di�usionbeing much slower than the naive Kirkwood prediction. However,when one takes into account the periodic images, i. e. replaces RHby its Ewald{sum corrected value, the agreement between theory andsimulation is nearly perfect. Figure 4 demonstrates that the �nite sizee�ect is extremely large. A system which would be large enough tosuppress the �nite size e�ect down to 10% would have to contain3� 105 solvent particles for the shortest chain N = 30!A similar analysis can be also be done for the generalization of theKirkwood formula to �nite wavenumbers. As Akcasu et al. [55{57]have shown, the Zimm dynamics, Eqn. 26, results in an initial decayrate of the dynamic structure factor� ddt S(k; t)S(k; 0) ����t=0 = k2D(k) = Pij D~k� $Dij �~k exp(i~k � ~rij)EPij Dexp(i~k � ~rij)E : (40)This de�nes a k{dependent di�usion constant D(k), which, in the17
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Figure 3: The dynamic structure factor of the N = 60 chain, in thescaling regime 0:7 � k � 3 and 20 � t � 80, plotted in the scalingform k1=�S(k; t) vs. kzt, using z = 2 + 1=� = 3:7 (Rouse scaling) inthe upper plot, and z = 3 (Zimm scaling) in the lower one.18
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limit k ! 0, reduces to the center{of{mass di�usion constant. Inthe same limit, the right hand side reduces to the Kirkwood formulafor DCM . The comparison is shown in Fig. 5. One sees that thedynamics data, while in good agreement with the static predictionfor k ! 0, di�er considerably for larger k from the Akcasu prediction.We believe that this is due to more complex dynamics, which cannotbe described by simple hydrodynamics, since the length scales aretoo close to the microscopic ones (note that the typical interparticledistance is of the order of 1, in our units). For a more detaileddiscussion, see Ref. [4].5 Entangled meltsIn a melt of identical chains the motion of a monomer is, similar tosolutions, the result of many complex interactions. The connectivityof the chain plays the same role as before, as a monomer is coupledto its chemical neighbors. The structure of the \solvent", however, ismuch more complicated, as it consists of other polymer chains ratherthan small solvent particles. This has many drastic consequences. Afortunate one is that hydrodynamic interactions can be neglected forthe study of the monomer motion. The chains strongly interpenetrateand screen the excluded volume interaction. Thus one recovers therandom walk exponents for the static properties, e. g.hR2(N)i / N: (41)For the dynamics the situation is more complicated. The motion ofthe monomers is a result of a complicated interplay of collisions and(temporary) constraints. Beyond the connectivity of the monomersunder consideration as well as all the other collision partners, thechain topology should play a dominant role. However, as it turns outexperimentally, for short chains all these correlations in the forcesacting on the monomers average out to a thermal noise which 
uc-tuates very fast compared to the characteristic time for a monomerto di�use its own diameter. Hence the Rouse model provides a verygood description of the dynamics of short polymer chains in a meltof other similar chains. This is an experimental justi�cation of thismodel rather than a derivation from �rst principles. It is (probably)impossible to prove the picture, and the Mori{Zwanzig projectionoperator formalism, which has been applied to the dynamics of poly-mer melts in the work by Hess [58] and Schweizer [59{62], shouldbe viewed mainly as the proper mathematical language which allows20



one to express the physical assumptions as approximations to thefull many{body dynamics. However, a rigorous justi�cation of theseapproximations is not available.For such melts one �nds for the di�usion constant, the viscosity,and the longest relaxation time, respectively, the Rouse scaling lawsD = kBT�N (42)� / N (43)�R / N2: (44)While the center of mass is expected to follow a standard di�usionbehavior, one �nds for the monomersg1(t) = D(~ri(t)� ~ri(0))2E / ( t1=2 �0 < t < �Rt1 �R < t : (45)Here �0 is the microscopic time, which characterizes the onset of thechain constraints. For intermediate times g1(t) / t2=z (Eqn. 10) withz = 4, while for large times the free di�usion takes over.This is observed, with surprisingly small deviations, for all poly-mers. When the chains become much longer, i. e. when they signi�-cantly exceed a characteristic molecular weight Me (or characteristicnumber of monomersNe), the dynamics is dramatically slowed down.The viscosity changes from � / N to � / N3:4 and the di�usionconstant from D / N�1 to D / N�2. This characteristic molecularweight, which can, via dT = R(Ne) / N1=2e , also be viewed as a lengthscale dT , di�ers from polymer to polymer, e. g. Me ' 850 for poly-ethylene (PE), and Me ' 13 500 for polystyrene (PS) for T = 413K[63]. Me turns out to be extremely temperature{dependent. Withincreasing T the chains coil more strongly (i. e. R2 decreases), lead-ing to an increased entanglement molecular weight. For example, atT = 448K the entanglement molecular weight of PE is Me ' 1350,while for PS Me ' 18 000 at T = 485K [64, 65]. There have beenmany attempts to describe this dynamics. The most successful so faris the reptationmodel [2]. For short chains the connectivity is respon-sible for the screening of the hydrodynamic interactions. The chainsmust still be free enough to allow for a slowed down but still isotropicRouse{like motion. As the chain length increases, the topological con-straints, formed by the surrounding chains on intermediate time andlength scales, live longer than the time which one monomer needs toescape this \cage" via Rouse{like motion. According to this picture,actually originally applied to networks, the chain is forced to move21



Figure 6: Center{of{mass di�usion constant, normalized by theshort{chain Rouse value, as a function of normalized chain lengthN=Ne. Data taken from this work (closed circles), from MC simula-tions of the bond 
uctuation model at volume fraction 0.5 [33, 34](open squares), and from hard chain MD simulations by Smith et al.[66, 67] at volume fraction 0.45 (open circles).mainly along its own coarse{grained backbone (one coarse{grainedbond corresponds to Ne monomers). This dominance of curvilinearmotion leads to a completely di�erent behavior, which is well sup-ported by both simulation and experiment.The reptation scenario can be described as follows. The chainmoves in a di�usive way along its own backbone, while the curvi-linear di�usion constant Dcurv is proportional to N�1, due to one{dimensional Rouse motion. The longest relaxation time, the so{called \disengagement time" �d, is determined by the requirementthat within �d the chain has moved its own size. For curvilinearmotion, this means however Dcurv�d / N2. Thus one concludes�d / N3 / R6G, i. e. z = 6 in the language of the preceding sections.Hence the viscosity in the reptation model also scales as � / N3 [2],while experimentally one �nds � / N3:4, which is commonly viewedas the biggest de�ciency of the model, the reasons being still underdebate. There are several attempts to include chain end e�ects (con-straint release [58], double reptation [68{72]), as well as alternativemodels, which do not explicitly take into account the non{crossabilityof the chains (in particular the mode{mode coupling theory [59{62]).However the most successful so far is the reptation concept. In par-ticular, the experimental �nding D / N�2 is in very good agree-22



ment with the reptation model. Since the di�usion constant in realspace must satisfy D�d / R2G, D / R�4G / N�2. Figure 6 showsthis crossover from Rouse behavior to reptation, for data taken bothfrom MD as well as MC simulations. Since, however, most experi-ments can either test only single aspects of the reptation scenario orgive rather indirect information, simulations should help to under-stand the motion of highly entangled polymers. On the other hand,simulations are somewhat limited in the range of chain lengths andthe time regime they can study. It is therefore particularly impor-tant for simulations to understand the implications of reptation onthe intermediate time scales.For the anisotropic motion of the chain and of the monomers,the reptation model can be described as follows. The topologicalconstraints are pictured in terms of a constraining tube with diameterdT / N1=2e . There are three important crossover times involved:�e / N2e , �R / N2, and �d / N3=Ne. For N > Ne, �e < �R < �d, whilefor N ' Ne all three times coincide. For short chains, N < Ne, onehas Rouse behavior and hence only one time �R. The entanglementtime �e is the Rouse time of a subchain of length Ne; for times smallerthan �e the monomers do not feel the constraints and hence haveRouse{like motion. The transversal 
uctuations of the monomers inthe tube have relaxed on the time scale of the Rouse time �R, andfor times larger than �R the motion is completely dominated by thereptation mechanism, i. e. curvilinear di�usion. Finally, after thedisengagement time �d the motion is simply free di�usion. In termsof the mean square displacement of a monomer, g1(t), as de�ned inEqn. 45, and the mean square displacement of the center of mass,g3(t) = ��~RCM(t)� ~RCM(0)�2� ; (46)this picture means that for t < �e (disregarding the microscopic time�0) one has simply Rouse behavior, i. e. g1(t) / t1=2 and g3(t) / t.For t > �R the chain moves along its backbone, while 
uctuationswithin the tube give only negligible contributions. For such a type ofmotion, g3(t) / t, with the asymptotic di�usion constant D / N�2(this can be shown very easily by considering a \slithering snake"type of motion, where a randomly chosen segment at one of the twoends is removed and attached at the other end), while g1(t) / t1=2.This latter behavior is due to the fact that a motion of the chainalong the backbone by a distance l corresponds only to a distance of/ pl in real space, due to the randomwalk structure of the backbone.Of course, this holds only up to �d when the overall di�usion takes23



over, such that g1(t) ' g3(t) / t for t > �d. Finally, for the crossoverregime �e < t < �R we note that the results obtained so far implyg1(�e) / d2T / Ne (47)and g1(�R) / g1(�d)��R�d �1=2 / N �NeN �1=2 / (NNe)1=2 ; (48)while g3(�e) / �e=N / N2e =N (49)and g3(�R) / g3(�d)��R�d � / Ne: (50)This is only consistent if in the crossover regime the time behavior isg1(t) / t1=4 and g3(t) / t1=2.Let us summarize these �ndings:g1(t) / 8>><>>: t1=2 �0 < t < �e / N2et1=4 �e < t < �R / N2t1=2 �R < t < �d / N3=Net1 �d < t (51)and g3(t) / 8<: t1 t < �e / N2et1=2 �e < t < �R / N2t1 �R < t : (52)Due to the detailed sequence of crossovers given by Eqn. 51, g1(t)is clearly one of the most important quantities to measure. In orderto obtain maximum statistics, one would of course average it over allmonomers in the system. However, the ends of the chain 
uctuatemuch more strongly than the monomers near the center. Since thetheoretical models are for the asymptotic limit of very long chains,it is important to minimize the e�ect of the chain ends, since thechains which can presently be studied on modern computers are notso highly entangled. Thus, for the remainder of this paper, we averagethe displacement of the monomers only over the inner monomers,excluding the chain ends. For N even, we usually average over theinner 5 monomers,g1(t) = 15 N=2+2Xi=N=2�2 D(~ri(t)� ~ri(0))2E : (53)24



Other quantities of interest are of course the mean square dis-placement of the center of mass, g3(t), whose long{time behavioryields the di�usion constant D = limt!1 g3(t)=(6t), and the meansquare displacement of a monomer relative to the motion of the cen-ter of mass,g2(t) = 15 N=2+2Xi=N=2�2��~ri(t)� ~RCM(t)� ~ri(0) + ~RCM(0)�2� ; (54)where, for the same reasons as above, we restrict our attention onlyto the inner monomers. Usually it was assumed [6, 34] that g2(t)follows the same time behavior as g1(t) up to �R, while for t > �R itwas usually assumed to be constant. This corresponds to the sequencet1=2, t1=4, t0. However this leads to an inconsistency: In the long{timeregime, the correlation to the original conformation is lost, such thatg2(t!1) = 25 N=2+2Xi=N=2�2��~ri � ~RCM�2� / hR2Gi / N: (55)Thus if g2(t) were already constant at �R, this constant should beg2(�R) � g1(�R) / (NNe)1=2 � N (cf. Eqn. 48, [6]). Therefore,we conclude that g2(t) should follow the behavior of g1(t) up to thedisengagement time �d, i. e. that a second t1=2 regime should occurbetween �R and �d. However, so far no indication of this regime hasyet been observed. We believe that this is due to a strong \smearingout" of the time behavior, induced by the �nal crossover to the t0regime.All three displacements allow the de�nition of a characteristicrelaxation time [34] via g1(�1) = hR2Gi; (56)g2(�2) = 23hR2Gi; (57)g3(�3) = g2(�3): (58)This is motivated by the observation that in the ideal Rouse modelfor noninteracting Gaussian coils all these relaxation times are pro-portional to each other and the Rouse time �R, �i = Ci�R, whereC1 ' 0:2410, C2 ' 0:2033, and C3 ' 0:75. Taking the ratio of thesetimes to eliminate the unknown quantity �R, the Rouse model pre-dicts that �2=�1 ' 0:846 and �3=�1 ' 3:112. We compare these ratios25



to the results from our MD simulations and from the bond 
uctua-tion simulations of Paul et al. [34] below. The reptation predictionis �1 / �2 / �3 / �d / N3, where we again have assumed that the�nal crossover of g2(t) occurs at �d.In order to observe reptation unambiguously, one should makethe ratio N=Ne as large as possible. Firstly, one should try to makeNe small, i. e. simulate the system at high density, since then thetube diameter is expected to be small. Secondly, one should try tosimulate long chains. This is however limited by several severe con-straints. Large N also means large RG, and this in turn means a largesimulation box. In order to avoid artifacts both in the statics andthe dynamics due to the chain seeing itself via the periodic boundaryconditions, one chain has to �t nicely into the box. A reasonablylarge system size is certainly necessary if one attempts to prove ordisprove by simulation recent ideas about correlation{hole e�ects onthe long{time dynamics [73]. We view a system size of L = 7� 10RGas the minimum size where one can assume to be rather safe; how-ever, we have usually not been able to reach this goal. Hence, thevolume is L3 / R3G / N3=2, i. e. the number of chains, M , scalesas L3=N / N1=2. To give an example from our standard MD model,hR2Gi = 0:28(N � 1)�2, i. e. RG=� = 3:6, 5:2, and 7:5 for N = 50,100, and 200, respectively. L = 7RG would require M = 270; 410;and 610 chains, which nowadays could just be done with a big parallelmachine. The largest system (with respect to number of monomers)which has been simulated so far contained M = 120 chains of lengthN = 350 in a box of L = 36:7�, i. e. L=RG � 3:8 (in practice, wetraded in some \safety" with respect to system size for the ability togo to longer chains at all). For the motion of the internal distances,e. g. the onset of the t1=4 regime, this is certainly su�cient, while forthe overall di�usion some reservations remain.Moreover, one has to run the system for several disengagementtimes, such that the cpu time (of an e�cient linear algorithm) scalesas L3�d / N4:5 (or N4:9, using the experimental viscosity exponent3:4). This very high power has severely limited the chain lengthto typically 6 { 8 Ne. Increasing the chain length by a factor of 2requires more than a factor of 23 more cpu time, if one wants to coverthe entire relaxation spectrum. Thus most simulations give a veryprecise description for shorter times, while the accuracy signi�cantlydecreases for longer times. This is because for smaller times morestatistically independent \events" contribute to, say, g1(t) than forlonger times. Fortunately, g1(t) is a self{averaging quantity, since itrefers only to a single chain. Hence, one can improve the statistics by26



simply increasing the number of chains, i. e. the relative statisticalerror is proportional to M�1=2. Nevertheless, in order to obtain thefull dynamical information, each chain must be observed for a time ofseveral �d. The number of statistically independent events per chaincontributing to g1(m�d) (m > 1) can then be crudely estimated asTt=(m�d), where Tt is the total run length, and prefactors of orderunity are ignored. Hence it makes no di�erence if one improves thestatistics via increasing the number of chains, or by increasing thelength of the run. However, a larger system size is more amenable tomodern massively parallel computers. Note however that this helpsto increase the number of chains, but the maximum chain length willstill remain limited. Even in the limit of in�nitely many availableprocessors, one node still has to treat a sizeable number of monomersin order to keep the communication costs down. Thus the cpu timeper processor still scales as �d with chain length.Slightly di�erent considerations apply if one is also interested inquantities which are not self{averaging. These are all quantities whichare based on collective 
uctuations of the overall system. Typicalexamples would be the speci�c heat, the k ! 0 limit of the collec-tive (i. e. many{chain) structure factor, or the viscosity obtainedfrom equilibrium data via Green{Kubo integration [54], the latter ofcourse being of great interest for studies of polymer dynamics. Inthis case, the only way to improve the statistics is via longer runs.So far, it has been impossible to obtain reliable viscosity values fromequilibrium simulations in the entangled regime. Non{equilibriumMD measurements of the viscosity have been attempted for melts ofup to N = 400 [26]. A crossover from Rouse{like behavior to repta-tion was observed for N ' 3Ne. However, since for the long chainsthe shear rate was signi�cantly larger than the chain relaxation rate1=�d, this simulation was also not able to obtain the asymptotic zero{frequency viscosity. An extrapolation to zero shear must explicitly orimplicitly make use of model assumptions on the long{time dynamics,and is moreover severely hampered by chain{stretching e�ects etc.The practical conclusion of this discussion is that one needs longruns for medium{sized (with respect to number of monomers) sys-tems. On modern parallel computers with distributed memory thereare certainly some lower bounds to the system size. For MN = 105we found on a Cray T3D a performance of 0:34 steps per second onone processor. On 64 processors this number is 14 steps per second(i. e. roughly 40 times as fast), while on 256 processors we obtained45 steps per second (i. e. only 130 times as fast). This is the usualsub{linear speedup due to increased amount of communication over-27



Table 1: Simulation details for a melt of M chains of length N ata monomer density ��3 = 0:85 and temperature T = "=kB , in asimulation cell of linear size L. Data were taken from runs of totaltime Tt=� after equilibration. All of the results are for one continuousrun for a single ensemble except for M = 20 and N = 50 which isan average over 5 independent starting states. Results for the meansquare radius of gyration hR2Gi, the mean square end{to{end distancehR2i, and the di�usion constant D are given.M/N L=� Tt=� hR2Gi=�2 hR2i=�2 6D�=�2200/5 10.6 2:60� 104 0:9 5:1 8:6� 10�2100/10 10.6 1:30� 105 2:2 13:0 4:3� 10�280/25 13.3 2:60� 105 6:2 37:6 1:4� 10�250/40 13.3 2:60� 105 10:4 62:8 7:7� 10�320/50 10.6 3:38� 106 13:4 80:8 5:0� 10�340/50 13.3 1:95� 105 13:2 79:4 5:8� 10�3100/50 18.1 3:25� 105 13:3 80:1 5:8� 10�320/100 13.0 6:50� 105 27:8 168:4 2:1� 10�3100/100 22.7 3:90� 105 27:7 167:3 2:1� 10�3100/200 28.7 5:68� 105 60:4 345:7 5:5� 10�4120/350 36.7 3:84� 105 93:0 551:7 |head when one increases the number of processors. While for 256processors already roughly half of the cpu time is lost in communi-cation overhead, we view the communication losses at 64 processorsas still acceptable. This means a minimum number of roughly 1 500monomers per processor. Note also that even if one is willing to tradein more computing power for a faster throughput, there will �nallybe a regime where adding yet another processor will actually decreasethe performance.In order to further improve on our previous data given in detailin Ref. [6] we carried out a series of new runs for a polymer melt ofentangled chains. The system is the same that we have studied in thepast, namely a homopolymer melt of linear bead{spring chains at adensity ��3 = 0:85. Taking advantage of improved algorithms andthe lower cost of multi{processor systems, we have studied largersystems for longer times. All of this new data were collected on aCray 916 (about the speed of an XMP processor) and on a SiliconGraphics Challenger with R4400 processors. The data for the systemof 100 chains of length 200 took approximately 85 days of cpu time28



on the Cray 916. A summary of our results is presented in Table 1.The data were obtained using a velocity Verlet algorithm to integratethe equations of motion with a time step h = 0:013� . The frictionconstant of the stochastic dynamics was � = 0:5"�=�2. All of thedata except for the M=N = 20=50 system are the result of one longrun for a single system. The data for the 20=50 system are an averageover 5 independent starting states in which four were run for a totaltime Tt=� = 5:2�105 and the �fth run for Tt=� = 1:3�106. To study�nite size e�ects we studied three system sizes, M = 20, 40, and 100,for N = 50 and two system sizes,M = 20 and 100 for N = 100. Mostof our earlier data were for M = 20 [6]. Previously we also studieda system of M = 100 chains of 200 but the total length of the runwas considerably shorter than presented in Table 1. For the staticquantities, like the mean square radius of gyration hR2Gi and end{to{end distance hR2i, the new results are in very good agreement withthe earlier results. There are no detectable �nite size e�ects for thestatic quantities as the results for M = 20 agree very well with thosefor M = 100 for N = 50 and 100. For the �ve independent startingstates for M = 20 and N = 50, the mean values for both hR2i andhR2Gi for each sample were all within 1% of the average over the �vesamples.The mean square displacements g1(t) and g2(t) for the inner 5monomers of the chain and g3(t) are shown in Fig. 7 for N = 100 and200. Because of the new, longer runs, this data is of considerablyhigher quality than data from only a few years ago [6]. While thedi�usion constant can be extracted from either g1(t) or g3(t) in thelimit of long time, our discussion above suggests that g3(t) reaches theasymptotic limit more rapidly. This can easily be veri�ed by plottinggi(t)=t vs ln t=� for i = 1; 3 as shown in Fig. 8. Apart from plots ofthis type, we also use plots of g3(t)=t vs. 1=t and extrapolate 1=t! 0,as done in Fig. 9. The results, which are given in Table 1, are thesame within the statistical error for the two methods, provided thatthe runs are long enough to reach well into the linear regime. Therun for the largest system, N = 350, is not long enough to reachthe asymptotic linear regime and as such we cannot give a reliableestimate of D for this case. We note that these values are higherby about 8 � 20% compared to the values obtained earlier [6], thedi�erence being simply related to the fact that the earlier runs weresigni�cantly shorter and on smaller systems than the new ones pre-sented here. Using subsets of our data comparable to the run timespresented in Table II of Ref. [6], we �nd values for D comparableto those presented in our earlier study. Since the total lengths Tt29



Figure 7: Mean square displacements g1(t) (�), g2(t) (2) for the inner5 monomers and g3(t) (4) of the center of mass for a system of 100chains of length N = 100 (a) and N = 200 (b).30



Figure 8: Mean square displacement g1(t)=t for the inner 5 monomersand g3(t)=t of the center of mass for a system of 100 chains of lengthN = 50 (�), 100 (2), and 200 (4). The upper curve in each casecorresponds to g1(t)=t.
Figure 9: g3(t)=t plotted as a function of 1=t, for 100 chains of lengthN = 50, 100, 200. The limiting value for 1=t! 0 is 6D.31



of those earlier runs were less than those presented here, the maxi-mum time one could measure g3(t) was likewise shorter, giving riseto the underestimation of D. Our estimated statistical error in D isabout 5% for small N and 10% for large N . However there may besystematic errors, including �nite{size e�ects, which are di�cult toestimate. To obtain an estimate of the sample to sample 
uctuationsin D for small samples, for the system of M = 20 chains of lengthN = 50, �ve independent starting states were run. The results for6D�=�2 � 103 varied from 4:8 to 5:3, with an average value of 5:0.All of the runs gave values systematically lower than those found forthe larger systems (M = 40 and 100). A possible explanation of this�nite size e�ect may be related to the fact that we measure g3(t) rel-ative to the di�usion of the overall system which arises from the useof the stochastic dynamics algorithm. The motions of the chains areof course correlated, since a monomer must push away its neighborsin order to move. It is well conceivable that for a small number ofchains these correlations extend over a signi�cant fraction of the over-all system. Hence, a signi�cant part of the chain's own motion mightbe subtracted, resulting in a systematic underestimation of D. Dueto limitations on computer time, multiple runs from di�erent startingstates were not made for larger M to check the size of the system tosystem 
uctuation in D. However the di�erence in the value of Dbetween the M = 20 system and the M = 40; 100 systems for thiscase suggests that additional runs for more values of M are neededbefore we can completely quantitify the systematic error which arisesfrom �nite size e�ects. The fact that within our error bars we �ndthe same value for both M = 40 and M = 100 suggests that theseare likely to be already in the asymptotic large{M regime.Our MD results for the di�usion constant, normalized byDRouse,are compared to the bond 
uctuation MC simulations of Paul et al.[33, 34] for a volume fraction � = 0:5 and the hard{chain simulationsof Smith et al. [66, 67] for � = 0:45 in Fig. 6. From this �gure itis clear that for small N the di�usion constant scales with N�1 asexpected. For larger N there is a clear crossover to a slower di�usion.The data is consistent with the reptation prediction that D / N�2,but is not for su�ciently long chains to prove that the power is 2.Note that all three simulations cover the same range in terms ofN=Ne,namely 6 { 7. At the present time it is still not possible to increasethis number by a signi�cant amount.To test the reptation and mode coupling models of the dynamics,it is important to examine the intermediate time regimes. These areshown in Fig. 10 for g1(t) forN = 25, 50, 100, 200, and 350. For short32



Figure 10: Mean square displacement g1(t) of the inner 5 monomersfor �ve values of the chain length N = 25 (}), 50 (�), 100 (2),200 (4) and 350 (
). The solid line has a slope 1=4.times, the data for all systems fall on top of each other, as expectedfrom theory. This is because for short times the inner monomers notyet know what the total length of their chain is. With increasingtime for N = 25, there is a direct crossover from the t1=2 regime tofree di�usion. However as N increases, there is a de�nite decrease ofthe slope of the intermediate regime. Our data give a slope in theintermediate regime of about 0:30 � 0:03. This slope agrees betterwith the predictions of the mode coupling theory [59, 60] (9=32) thanreptation theory (1=4), though the chain lengths are too short to sayfor sure that one theory is preferable over the other. As the apparentslope in the intermediate region is clearly decreasing as N increases,it is di�cult to determine what the true slope is, in the limit of verylarge N . Similiar values for the slope of the intermediate time regimehave been reported by Skolnick and Kolinski [74], Paul et al. [33],Sha�er [75], and Smith et al. [66, 67]. The onset of the t1=4 regimeis identi�ed as �e, giving �e ' 1 800� for our model. Assuming that�e is the relaxation time of a Rouse chain of Ne monomers, one getsg1(�e) = 2hR2G(Ne)i. This gives Ne � 35. Since the longest chainswhich can be fully equilibrated are only of lengthN = 200, the secondt1=2 regime is expected to be too small to be detected. Reptationtheory predicts that it extends from �R / N2 to �d � N3=Ne, whichfor N = 200 is much less than a decade. For large t, g1(t) crossesover to di�usion behavior.Recently Smith et al. [66, 67, 76] observed plateaus in g1(t) versus33



Figure 11: Mean square displacement g1(t) of the inner 5 monomersfor M = 100 chains of length N = 100 (2) and 200 (4).t for the inner monomers for their 192{mer 
uids. They interpretedthese plateaus in terms of intermolecular knots. We looked for evi-dence of this extra structure in g1(t) in our new data and found none.In Fig. 11, we re{plot our data from Fig. 10 on a linear{linear scale.The data are presented out to times which are well within the lin-ear late{time regime. From this �gure, we see no evidence for extrastructure which one could identify as a plateau in g1(t). This result isin agreement with results of Trautenberg et al. [35] who found thatthey observed similar behavior in their bond{
uctuation simulationsof long chains which disappeared or were not reproducible once thesystem size was increased. Moreover, a direct statistical analysis re-veals that the error bar for the data presented in Refs. [66, 67, 76] isexpected to be signi�cantly larger than the suggested e�ect.Results for the mean square displacement of the center of massg3(t) are shown in Fig. 12 for the same �ve values of N . A sloweddown motion for long chains at intermediate times is clearly observ-able, both in the present MD simulations as well as in previous MCstudies [34]. The deviations from Rouse behavior for short times (i. e.t < �e for entangled chains, t < �R for Rouse{like short chains), i. e.a slope g3(t) / t0:8 instead of t1, are found in both MD and MCsimulations, and are presently not fully understood.From data such as that presented in Fig. 7 we can easily determinethe relaxation times �i. The results are presented in Table 2, wherewe used the g1(t) and g2(t) averaged over the inner 5 monomers to34



Figure 12: Mean square displacement g3(t) of the center of massversus t=� . The symbols are the same as in Fig. 10. The solid lineshave a slope of 1 and 1=2.Table 2: Simulation results for the three relaxation times �i, as de-�ned in Eqs. 56{58.M/N �1=� �2=�1 �3=�1 Tt=�3200/5 | | | |100/10 1:0� 101 1.1 2.8 4640:080/25 1:2� 102 1.3 2.5 870:050/40 3:7� 102 1.1 2.8 250:020/50 7:0� 102 0.9 3.0 1600:040/50 6:4� 102 1.0 3.0 101:5100/50 5:9� 102 1.0 2.9 190:020/100 3:9� 103 0.8 3.3 51:5100/100 3:3� 103 0.9 3.3 35:8100/200 2:7� 104 0.7 3.3 6:4120/350 1:7� 105 0.5 3.0a 0:8a The value for �3 for N = 350 is determined by extrapolation of g2(t)and g3(t) and as such is not as reliable as for N � 200.35



Figure 13: Relaxation time �1 (2) and �3 (
) as a function of thechain length N . The lines are best linear least square �ts to the datafor 50 � N � 350. The slope of the solid line is 2:9 for both �1 and�3.determine �i. In Fig. 13 we present our results for �1 and �3 asfunction of N . As seen from the �gure, the data are �tted by apower law �i / Na, with a = 2:9� 0:1. A similar plot for �2 gives aslope of 2:6� 0:1. The ratios for �2=�1 and �3=�1 are consistent withthose reported by Paul et al. [34] for the bond 
uctuation model.The data agree very well with the reptation prediction for �1 and�3, at least for the limited range of N studied. However N is notlarge enough to rule out a 3:4 power as observed experimentally. Theexponent a = 2:6 for �2 does not agree very well with the reptationprediction; this is probably due to the very smooth crossover behaviorof g2(t). Larger N are clearly needed to distinguish crossover e�ectsfrom asymptotic behavior, particulary when examining the largestrelaxation times in the system.As discussed above, in order to obtain full dynamical information,one would like to determine the mean square displacement g1(t) outto a time of order 10�d. In order to estimate the quality of the data,it is important to measure the length of the run Tt in terms of thelongest relaxation time in the system. We use �3 as an estimate of �d,since this is always the largest of the three values as seen in Table 2.From these results, we see that for N � 100, all of the simulationsmet our desired target of Tt=�3 > 10, while the run for N = 200 wassomewhat less, Tt=�3 = 6:4. Thus all of the runs for N � 100 were ofsu�cient length to be able to average the mean square displacement36



Figure 14: Semilog plot of the normalized coherent single{chain struc-ture factor S(q; t)=S(q; 0) as a function of scaled time q2t1=2=6 forN = 350. Only the inner Ns = 50 monomers have been taken intoaccount. The three curves correspond to di�erent values of q� = 0:6,0:8, and 1:0 (top to bottom). The slowing down for long time is aclear signature of non{Rouse behavior.of the inner monomers g1(t) and the center of mass g3(t) out to a timegreater than 10�3 and thus well into the linear time domain, whilethe same two quantities for N = 200 could only be measured withreasonable accuracy out to about 3�3. The run for N = 350, thoughvery long, was clearly too short to give an accurate estimate of thelong time di�usion constant, though it was long enough to examinethe intermediate time domain. These results clearly demonstrate thedi�culty in going beyond the present limitation of 6 � 7Ne. Therelaxation times simply increase so rapidly that only an increase ofN to 10Ne would take considerable computational resources, whichare available today only on the largest multi{processor platforms.Figure 14 shows the decay of the single{chain intermediate coher-ent scattering function S(q; t)=S(q; 0), which can be measured by neu-tron spin echo experiments [77{79]. The slowdown of the monomermotion due to the topological constraints shows also up in this func-tion, however, in a similar fashion as for the mean square displace-ments, end e�ects tend to blur the signature of reptation. Hence it isimportant to go well into the entangled regime (N = 350 was chosenfor Fig. 14), and again restrict attention only to inner monomers.Hence, only the 50 inner monomers contribute to the scattering func-tion. This is of experimental relevance since one can label the inner37



part of the chain by deuteration. The wave numbers q in Fig. 14 havebeen chosen well within the scaling regime where the static structurefactor decays as q�2. In this regime, the Rouse model predicts adecay S(q; t)S(q; 0) = exp��const.q2t1=2� ; (59)which however in Fig. 14 holds only in the short{time regime t < �e.For longer times, the curves split up and exhibit a much slower decay,which is an indication of reptation. For a more detailed discussion, seeRef. [6]. A detailed comparison of the intermediate coherent scatter-ing function for the bond 
uctuation model and the double reptationtheory of des Cloizeaux [68{72] was recently presented by Wittmer,Paul and Binder [80].As seen from this brief summary of work on simulations of entan-gled polymer melts, it is clear that in the past few years there has beenconsiderable progress in the understanding of melt dynamics throughMD simulations. The simulations clearly show that the entanglementlength is the unique length scale which governs the slowing down ofthe overall motion of the polymers. However the data are not accu-rate enough to distinguish between the predictions of the reptationscheme and mode coupling approaches. It should however be kept inmind that the mode coupling theory does not take into account thenon{crossability of the chains. Applied to polymer networks, wherethe reptation model originates from, the mode coupling theory nec-essarily leads to incorrect results [16, 19{21]. To distinguish thesemodels, longer chains are needed. However there is a signi�cant hur-dle to overcome to extend the simulations beyond the present limitof 6�7 entanglement lengths. As seen from the work presented here,increasing the chain length to 10 entanglement lengths is quite cpuintensive. Unfortunately chains of 10Ne are not really long enoughto settle many of the open questions. To do this, we estimate thatchains of at least 20Ne are needed, because for shorter chains thepower law regime between the t1=4 regime and the linear di�usivetime regime is simply too short to determine the exponent unam-biguously. Chains of this length are also needed to distinguish thereptation prediction for the longest relaxation time, �d / N3, fromthe experimental result, N3:4. Using the time estimates for the CrayT3D discussed above, we estimate that about 1 300 cpu hours on 256processors would be required to run a system of 100 chains of 20 en-tanglement lengths (N = 700) for a time of order �3, assuming theN3 scaling persists for larger N . Further program optimizations on38
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