Mesoscopic Simulations for Problems with
Hydrodynamics, with Emphasis on Polymer
Dynamics

Burkhard Diinweg

Max Planck Institute for Polymer Research
Ackermannweg 10, D—55128 Mainz, Germany
duenweg@mpip-mainz.mpg.de

Summary. The contribution discusses two central models for polymer dynamics,
the Rouse model and the Zimm model. The latter takes into account hydrody-
namic interactions, and is hence appropriate for dilute solutions. In dense melts, the
hydrodynamic interactions are screened, and the Rouse model is applicable (within
limitations) as long as the chains are short enough to preclude reptation. The physics
of this screening is discussed. The lecture then focuses on the methodological issue
how to take hydrodynamic interactions into account in computer simulations. So
far, the most successful methods are hybrid approaches where standard Molecular
Dynamics for the polymer system is coupled to a mesoscopic model for momentum
transport in the solvent. The most popular mesoscopic models are lattice Boltz-
mann and Dissipative Particle Dynamics. These methods are briefly discussed and
contrasted. We describe a recent application of such an approach to the problem of
hydrodynamic screening.

1 Polymer Dynamics

1.1 Overview

In this lecture, we will deal with the dynamic behavior of polymers [1] and
discuss the simplest systems only: We will focus on linear, flexible, and un-
charged macromolecules, disregading polydispersity (i. e. the broad distribu-
tion of chain lengths which usually occur in real systems), and study them in
the bulk, in (or near) thermal equilibrium. We look at the systems from the
point of view of coarse—grained models: We are not interested in the depen-
dence of the properties on the details of the local chemistry, but rather ask
for universal scaling laws. The aim of computer simulations within this sub—
field of polymer physics is to carefully check the pertinent predictions, and
to try to elucidate the underlying physics. For certain properties, simulations
can be numerically much more accurate than experiments, and they therefore
complement the latter.
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Although our point of view and our restriction on the physical conditions
may look quite narrow, there is nevertheless a rich host of phenomena which
need explanation. Since we look at solutions, we can ask for the dependence
of static and dynamic properties on monomer concentration c, chain length
N (i. e. the number of monomers per chain), and the solvent quality. Usually
polymer and solvent are the more miscible the higher the temperature is,
i. e. the solvent quality can be parameterized in terms of temperature 7" —
although there exist some cases where miscibility occurs at low temperatures,
such that the system unmixes upon heating. Disregarding such “pathological”,
entropy—driven situations, Fig. 1.1 shows the generic phase diagram of such a
solution.

One sees that even the statics is quite non-trivial, giving rise to a host
of scaling laws and various crossovers, and that the dynamics is even more
complex. Our present state of understanding is based on three fundamental
models: The Rouse model [2], the Zimm model [3], and the reptation model
[1]. In the present lecture we will discuss the Rouse and the Zimm model (see
below). Reptation, which is characterized by curvilinear motion, and occurs
in dense long—chain systems, does not play a role for the simulations to be
described later, and shall hence not be discussed here.

So far, simulations have successfully treated the following cases:

e A single chain in good solvent with Zimm dynamics [4-10].

e A dense melt and its crossover from Rouse to reptation dynamics [11-14].

e Semidilute solutions characterized by a crossover from Zimm to Rouse
dynamics as the concentration is increased [15].

Quite promising attempts have also been made to study the dynamics of the
theta transition (i. e. a single chain collapses upon decrease of the solvent
quality) [16-18]. Nevertheless, a systematic exploration of the plane concen-
tration vs. solvent quality has not yet been done. After reading this article,
the reader may perhaps understand why. For this reason, the present lecture
will also disregard solvent quality effects and focus on good solvents (high
temperatures in Fig. 1.1) only. The methods to be discussed in this lecture
aim at an optimal exploitation of the different physical nature of the solvent
and the solute, and this holds for any solvent quality.

To summarize: Our concern is to use computer simulations to put dynamic
scaling laws in dilute, semidilute, and concentrated systems under scrutiny.
We will take the underlying static scaling laws for granted (i. e. checked pre-
viously by other simulations and / or experiments). Nevertheless, in order
to understand the dynamic models, it is necessary to first briefly review the
statics.

1.2 Static Scaling in Polymer Solutions

The static conformations of flexible polymer chains are described via the
statistics of a random coil [19]. We model the chain as a sequence of N
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Fig. 1. Phase diagram of a polymer solution, in the plane monomer concentration c
vs. temperature T' (parameterizing solvent quality). The static properties are char-
acterized by the scaling laws which describe the dependence of the chain size R (like
the gyration radius or the end-to-end-distance) on the degree of polymerization N.
In the dilute limit ¢ — 0, the so—called theta transition occurs, where at T' = ©
single isolated chains collapse from a swollen random coil to a compact globule. For
finite chain length N, this transition is “smeared out” over a temperature region
AT N71/2, in which the chain conformations are Gaussian. Below ©, phase co-
existence between a “gas” of globules and a “liquid” of strongly interpenetrating
Gaussian chains occurs. The corresponding critical point occurs at a very low con-
centration, c. o N71/2, and in the vicinity of @, © — T, x N~Y2_ The crossover
region which connects the regime of swollen isolated coils with that of the concen-
trated (Gaussian) solution at high temperatures is called the semidilute regime. The
dynamics is characterized by the Zimm model in the dilute limit where hydrody-
namic interactions are important, and by the Rouse model for dense systems where
they are screened. For very dense systems and / or sufficiently long chains, where
curvilinear motion dominates, the Rouse model must be replaced by the reptation
model (or the crossover behavior between these two cases). Rouse and Zimm model
are dexcribed in the text in detail. The Zimm—Rouse crossover which occurs in the
semidilute regime is a central topic of the present lecture.
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“monomers” with positions r;, 7 = 1,..., N. From the chemist’s point of view,
a monomer is one chemical repeat unit, usually comprising several atoms (for
instance, the repeat unit of polyethylene consists of one carbon and two hy-
drogen atoms). The position r; can thus be viewed as the center of mass of
the repeat unit ¢ (or some similar quantity characterizing where the unit is).
We denote the typical bond length with b,

(h?) = <(ri+1 - ri)2>. (1)

It is however also possible to combine several repeat units into a “super—
monomer”. In such a case, the same chain would be described by a larger value
of b, and, correspondingly, by a smaller value of V. The notion of a monomer is
therefore somewhat arbitrary. This leads us to the important principle of scale
invariance: The measurable large—scale properties of the chain may not depend
explicitly on the way in which the chain has been decomposed into monomers.
By iterating this coarse—graining procedure (“renormalization group”), and
applying dimension arguments, it is then easy to show that scale invariance
implies power—law behavior. For a single chain which has no other important
length scale than R (size of the chain as a whole), and by, (shortest atomistic
length scale below which a yet finer decomposition is impossible), the power
law reads

R ~ bDN”. (2)

Here we have assumed that one specific definition of a monomer (implying one
specific value of N) has been chosen. The exponent v depends on the physical
conditions: For isolated chains in good solvent, the chains are swollen as a
result of the excluded—volume interaction, with v &~ 0.588 in three dimensions.
The statistics is that of a self-avoiding walk (SAW). In dense systems, the
excluded volume interaction is screened [19, 20], hence v has the Gaussian or
random walk (RW) value v = 1/2. In what follows, the letter v will either
denote both values (in cases where the distinction between RW and SAW does
not matter), or the SAW value (in cases where it does).

We have not specified precisely how to measure R; the scaling law applies
to all ways of defining it. Convenient measures are the end-to—end—distance,

(Rp) = ((rx = 10)%). 3)

the gyration radius
1
(R&) = NZ<(” —RCM)2> (4)
(Rcwm denoting the chain’s center of mass, Roy = N~'Y° ), and the

hydrodynamic radius
1 1 1
— N= - 5
<RH> N2Z<Tij>’ ©)

i#]
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where Tij = |’l"i — ’I’j|.
Another important way to characterize the conformations is via the single—
chain static structure factor S(k), defined as

S(k):%< >=%<Zexp(ik-(m—rj))>. (6)

On length scales b < k=! < R, S(k) does not depend on N (note that the
addition of exponentials is just a RW in the complex plane). On the other
hand, S(k) must have the scaling form S(k) = N f(kR). This implies a power
law decay S(k) oc k=",

The conformations can always be described in terms of an effective poten-
tial V' (potential of mean force) such that the equilibrium probability density

ls Pl e (-2 (7)

kp and T denoting the Boltzmann constant and the absolute temperature,
respectively.
For a Gaussian chain, V' is just a harmonic potential:

Z exp (ik - ;)

N-1

3ksT
V = W Z (ri-i-l - ’l"i)2 . (8)
=1

For a SAW chain, additional repulsive potentials between the monomers must
be added in order to model the excluded—volume interaction. Models of this
type are called “bead—spring” models.

Let us now discuss the crossover from SAW to RW behavior when the
concentration is increased. We will always assume good solvent conditions.
The coil size remains independent of concentration as long as the chains do not
overlap. The concentration ¢* where overlap starts to happen [19] is estimated
via the requirement that an arrangement of unperturbed SAWs is just space—
filling:

N N
PN
Solutions with concentration ¢ > ¢* (well above overlap) but ¢ < b2 (i. e.
monomer concentration still very small) are called semi-dilute. Such solutions
have another important length scale £, intermediate between by, and R. £ is
called the “blob size” and can be defined as follows: If the chains were cut into
sub—chains, each with size £, then the solution would be just at the overlap
concentration corresponding to this lower molecular weight. On length scales
below &, the statistics corresponds to SAW behavior, while for length scales
beyond £ RW behavior applies. Denoting the number of monomers within the
blob with n, we have £ ~ bn”, and ¢ ~ n/&3, hence

ct o~

~ b_3N_(3V_1). (9)

E~d (cb?’)_TU*l oc ¢ 077, (10)
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The chain is then viewed as a RW sequence of blobs, with R ~ &(N/n)'/2,
The single-chain structure factor decays as S(k) oc =/ for b < k! < &,
and as k=2 for ¢ < k7! < R.

1.3 Rouse Model

The Rouse model [1, 2] is the simplest model of polymer dynamics, while the
Zimm model and the reptation model are slightly more complicated modifica-
tions. Essentially, the Rouse model considers a single chain described by effec-
tive interactions as outlined in the previous paragraph, and its overdamped
Brownian motion resulting from its coupling to a simple viscous background
and to thermal noise. The Zimm model [3] replaces the viscous background by
a hydrodynamic continuum which can transport momentum, and thus takes
hydrodynamic interactions into account. Conversely, the reptation model [1]
is a generalization of the Rouse model where topological constraints are taken
into account in terms of an effective tube to which the chain is confined. In
what follows, we will first outline the mathematical description of the Rouse
model, and then attempt to critically assess its assumptions. In particular, we
will try to briefly discuss the neglect of hydrodynamics (Zimm model physics),
and the neglect of entanglements (reptation model physics). This discussion
will be followed by an outline of the consequences of the Rouse equation of
motion.

The dynamic variables of the Rouse model are just the positions of the
monomers of a single test chain, r;, 7 =1,..., N. Taking into account that the
model is supposed to describe its motion in an environment of other chains
(a melt), we see that there is a colossal reduction in the number of degrees of
freedom — solving the full many—body problem would require the positions
and momenta of all monomers. Now, the Rouse model assumes the following
overdamped Langevin equation of motion:

d 1

—r; =—-F; +p;, 11
ali T cFite (11)

where ¢ is the monomer friction coefficient, p; the random displacement (per
unit time) acting on monomer 4, and F'; the force acting on monomer 4, derived
from the effective potential V' (see previous subsection):

v
673 '

F; = (12)

The random displacements are Gaussian white noise satisfying the standard
fluctuation—dissipation theorem,

(03) =0 (00 @) =226 8,080 =), (13
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such that the equilibrium distribution produced by the Langevin process is
the correct one. (Greek letters denote Cartesian indices.) The stochastic dis-
placements in different directions, and of different monomers, are assumed as
statistically independent.

At this point, it is clear that many important aspects have been disre-
garded. Firstly, the neglect of the momenta (i. e. that fact that only positions
occur as dynamical variables) is safe only at the first, but not at second glance.
The motivation of the neglect is the idea that in a dense simple fluid the mo-
tion of particles is essentially an oscillation in a local cage, and escape occurs
only after many collisions, such that the memory of the initial momentum is
completely lost on the time scale on which a monomer moves its own size.
However, since the discovery of the long—time tails [21] we know that this is
not quite true: Since momentum is a conserved quantity, it can only be trans-
ported away, but not simply destroyed. Let us therefore discuss the physics of
momentum transport in some more detail. On long time and length scales, it
can be described by the Stokes equation (hydrodynamic equation of motion
for an incompressible fluid, where the nonlinear term is neglected):

pgu = nV3u, V-u=0, (14)
ot

where p is the fluid density, 7 its viscosity, and u the velocity flow field. The
momentum transport hence takes place in a diffusive fashion, where the so—
called “kinematic viscosity” 1k = 1/p plays the role of a diffusion constant.
Within the time ¢, an initial momentum therefore spreads into a sphere whose
radius is of order (mrint)'/?, or whose volume is of order (mpint)/?. This is
the reason for the t=3/2 decay of the velocity autocorrelation function. It
should also be noted that a hydrodynamic description of a fluid is always valid
on sufficiently large length and time scales for any fluid (including polymer
melts).

These considerations, however, generate a puzzle for the validity of the
Rouse model: Shouldn’t one expect, from the physics of the long—time tails,
that the monomer will need time “forever” until it really forgets its original
velocity? Doesn’t that imply that the description in terms of a position—only
Langevin equation is expected to fail, and shouldn’t one rather introduce an
appropriate memory function to describe such a lack of forgetfulness?

However, let us look at the systems for which the Rouse model works (at
least to a good approximation). These are short—chain melts. In such a system,
the collisions between monomers do not occur in a nice and orderly fashion
as in a simple fluid. Rather, the typical collision process is a chain—chain
collision, such that an incoming kick will mainly result in a chain elongation
against the connectivity forces, rather than being transported straight along.
These processes destroy the memory to a large extent, and they are also
the reason for hydrodynamic screening (see below). The random arrangement
of chains results in a randomization of the scattering, and correlations are
removed. Therefore, the monomer does (“at third glance”) forget its initial
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velocity rather quickly — except for (i) an extremely small contribution to
the velocity autocorrelation function which comes from the long-time, large—
length hydrodynamics of the melt (on scales beyond the gyration radius and
the chain relaxation time), and can safely be neglected (it has so far never
been resolved in simulational or experimental studies of melts), and (ii) a
long—time negative contribution which describes the slowing down due to the
spreading of correlations along the chain backbone [22]. However, phenomenon
(ii) is actually faithfully described within the Rouse model. What this means
is that the Rouse model monomer diffusion coefficient kpT/¢ must be viewed
as a short—time diffusion coefficient — not to be mistaken for the long—time
diffusion coefficient, which is identical to that of the chain as a whole (i. e.
much smaller) and which can be obtained as the time integral of the velocity
autocorrelation function. Altogether, this argument restores the validity of
the simple friction coeflicient ansatz. Of course, the value of ¢ depends on the
definition of what one calls a monomer, just as the value of b does.

As a side remark, let us note that the typical “simple fluid” collision pro-
cesses will play a role in a dilute solution, and the Rouse model is not expected
to work. However, the hydrodynamic effects will not only induce correlations
of the monomer with itself at later times, but also with other monomers on
the chain. This phenomenon is called “hydrodynamic interaction”. Taking
these correlations into account, one obtains the Zimm model, which is dis-
cussed below in more detail. Considering again the single-monomer velocity
autocorrelation function, one will have a short—time decay (giving rise to a
short—time diffusion coefficient, or a monomer friction coefficient), followed by
a negative contribution resulting from both the Rouse-like slowing down and
long—time—tail memory.

As a second caveat of the Rouse equation of motion, it must be stressed
that the model is a single—chain theory, i. e. all correlation effects with other
chains are ignored. This latter neglect may be fine in dilute solution, but it is
far from obvious for a dense melt where the chains are very close to each other.
Indeed, the dramatic failure of the Rouse model for melts of sufficiently long
chains, where rather the reptation model applies, is an obvious hint of this
fact. The reptation model, where the entanglements with the other chains
are replaced by a tube of a certain diameter [1], is of course yet another
single-chain theory. From this point of view, it is not too surprising that the
Rouse model does not work precisely for polymer melts. Rather, computer
simulations and experiments have revealed a number of deviations [23, 24],
the most interesting of which is a subdiffusive motion of the chain’s center
of mass, which is not predicted by the Rouse model. There are attempts by
analytical theory [25, 26], but this issue is still under investigation. To some
extent, the deviations might be trivially due to the fact that applicability of
the Rouse model requires that the chains are long enough to satisfy a Gaussian
description, and at the same time short enough that reptation does not yet
play a role. Usually this window of chain lengths is very small, and in many
cases it practically does not exist.
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Let us now discuss the consequences of the Rouse model. It is interesting
to note that for a Gaussian (RW) chain the model can be solved ezactly. The
reason is that in this case V is a harmonic potential, i. e. the equation of
motion is linear. The problem is then mathematically very similar to phonons
in a one—dimensional solid. Analogously to phonons one introduces the so—
called Rouse modes

N
X, = V2N 23 r;cos [% (i—1/2)}, p=1,...N—1, (15)
=1

whose equations of motion decouple. Each mode is characterized by a mean
square amplitude

b2
XN = —— 16
< ;D> 4 Sin2 (%) ( )
and a relaxation function
t
(1) X,0) = (X exp (-1 ). (17)
P

where the mode relaxation time 7, is given by

12kgT
-1 B in? (p_ﬁ) .

T T N (18)

Note that for long chains and small mode number this is approximated by the
scaling law 7, o< (N/p)?. The longest relaxation time is 71 = 7, the so—called
Rouse time, scaling as 7 o< N2 oc R%. At this point it is useful to introduce a
dynamic exponent z, which relates the length scale R with the corresponding
time scale Tg via

TR X R*. (19)

We therefore see z = 4 for the RW Rouse model.

The mean square displacement of a single monomer, <Ar2>, can be written
exactly as a complicated expression, which however behaves asymptotically as
<Ar2> o t1/2 for times Tm <K t K Tr, where 7,,, is the microscopic time scale
given by the time a monomer needs to move its own size, 7., = b2(¢/kgT).
The zeroth Rouse mode describes the motion of the center of mass, which is
pure diffusion on all time scales, with diffusion constant

_ kpT

D=5 (20)

For times large compared to 7g, all monomers move just diffusively with
diffusion constant D.

It is physically more instructive to derive the results of the Rouse model
directly by scaling reasoning, and to do this for RW and SAW statistics si-
multaneously. Looking at first at the equation of motion for the center of
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mass, one notes that the drift (force) terms all cancel, due to Newton’s third
law. Furthermore, the friction coefficients of all the monomers simply add up;
hence Eq. 20 is derived immediately. The scaling law is

Dx N~ 'oc R7VY, (21)

Furthermore, one estimates the longest relaxation time 7r via the considera-
tion that the object will just move its own size within 75:

D7 x R? TR o< RV, (22)

from which we read off z = 2+ 1/v for the general case. Furthermore, scaling
tells us that the mean square displacement of the single monomer should
follow a power law for times 7, < t < 7g, simply because the system has
no further important time scale. Requiring <Ar2> ~ R? for t ~ Tp fixes the
exponent as

(Ar?) o 12/, (23)

The physical picture is that originally a monomer can move freely (with diffu-
sion constant Dy = kgT'/(), while at later times it has to drag more and more
neighboring monomers along. Therefore the effective diffusion constant sys-
tematically decreases with time, until (at ¢ = 7r) the whole chain is dragged
along.

Finally, the single—chain dynamic structure factor, defined as

S(ht) = <Zexp (i (ri(t) - rj<o>>>> , (24)

satisfies the scaling relation
S(k,t) =k~ f (k2t2/z) (25)
for b < k™! < Rand 7,, < t < 7Tr.

1.4 Zimm Model

As already indicated above, in dilute solutions it is necessary to take hydro-
dynamic momentum transport into account. The main effect is the so—called
“hydrodynamic interaction”: A monomer i is randomly kicked by its solvent
surrounding, and is moved by a certain random displacement (per unit time)
pi. Another monomer j suffers a displacement p;. Now, the motion of the
solvent particles near r; is highly correlated with that at position r;, due to
fast diffusive momentum transport through the solvent. Strictly spoken, this
correlation only occurs at some later time (the time which the “signal” needs
to travel from 7; to 7;), but this is usually quite short compared to the time
which the monomers i and j need to travel considerably. As already discussed,



Mesoscopic Simulations for Problems With Hydrodynamics 11

the momentum transport occurs with the “diffusion constant” 7y, while the
particles move (initially) with diffusion constant Dy = kgT'/¢. The dimen-
sionless ratio is called the Schmidt number Sc¢ = 7y, /Do; its value controls
how accurate the neglect of retardation effects is. Typical numbers for Sc in
dense fluids are of the order Sc = 102.

Thus, in contrast to the Rouse case, where the stochastic displacements ex-
hibit no correlations between different particles and between different spatial
directions, we now have a non-trivial correlation function (p;(t) ® p;(t’))
0(t —t'), where the tensorial nature is due to the incompressibility constraint
of the solvent flow, and the delta function in time expresses the neglect of
retardation effects. (The symbol ® denotes the tensor product.)

Furthermore, a force F' acting on a monomer at r; will generate a surround-
ing flow around it. Again neglecting retardation, one can use the stationary
Stokes equation to calculate the resulting flow field. The solution is [1] the
so—called Oseen tensor

u(r) =T (r—r) F (26)

T (r) (1 +7 @7, (27)

- 8mTnr

where 7 is the unit vector in the direction of r.

We now write down the most general Langevin equation which is still
memory—free, does not use more variables than the monomer coordinates, and
satisfies the fluctuation—dissipation theorem (to assure the correct equilibrium
distribution function):

d —
prikh Z Kij -Fj+ p; (28)
J

where ﬁij is the mobility tensor, and the stochastic displacements satisfy the
relation

(pi(t) ® p;(t)) = 2kpT Hy; 5(t —t). (29)

We only consider mobility tensors which are divergence—free, and hence we
need not worry about “spurious drift” terms [1]. Now, since the monomers
are essentially just “embedded” in the surrounding flow, we can identify (at

least approximately) ﬁij:? (ri —r;) (note that both objects just describe
the velocity response to a force). This holds of course only for i # j; for the

diagonal elements we assume the Rouse form Hn‘ZT /C.

The scaling analysis of the Zimm model now proceeds along the same lines
as for the Rouse model. First, we study the center—of-mass diffusion constant.
In the short—time limit, it is easy to show that the center of mass moves with
the Kirkwood diffusion constant

D kgT 1
pE) = =20 B2 [~ 30
N + 6 \Rug /'’ (30)
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and this differs only marginally from the long—time value [27]. Since the second
term strongly dominates in the long—chain limit, we find the scaling law

1
D x 7 (31)
indicating that the chain as a whole essentially moves like a Stokes sphere. The
longest relaxation time (Zimm time 77) is again found by requiring D1z ~ R2,
resulting in 77 o« R3, or z = 3 independently from chain statistics. The
dynamics is thus faster than in the Rouse case. All other scaling relations
remain the same; one just has to use the appropriate values for v and z.

1.5 Hydrodynamic Screening and Dynamic Crossover

Upon increasing the concentration, we have a static crossover from SAW to
RW behavior; this is controlled by the blob size &. There is also a dynamic
crossover from Zimm to Rouse behavior the physics of which had not fully
been understood until very recently when a computer simulation [15] clarified
the last remaining puzzles.

The underlying question is: How does the system get rid of its hydrody-
namic correlations? Early attempts [28, 29] tried to attack this by studying
the multiple scattering of the flow field. The attractive feature of such con-
siderations is the fact that, under the assumption of a frozen polymer matrix,
the analog of the Oseen tensor can be easily calculated: Assuming an array
of fixed random obstacles with concentration ¢ and friction coefficient ¢ (per
obstacle), the solvent flow field u experiences a friction force per unit volume
of —(cu, such that the Stokes equation is modified to

p%u = nVu — Ccu. (32)
Its Green’s function now exhibits a Debye-Hiickel-like decay of the form
o« (1/r)exp(—r/&m), where the hydrodynamic screening length &g is found
via n§;12 = (c. The long-range Oseen decay is replaced by a short-range in-
teraction, and thus Rouse behavior is expected on length scales beyond &y,
while Zimm behavior should apply on short length scales.

De Gennes [30] has critized this approach for the following reasons: (i)
The chains are not at all fixed obstacles, but, on the contrary, enslaved to the
surrounding flow and just dragged along; (ii) the predicted scaling {5 o< /2
would imply that £ and £y are not proportional to each other, which makes
a scaling analysis difficult if not impossible.

De Gennes’ solution to the puzzle [30] is based on the following argument:
A description in terms of fixed obstacles is justified, however only on length
scales beyond the blob size . For these larger length scales, it is the entangle-
ments (not in the sense of reptation theory, but rather in the sense of mutual
interaction) which cause a hindrance in polymer mobility compared to fast
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Zimm motion. Since a Zimm chain behaves essentially like a Stokes sphere,
one arrives at the picture of blobs “hooked up” in a temporary gel. Therefore
the appropriate obstacles are not the monomers, but rather the blobs, with
Stokes friction coefficient Cyop ~ 1€, and concentration cyop ~ €3, Inserting
these relations into 7751_{2 = ChiobChiob, ONe finds £ ~ &, i. e. the length scales
are (apart from prefactors) identical.

This has been confirmed by most experiments [31, 32]; however, the picture
of clean Rouse motion beyond the length scale £ was questioned by the obser-
vation of “incomplete screening” in the data of neutron spin echo experiments
on labeled chains [33], where a clear Zimm-like contribution was found. The
results of our recent simulation [15] revealed the solution of this puzzle: It is
not sufficient to look at the problem just in terms of length scales, but one has
to consider the time scales as well, and distinguish between the cases t < 7¢
and t > ¢, where 7¢ is the blob (Zimm) relaxation time, 7¢ ~ né3/(kpT).
Since one has to wait (on average) for a time of order 7. until an entangle-
ment (or, synonymously: an interaction, a chain—chain collision) occurs, there
is no screening whatsover for short times. The motion is rather free Zimm
relaxation on all length scales, and the chains are just dragged along with the
flow. After 7¢, the interactions are felt, and the blob screening mechanism sets
in, resulting in Rouse—like motion. This, however, has only an effect on the
length scales beyond &, since at that time all correlations within the blob have
already decayed.

Let us now discuss the numerical results of Ref. [15]. In order to simulate a
real semidilute solution, it is necessary to resolve both the RW regime at large
length scales and the SAW regime within the blob. In order to observe random
coil behavior in computer chains, a certain minimum number of monomers is
necessary. According to our experience, one needs at least N ~ 30 monomers
to clearly see the scaling behavior of either a RW or a SAW. For our semidilute
solution, this means that we need roughly 30 monomers per blob, and roughly
30 blobs per chain. Therefore the minimum chain length is roughly N = 1000.
For such a chain we then expect a mean size of R = 30" x 30'/2 = 40, in
units of the bond length. In order to safely exclude self-overlaps, one would
like to make the linear size of the simulation box (with periodic boundary
conditions) substantially bigger. Our largest system therefore had linear box
size L = 88. The concentration is then obtained via ¢ ~ 30" ~ ¢ %77 or
¢ =~ 0.066. The total number of monomers in the L = 88 box then results as
45000. In the actual simulation, we studied 50 chains of length N = 1000 which
is essentially the smallest system to study a semidilute solution. For such a
system we calculated the single-chain dynamic structure factor S(k,t). The
static (¢t = 0) structure factor revealed the expected RW and SAW regimes.
To analyze dynamic scaling, one plots the data as a function of the scaling
argument k%t?/*. Indeed we found Zimm behavior (2 = 3) at short times
and small length scales, while the data show RW Rouse behavior (z = 4) for
late times, large length scales. A particularly careful analysis was necessary
to distinguish the short-time and long-time regimes (Zimm vs. Rouse) for
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the data at large length scales (k€ < 1). In order to enhance the short—time
region, Fig. 2 shows —In[S(k,t)/S(k,0)] instead of simply S(k,t)/S(k,0) as
a function of the scaling argument, for both Zimm and Rouse scaling. It is
clearly seen that Zimm scaling applies for the short times ¢ < 7¢, while Rouse
scaling holds for the later times ¢ > 7¢.
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Fig. 2. Scaling plot of single—chain dynamic structure factor data, for both Rouse
and Zimm scaling, taken from Ref. [15]. For more details, see the text and Ref. [15].

2 Simulation Methods

2.1 Overview

We now ask the question: What is the right way to simulate a system with
hydrodynamic interactions? For simple problems, many methods will work,
but for a challenging application like the system of Ref. [15] it is necessary to
choose and design the method carefully.

The most straightforward approach would be Brownian dynamics, where
just Eqn. 28 is simulated directly, either for a single—chain system, or a many—
chain system. However, this will not work for a system of 50000 monomers.
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Each time step one would have to calculate a 150000 x 150000 matrix, and to
calculate its square root, in order to find the stochastic displacements. This
is beyond the capacity of today’s computers. The unfavorable scaling of the
computational complexity with the number of Brownian particles makes the
method only feasible for small systems. In Ref. [27] we studied the Zimm
equation of motion for a single chain, and calculated the diffusion constant
accurately. The longest chain which was accessible was N = 200.

It is therefore quite clear that one needs a method which scales linearly
with the number of Brownian particles. An O(N) algorithm for evaluating
hydrodynamic interactions has indeed been developed, in close analogy to
the fast multipole method for electrostatic interactions [34]. However, this
is practically only applicable to deterministic problems (like sedimentation)
where no thermal noise needs to be considered. For stochastic simulations,
the problem of calculating the matrix square root remains.

Therefore the most promising route is to simulate the momentum trans-
port through the solvent explicitly via some computational scheme. The most
straightforward way to do this is of course Molecular Dynamics (MD), where
the Brownian particles are immersed into a bath of solvent particles, and New-
ton’s equations of motion are solved (without modification like a thermostat
etc.). However, this leads to an unnecessarily large computational effort. One
needs to follow the motion of each solvent particle down to the time scale of
the local oscillation of the particles in their cages, while they have essentially
no function except for transporting momentum. One rather would like to sim-
ulate the solvent on a somewhat larger time scale, in order to save computer
time. Essentially, this is coarse—graining with respect to time scales (not so
much with respect to length scales, since one would not like to lose resolution
in representing the hydrodynamic interactions).

Indeed, there are several ways to do this. One approach, which is conceptu-
ally particularly close to MD, is Dissipative Particle Dynamics (DPD) [35-46],
which has become a quite popular method for “mesoscopic” simulations of the
dynamics of soft—matter systems. One makes the particles quite soft, in order
to afford a large time step, and also adds a momentum—conserving Langevin
thermostat. It should be stressed that these two components are conceptu-
ally completely independent, and can also be implemented independently. It
is therefore relatively straightforward to change an existing MD code into a
DPD simulation, by just adding the thermostat. More details on DPD will
follow below.

Another simulation aspect which needs appreciation is the issue of equi-
libration. This is of course completely uninteresting for nonequilibrium stud-
ies, which become more and more important, but for studying the dynamics
in strict thermal equilibrium this is of paramount importance. Soft matter
objects with internal degrees of freedom (like polymer chains, but also mem-
branes) tend to have complex configuration spaces and large relaxation times.
On the other hand, one often is not interested in following the dynamic corre-
lation functions all the way up to the longest relaxation time. Such a situation
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is exactly present in the study of Ref. [15], where only the dynamics up to
T¢ (and somewhat beyond) is needed, but not up to 7z. One would therefore
like to be able to equilibrate the system with a fast Monte Carlo algorithm,
in order to shortcut the slow physical dynamics, and to use the generated
configurations for starting runs with realistic (slow) dynamics, over which one
averages. For dilute systems, the ideal way to do this is to completely disregard
the solvent in the equilibration procedure. However, this requires the solvent to
be structureless. A structured solvent (i. e. particles with some non—trivial in-
teraction potential) always modifies the potential of mean force of the solute,
and this is not known in advance. Therefore only the coupled solute—solvent
system can be equilibrated “cleanly”, i. e. without introducing systematic er-
rors. Conversely, for a structureless solvent the potential of mean force of the
solute is identical to the “bare” potential (i. e. the interaction without sol-
vent). For a particle method, this means that the solvent should be an ideal
gas. In this case, however, MD is not applicable since all particle trajectories
are trivial, and there are no collisions. Conversely, DPD is able to simulate
an ideal gas with realistic dynamics, because collisions are effectively imple-
mented via the thermostat. Another particle method, which is also based on
ideal gas particles, is multi-particle collision dynamics (MPCD) [47], where
collisions are implemented via local stochastic updating rules which conserve
energy and momentum. A brief outline of this approach is included below.

Yet another approach to simulate momentum transport through the sol-
vent is to solve the (Navier—) Stokes equation (in a deterministic or stochastic
version) on a grid, and to couple an MD system for the solute to such a
simulation. This yields a structureless solvent automatically. Solving the hy-
drodynamics can be done either by a finite—difference scheme, or by the lattice
Boltzmann method (LBM) [48]. The latter has become also quite popular for
soft matter systems, in particular colloidal suspensions [49-57], and will be
discussed below. Compared to DPD, it has the disadvantage that the under-
lying theory is slightly involved, and that the coupling to the solute system
(which is still simulated by some MD-like algorithm) is not a straightforward
consequence of the method, but rather must be constructed by hand. The
advantage, however, is that it is based on a tight data structure, with the
consequence that it is computationally quite efficient, rather straightforward
to implement, and ideally suited for parallel computers (the only communica-
tion is just the sending of data in the streaming step, while the collision step
needs only local data). Another important advantage of a grid—based method
is that thermal fluctuations may be both turned on (necessary for Brownian
motion, for instance), or off (for some nonequilibrium studies like sedimen-
tation thermal fluctuations are not needed, in particular if the solute system
does not have fluctuating internal degrees of freedom). This flexibility is a
quite useful aspect, and not present in particle methods, which always exhibit
thermal fluctuations. A noise—free simulation is of course much cheaper than a
noisy one, since no cumbersome averaging is necessary (except, perhaps, over
initial conditions).
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2.2 Dissipative Particle Dynamics (DPD)

Dissipative Particle Dynamics is essentially MD, where a momentum-—conser-
ving Langevin thermostat is added. The method is best understood by con-
trasting it to the older method of Stochastic Dynamics (SD) [58], which also
adds a Langevin thermostat to MD, but does not conserve the momentum.
The formal development is most transparent if we start from Hamilton’s for-
mulation of Newton’s equations of motion:

d OH

d OH
- Pi = — ) 4
dtp 8qi (3 )

where the ¢; denote the generalized coordinates, and the p; the generalized
canonically conjugate momenta, while H is the Hamiltonian of the system.
Adding friction and noise, we obtain the SD equations of motion:

d OH

E%‘ = (9_]91 (35)
d OH OH

P = “on Gi o +o0ifi; (36)

here ¢; is the friction coefficient for the ith degree of freedom (note that
OH /Op;, for usual Cartesian coordinates, is nothing but the velocity), o; de-
notes the noise strength, while (f;) = 0 and (f;(¢)f;(t')) = 26;;6(t —t’). We
can even allow that the friction constants (; and the noise strengths o; depend
on the coordinates ¢; (but not on the momenta p;).

We now switch to an equivalent description of the stochastic process,
where we study the time evolution of the probability density in phase space,
P({qi},{p:i},t). This is quite analogous to switching from Hamilton’s equa-
tions of motion to the Liouville equation in classical mechanics. The equation
of motion for P is called the Fokker—Planck equation. Its shape can be derived
directly from the Langevin equation, using a standard procedure described in
textbooks on stochastic processes (see, e. g. Refs. [59, 60] or [61]). For the
present case, one obtains

0

—P=LP 37
Sp=rcp (37)
where L is the Fokker—Planck operator, which is naturally decomposed into
two parts,

L=Lyg+ Lsp, (38)

where the first part refers to the Hamiltonian part of the dynamics (it is
nothing but the Liouville operator),

0 OH 0 OH
Ln = _Z 0q; Op; * ZZ: Opi 0q;

2
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OH 0 OH 0
=— — — 39
zi:api 9qi +;8Qi opi’ (39)
while the second part is due to friction and noise,
0 OH 5 0
— — |¢== 2 _— |, 4
L= 5 o+t (10)

In order to describe a system in thermal equilibrium, the Boltzmann distri-
bution must be the stationary solution of the Fokker—Planck equation:

Lexp(—PH) =0, (41)

where § = 1/(kpT). For the Hamiltonian part, this relation is identically
fulfilled. Therefore, the condition results in

0 oH oH
Z ap; [Q% - Ugﬁ_p-] exp (—fH) = 0. (42)

Hence the relation
o? = kpT¢; (43)

must hold. This is the fluctuation—dissipation theorem (FDT), i. e. the tem-
perature is a result of the balance between friction and noise strength. How-
ever, the momentum is not conserved, as one can check immediately from
the equations of motion. Rather, the center of mass of the system diffuses.
The algorithm also violates Galilean invariance, since it dampens the abso-
lute velocities, thus labeling the “laboratory frame” as special, which is of
course unphysical. These are the reasons why SD is useless for hydrodynamic
simulations. It can be shown [61, 62] that this unphysical behavior can be

expressed in terms of a hydrodynamic screening length £ = [n/(n¢ )]1/ % Here,
we have assumed a constant friction, while n is the particle number density.
The arguments to derive this are essentially the same as those presented in
Sec. 1.5 for a frozen matrix of frictional obstacles.

Dissipative Particle Dynamics (DPD) has been developed to cure this
problem, and to simulate hydrodynamic phenomena in fluids on a mesoscopic
scale. DPD, as it is usually described in the literature, consists of two parts: (i)
Introduction of very soft interparticle potentials in order to facilitate a large
time step, and (ii) introduction of a Galilei invariant thermostat, which is sim-
ilar to SD, but dampens relative velocities, and applies the stochastic kicks to
pairs of particles such that Newton’s third law (i. e. momentum conservation)
is satisfied. As the procedure is also completely local, it is therefore suitable
for the description of (isothermal) hydrodynamics. Unfortunately, it is often
not made sufficiently clear that these two parts are completely unrelated, i. e.
that one can use the DPD thermostat with “conventional” hard potentials,
and that one can go from a working MD code to DPD, just as one would
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go to SD. A technical problem of typical DPD simulations is the fact that,
due to the soft potentials, they are run with extremely large time steps. This
results in unacceptably large discretization errors. Currently this problem is
under thorough investigation [41-46]. We will from now on exclusively focus
on the thermostat aspect of DPD. As Espanol and Warren [37] have shown,
the structure of the FDT for DPD is very similar to the SD case. A particularly
useful application of the DPD thermostat, which is just presently being appre-
ciated, is its use in nonequilibrium studies like the simulation of steady—state
Couette flow. Nonequilibrium steady states are characterized by a constant
nonzero rate of entropy production, usually showing up as viscous heat. This
produced entropy must be removed from the system, and therefore such sim-
ulations are usually coupled to a thermostat (an alternative approach, which
rather removes the entropy by a Maxwell demon, has recently been developed
by Miiller—Plathe [63, 64]). Before the advent of DPD, it was a non-trivial
problem to introduce the thermostat in such a way that it would not prefer a
certain profile (so—called “profile—unbiased thermostats”, see Ref. [65]). The
DPD thermostat solves this problem in a very natural and straightforward
way [66].

In practice, DPD simulations are done as follows: We first define two func-
tions, {(r), the relative friction coefficient for particle pairs with interparticle
distance r, and o(r), the noise strength for a stochastic kick applied to the
same particle pair. We will show below that the FDT implies the relation

o*(r) = ksT¢(r), (44)

in close analogy to SD. The function has a finite range, such that only near
neighbors are taken into account.

Defining r;; = r; —r; = r;;7;;, we then obtain the friction force on particle
1 by projecting the relative velocities on the interparticle axes:

Fim = - D Crig) [(wi = vj) - 7] s (45)

it is easy to see that the relation ). Fl(.fr) = 0 holds. Similarly, we get the
stochastic forces along the interparticle axes:

FE =" o(ri) mi () 745 (46)
J
where the noise 7;; satisfies the relations n;; = n;:, (1;;) = 0, and
(mig (W)mra(t)) = 2(0indj0 + a0k )0(t — 1), (47)

such that different pairs are statistically independent. As before, one easily
shows ). FESt) = 0. The equations of motion,
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d 1

—Ti = —Di, 48
d r s

=i = Fi+ F/ + P, (49)

where m; is the mass of the ith particle, and p; its momentum, therefore
indeed conserve the total momentum, as the conservative forces F'; satisfy
Newton’s third law. The Fokker—Planck operator can then be written as

L=Ly+Lppp, (50)

where L again describes the Hamiltonian part with Lz exp (—H) = 0 (cf.
Eq. 39), and Lppp is given by

9 OH M
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In the stochastic term, we have first taken into account the off-diagonal terms
(cross—correlations, which are actually anti—correlations between the neigh-
bors). The prefactors for the diagonal terms are given by the sum of all the
mean square noise strengths from all the neighbors. Applying this operator
to exp (—BH), we find that the FDT is satisfied if 02 (r) = kgT((r).

2.3 Multi—Particle Collision Dynamics (MPCD)

As already mentioned, DPD simulations can be run for the special case of
vanishing interaction potential, i. e. in the ideal gas limit. If we discretize
this procedure in terms of, say, the Verlet algorithm, we arrive at a method
where free particle propagation (i. e. update in real space without update in
momentum space) alternates with “collisions” (update in momentum space
without update in real space). Due to their dissipative nature, these DPD
collisions conserve momentum but not the energy.

Malevanets and Kapral [47] have introduced a method which is also based
on collisions of ideal gas particles. However, the collisions are now implemented



Mesoscopic Simulations for Problems With Hydrodynamics 21

by a simple Monte Carlo procedure such that both momentum and energy
are conserved. Starting from a set of particle coordinates r; and a set of
particle velocities v;, ¢ = 1,..., N, one first performs a streaming step (free
propagation by a time step h)

it + h) = ri(t) + hv(t). (52)

This is followed by a collision step, which is facilitated by sub—dividing the
simulation box into sub—boxes. For each sub—box, one determines the set
of particles residing in it. For one particular sub-box, let these particles be
enumerated by ¢ = 1,...,n. These “collide” with each other by the following
procedure:

e Determine the local center—of-mass velocity:
1 n
vou = ;2“' (53)
=

e For each particle in the sub—box, perform a Galileo transformation into
the local center—of—mass system:

VUV, =V; —VUCM- (54)

e Within the local center—of-mass system, rotate all velocities within the

sub—box by a random rotation matrix R:

>

’l;il =R v;. (55)
e Transform back into the “laboratory” system:
’U/Z- = ’l;il +vom. (56)

One sees immediately that this procedure satisfies locality as well as the con-
servation of mass, momentum, and energy. Thle and Kroll [67] have pointed
out that it is necessary to randomly shift the sub—boxes in order to avoid
spurious effects and to restore full Galileo invariance. Furthermore, the fact
that the dynamics is so simple makes it possible to derive analytic expressions
for transport coefficients [68-70].

2.4 Lattice Boltzmann (LB)

The lattice Boltzmann method (LBM) works quite differently. Essentially,
the method is the simulation of a fully discretized version of the (linearized)
Boltzmann equation known from the kinetic theory of gases. One starts from a
regular lattice (usually a simple—cubic lattice) with lattice spacing a; r denotes
its sites. Furthermore, we introduce a finite (small) set of (dimensionless)
vectors ¢;, such that ac; is a vector connecting two sites on the lattice. The
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set should be consistent with the point symmetry of the lattice. For example,
on the simple—cubic lattice one would have six vectors ¢; connecting to the
nearest neighbors, and another twelve vectors to the next—nearest neighbors.
Time is discretized in terms of a time step h, and the model allows only for
a finite set of velocities. These are the vectors (a/h)c;. An object residing
on a certain lattice site 7, and having the velocity (a/h)c;, would thus be
moved to site r + ac; within one time step. A commonly used model is the
18—velocity model, where the vectors ¢; correspond to the nearest and next—
nearest neighbors. Sometimes an additional velocity ¢; = 0 is included (19—
velocity model); this is however not necessary for simulating incompressible
flow. The algorithm now works with real-valued variables n;(r,t), denoting
the “number of particles” which reside on site r at time ¢ and have the velocity
(a/h)c;. Denoting the particle mass with m, we find for the mass density at

site r at time ¢ m
p(r,t) = p Z n;(r,t) (57)
i
and for the momentum density

j(rt) = %Zni(r,t)ci. (58)

We can also introduce the streaming velocity w at site r via u = j/p. It should
be noted that in many descriptions of the method the parameters m, a and h
are set to unity, thus defining the unit system of the method. However, when
coupling the LBM to an MD system, the latter has its own unit system. We
prefer to use a unit system built upon MD, and for this purpose we need to
keep the parameters. Furthermore, it should be noted that we do not consider
the energy density. In this lecture, we only consider LBMs with mass and
momentum conservation, while energy conservation (heat conduction etc.) is
not taken into account. LBMs with proper inclusion of the energy have been
developed [71], but are more complicated.
Now, the algorithm proceeds via the following steps:

1. Starting from the variables n;, one calculates the hydrodynamic variables
p and j on each lattice site.

2. From p and j, one calculates a local pseudo—equilibrium distribution n;?.
It should be stressed that this is done for each site separately. Since the
variables p and 7 differ from site to site, one has a different distribution n;?
on each site. The kinetic-theory analogue would be a Maxwell-Boltzmann
velocity distribution centered around the hydrodynamic streaming veloc-
ity at position r. Since n;? and n; correspond to the same hydrodynamic
variables, we have >, n; = >, n;? and Y, njc; = >, n;’c; at each site.

3. Relaxation (“collisions”): The velocity distribution on the site is rear-
ranged in order to bring it closer to the local equilibrium of that site. This
is done via a linear process:
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n; — n; + Z Lij (nj — n;q). (59)
J

In many cases, the matrix L;; is just a multiple of the unit matrix.
These are the so—called “lattice BGK” (Bhatnagar-Gross—Krook) meth-
ods. However, working with a nontrivial matrix causes no practical diffi-
culties and allows one to get rid of non—hydrodynamic modes quickly [50].
In order to ensure mass and momentum conservation, the matrix should
satisfy the conditions ), L;j =0 and ), ¢;L;; = 0.
4. Streaming: The populations are displaced to new sites according to their
velocities:
n;(r,t) — n;(r + ac;,t + h). (60)

This is the only step which is not completely local.

Further specification of the algorithm requires to give prescriptions for the
calculation of n;?, and of the relaxation procedure. A common procedure is

to use the polynomial ansatz [50]

3 2 2
ngd = a—p (Ai + Bic; uﬁ + Cith—Q + Di(c; - u)2h—2> , (61)
m a a a
where symmetry requires that A; should only depend on the neighbor shell,
but not on the direction within it, and the same holds also for B;, C;, D;.
The 18—velocity model thus has eight coefficients. These are determined via
the following requirements:

e ;7 should produce the correct hydrodynamic variables p and j, as men-
tioned above.
e The stress tensor constructed from ng?,

—cq m a?
eq .. .
I = g E n;'c; ® ¢, (62)

should have the hydrodynamic form

«—€q

I =pc 1 +pu ® u; (63)

here we have assumed the equation of state of an ideal gas with sound
velocity ¢, (other equations of state can be implemented [72]).

e The viscosity tensor (which, on a cubic lattice, will in general be a fourth—
rank tensor with cubic anisotropy) should exhibit the full rotational sym-
metry, such that there are only shear and bulk viscosity. This is the main
reason why nearest and next-nearest neighbor shells are used: The coef-
ficients can be adjusted in such a way that the anisotropic contributions
from the two shells just cancel.

e For u = 0 both shells should contain the same number of particles. This
is useful for numerical stability [50].
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These conditions suffice to determine the coefficients and the parameter c;
uniquely.

The relaxation operator is determined via the following considerations:
Apart from mass and momentum conservation, which already give four con-
ditions, one observes that the linear relaxation of n; towards n;? corresponds
to a linear relaxation of the stress tensor

e m a2

e
towards [T q. We now require that this process exhibits two relaxation rates,
one for the trace of E, corresponding to the bulk viscosity, and one for the
trace—free part, corresponding to the shear viscosity. These parameters can
thus be freely adjusted. Finally, we require [50] that the higher—order mo-
ments (non-hydrodynamic modes) are immediately removed after the relax-
ation process (this corresponds to eigenvalues —1). Under these circumstances,
it turns out that the calculation of the new population (after the relaxation
step) does not even require the implementation of the L;; matrix. One rather
has to simply update the pressure tensor, using the prescribed rates, and
to use that result to calculate the new populations (again, the coefficients
A;,...,D; are used) [50]. Via a Chapman—Enskog expansion one can show
that this procedure yields hydrodynamic behavior in the macroscopic limit
[50] if the flow is incompressible, and the flow velocity is small compared to
the sound velocity. One particular advantage of the formulation based on the
stress tensor is that the inclusion of thermal noise is quite straightforward:
According to linear fluctuating hydrodynamics [73], the noise term occurs in
the stress tensor, and therefore it can be directly added in the simulation code.
For further details, see the original literature [50]. Recently, Ladd’s procedure
to include thermal noise has been extended, in order to produce better results
for smaller length and time scales [74].

When coupling this to a system of Brownian particles, one can use two
methods: The original approach by Ladd [50, 51] for colloidal suspensions was
to use extended particles with a surface, and to implement a bounce—back
rule to simulate the modification of the flow, plus the momentum transfer
onto the particle. Combined with a lubrication correction for suspensions at
high densities, this approach has produced excellent results for suspensions
with hydrodynamic interactions [53].

For polymer solutions, we found a point—particle approach [75, 8] simpler
and more efficient: While the solvent is run via the stochastic version of the
LBM, the polymer system is simulated by MD augmented with friction and
noise as in SD. However, the friction force is not —(wv (v particle velocity),
but rather —((v — u), where wu is the flow velocity at the position of the
monomer, obtained via linear interpolation from the surrounding lattice sites.
This determines the momentum transfer onto the particle which has come
from the solvent. Momentum conservation requires that this momentum is
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subtracted from the fluid. Details of this latter subtraction are not important;
we used a procedure where we distributed the momentum transfer onto the
surrounding sites using the same weights as the initial interpolation procedure.
On each site, we then updated the n; by requiring that the distance to n;?
remained unchanged. It can be shown that the coupled system does satisfy
the FDT. Since locality, mass conservation, and momentum conservation are
fulfilled, this procedure simulates hydrodynamic interactions faithfully, while
being roughly 20 times faster than the analogous MD system with hard solvent
particles. The lattice spacing was set roughly equal to the bond length; this
is necessary to resolve the hydrodynamic interaction down to the relevant
scales. We have recently shown [76, 77] that this approach can also be used
to simulate colloidal particles, which are modeled as an arrangement of force
centers like a “raspberry”.

The friction coefficient ¢ should be called “bare” friction coefficient, since
the long—time single—particle mobility differs from 1/¢ as a result of the long
time tail. The correction can be quite strong, and actually depends on the
lattice spacing a. This can be shown by the following consideration: We drag
a particle with constant average velocity v and constant average force F'
through a fluid globally at rest. Our simulation procedure tells us that the
force should be F' = {(v — u), u being the flow velocity on the surrounding
lattice sites, which are, on average, a distance of order a away. The Oseen
tensor, in turn, tells us that u should be of order u ~ F'/(na) or u = F/(gna),
where g is some numerical coeflicient. Combining these equations, we find for
the mobility

1

T g

this relation has been checked numerically [8]. The lattice thus provides a

Stokes—like contribution to the mobility. It thus not only discretizes the hy-

drodynamics, but also regularizes it, i. e. it naturally cures the pathology that

a point particle does not exist (note that in the continuum limit a — 0 one

would obtain an infinite mobility!). Since a is just a discretization parameter,

the only conclusion is that { does not have any physical meaning. Rather, for
comparing with experiments one should look at the “dressed” mobility u.

(65)

3 Some Final Remarks

Although the presented material is highly selective, strongly reflecting my own
research, I hope the present lecture has given a slight glimpse at the problems
one encounters when simulating systems with hydrodynamic interactions, and
also at the strategies which have been developed to cope with them. The devel-
opment of so—called “mesoscopic” simulation methods (“somewhere between
Molecular Dynamics and computational fluid dynamics (CFD)”) for soft mat-
ter systems, with emphasis on hydrodynamics, is a quite active field of current
research, and far from being closed. At the same time, applications are already
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quite broad and continue to grow. Typical systems are polymers, colloids, lig-
uid crystals, membranes, multiphase flows (e. g. spinodal decomposition of
binary mixtures), electro-rheological systems, microfluidic devices, and bio-
physical systems, like, e. g., models for swimming bacteria. Furthermore, these
methods (in particular the LBM) enter more and more the field of classical
CFD, with applications like fluid turbulence or automotive engineering.

When asked about a judgmental statement about the presented methods, I
feel very reluctant to give a recommendation. Reducing the various approaches
to their bare essentials, it turns out that they all are not fundamentally differ-
ent from each other. Although detailed benchmark comparisons have, to my
knowledge, so far never been done, it is hard to conceive that the methods
should differ very strongly in their computational performance. I personally
like lattice methods, because they are easy to parallelize, and because thermal
fluctuations can be turned on and off. However, for many interesting appli-
cations one may well get away with just a single processor, and for many
soft matter systems, the inclusion of thermal fluctuations is anyways needed.
Therefore, my personal opinion is that the choice of the method is, to a large
extent, a matter of taste. The only recommendation which I can give is to
try to understand as much physics as possible before running the simulation,
and then ask the questions: (i) Which conservation laws (mass, momentum,
energy) are needed to describe the physics correctly? (ii) Is the inclusion of
thermal fluctuations really needed? (iii) Are large systems on a parallel ma-
chine needed? (iv) How much (molecular) structure of the fluid is needed?
Starting from the answers to these questions, one should then be able to pick
a suitable method and to construct a useful computational model.
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