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Abstract. The contribution gives a brief overview outlining how our
theoretical understanding of the phenomenon of colloidal electrophore-
sis has improved over the decades. Particular emphasis is put on nu-
merical calculations and computer simulation models, which have be-
come more and more important as the level of description became more
detailed and refined. Due to computational limitations, it has so far
not been possible to study “perfect” models. Different complementary
models have hence been developed, and their various strengths and de-
ficiencies are briefly discussed. This is contrasted with the experimental
situation, where there are still observations waiting for theoretical ex-
planation. The contribution then outlines our recent development of
a numerical method to solve the electrokinetic equations for a finite
volume in three dimensions, and describes some new results that could
be obtained by the approach.

1 Introduction

The electrophoretic motion of charged colloids in an external electric field is a more
than hundred years old classical problem [1–3]. To introduce the notation, let us
consider a system of colloidal spheres with volume fraction Φ, each of which has a
radius R and a charge Ze, where e denotes the absolute value of the elementary
charge. The system is at absolute temperature T (or thermal energy kBT , where
kB is Boltzmann’s constant), and the surrounding fluid is characterized by the shear
viscosity η and the dielectric constant ε. The colloidal particles are surrounded by
ions of different species i. For each species, the corresponding concentration (particle
number per unit volume) is ci, and the ionic charge is zie. Additional important ionic
properties are the ion radii ai and the collective diffusion coefficient of species i, Di.
Finally, an external electric field Eext is applied. In the linear-response regime (weak
driving field) the average drift velocity of the colloidal particles u is then given by

u = µeE, (1)

where µ is the electrophoretic mobility. It should be noticed that this definition is
tailored to the needs of experiments: The charge in Eq. 1 is e and not Ze, because
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the actual charge of the sphere may be difficult to measure, and the driving is char-
acterized by the electric field and not the local force — the latter is difficult if not
impossible to be measured directly.

An important length scale in electrostatic problems is the so-called Bjerrum length
lB ,

lB =
e2

4πεkBT
, (2)

and hence we can define the so-called reduced (dimensionless) mobility via a Stokes
law based on the length scale lB :

µred = µ6πηlB . (3)

The electrophoretic motion is therefore, in general, the result of a complicated
interplay of electrostatics (effective colloid-colloid interactions, with possible impor-
tance of multibody and charge-charge correlation effects), solvent dynamics (which
may however be safely described by low Reynolds number hydrodynamics), and the
dynamics of the charge clouds, which constitute important non-trivial degrees of free-
dom in their own right. In its full generality, the problem has therefore not yet been
solved, neither analytically nor numerically, where in the latter case the reason is the
computational complexity that is still a challenge even for today’s computers. On the
other hand, there is great experimental interest to understand the dependence of µ
on the various system parameters, since this can help to estimate important colloid
parameters like Z or R. Some understanding can however be obtained from simple
limiting situations.

The conceptually simplest case is a single colloidal sphere at infinite dilution in
a salt-free environment. Since all counterions are infinitely far away, one may apply
Stokes’ law to obtain

µred = Z
lB
R

=: Ẑ. (4)

In this situation (“Hückel limit”), we may also introduce the concept of a zeta po-
tential ζ, which is the electrostatic potential between the surface of the colloid and
infinity, in the absence of driving:

ζ =
Ze

4πεR
= Z

lB
R

kBT

e
(5)

or

ζred :=
eζ

kBT
= Z

lB
R

= µred. (6)

We now study the opposite limit, where we assume that the salt concentration is
rather large. From the point of view of electrostatics, it is clear that this implies strong
electrostatic screening, with a Debye screening length [3] lD = κ−1/2 and screening
parameter κ

κ2 = 4πlB
∑

i

z2i ci. (7)

In the limit of high salt concentration, it does not matter if the small concentration of
counterions is included in this definition or not. However, when considering Poisson-
Boltzmann theory in a finite volume, and its linearization (which assumes that the
concentrations ci differ not much from their volume-averaged values), it becomes clear
that in the general case the definition of κ2 should comprise all ionic species, including
the counterions.

An important observation for electrophoresis is the notion of hydrodynamic screen-
ing [4]. The process is fundamentally different from sedimentation, which is the motion
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of colloids driven by an external gravitational field, which in turn is directly related to
the tracer diffusion of the particles, as a result of the fluctuation-dissipation theorem.
In this latter case, the surrounding flow field decays like 1/r, i. e. the hydrodymic in-
teraction is unscreened. This is a result of the fact that the force density (the “source”
of the flow field) has a nonzero component at zero wavenumber. Conversely, in case
of electrophoresis the force density vanishes at zero wavenumber, since the total force
on the positive charges exactly compensates the force on the negative ones. In other
words, the long-range flow field generated by the moving colloid is, in leading order,
compensated by a counter-flow generated by the counterions. The angle-averaged flow
field thus decays just like the charge cloud, with the same screening length.

This implies, in turn, that the electrophoresis problem is expected to reduce to
a single-particle problem whenever the average colloid-colloid distance is substan-
tially larger than the Debye screening length, and this happens for sufficiently large
amounts of salt. This is the reason why most investigations have focused on the case
of a single colloid surrounded by counterions and salt [1,5–7], where the theoreti-
cal analysis become more and more refined and generalized, and involved more and
more numerics. The end point of this development was the seminal contribution by
O’Brien and White [7], where the electrophoretic mobility was numerically calculated
for this situation in its full generality. Apart from the restriction already mentioned,
another important restriction is the fact that this theory treats the ionic atmospheres
as structureless fields, i. e. in the static limit the theory is identical to (nonlinear)
Poisson-Boltzmann theory, which is a standard example of a Mean Field theory. In
the extreme limit, where the Debye length is even substantially smaller than the par-
ticle radius, the geometry becomes effectively planar, and the problem is amenable
to a simple analytical solution (the Smoluchowski limit [1,3]):

µred =
3

2
ζred. (8)

Starting from this background, theoreticians have mainly attempted to go beyond
the simple Mean Field picture and to include ionic correlations (see, e. g., Refs. [8,
9]), while experiments deliberately have violated the high-salt condition, such that
colloid-colloid interactions become important [10–15]. An observation that still is
poorly understood is the fact that for very small Φ there is a regime where µ decreases

upon decreasing Φ [10]. It was mainly this experimental background that prompted
us to attempt to attack the problem by numerical simulation.

In what follows, we will first (in Sec. 2) briefly outline possible computational
methods to deal with colloidal electrophoresis, and discuss their strengths and limi-
tations. This will also imply a brief discussion of some older results of our group. In
Sec. 3 we will then report on more recent results, which are the main focus of the
present paper. Finally, in Sec. 4 we will provide a brief outlook.

2 Computational approaches, and dimensional analysis

Ideally, one would like to include effects of ion-ion correlations, and of hydrodynamic
interactions. One possible model that takes all these effects into account is the so-
called “raspberry model” [16–20], where a colloidal sphere is represented by a set of
roughly 100 Molecular Dynamics particles arranged on the surface. These particles
are coupled dissipatively to a Lattice Boltzmann (LB) background to represent the
hydrodynamic interactions. Ions are represented by additional Molecular Dynamics
particles, and electrostatic interactions are calculated directly via an efficient eval-
uation of Coulomb’s law. The system is kept at constant temperature by applying
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Langevin thermostats to both the particles and the LB fluid, and the structure of the
charge clouds arises from averaging over these fluctuations. This allows to evaluate
the mobility either by applying an external electic field (where one needs to take
care to extrapolate to the Eext = 0 limit), or via a Green-Kubo relation [21] from
simulations at zero driving.

It turns out that this needs a lot of sampling, since the charge clouds comprise
only a few particles, such that fluctuations are big. Furthermore, the number of ions
per colloidal particle is typically substantially smaller than in experiment. Similarly,
the colloid radius is typically only one order of magnitude larger than the ion radius
(or even less), while in typical experiments it is much larger. Therefore the model
strongly overestimates the effects of ion packing at the colloid surface. Furthermore,
the computational effort of the method is so big that so far we have not been able to
study a multi-colloid system. This would however be highly desirable, since one must
expect that such a system will be qualitatively different from a single-colloid system.
A single colloid in a cubic box with periodic boundary conditions is best viewed as an
infinitely stiff simple-cubic colloidal crystal, whose lattice spacing is identical to the
linear box dimension. This picture allows us to assign a well-defined colloid volume
fraction and well-defined ionic concentrations to the system. Nevertheless, a colloid
system in the fluid phase, even at the same volume fraction and ion concentrations, is
expected to behave somewhat differently. The most important difference is that in the
stiff crystal all colloidal spheres move with the same velocity, while in the fluid there
is no reason why this should happen. In other words, the single-colloid case allows
us to apply a Galilei transform in order to study the system in the particle’s rest
frame. In the multi-colloid case, such a global rest frame does not exist, and the drift
velocity is obtained from an average over both time and particles. It is also expected
that the velocity fluctuations between the particles introduce complex hydrodynamic
interactions that are important for the overall phenomenon.

Although being confined to single-colloid studies, the raspberry model nevertheless
allowed us to gain important insights into the process, and, in particular, to achieve a
favorable match with experiments [18]. One question that arose was the identification
of a suitable set of independent dimensionless parameters that govern the problem.
This was answered by dimensional analysis [18,21], and a possible set that we found

are κR, Ẑ, the rescaled diffusion coefficients D̃i = Di6πlBη/(kBT ), the fractions of
the various ionic species

fi =
ci

∑

j z
2
j cj

, (9)

and the ratio lB/R. Interestingly enough, this last parameter drops out when one
describes the system on the level of Mean Field theory, i. e. within the framework of
the electrokinetic equations.

Given the outlined limitations of the raspberry model in terms of both computa-
tional efficiency and physical realism, we continued to study the system numerically
via solving the electrokinetic equations on a lattice, which is computationally eas-
ier but still challenging. We thus gained computational speed by discarding some
ion correlation effects, which are however apparently fairly weak for many systems.
Furthermore, we now no longer overestimate ion packing effects; however, they may
now be somewhat underrepresented. It turns out that the method is subject to fairly
strong discretization effects, and therefore we often needed to study several lattice
spacings, and to extrapolate to the continuum limit. However, we did not use the gain
in efficiency in order to study many colloids (which turned out to still be challeng-
ing), but rather to vary parameters over a broad range, and to obtain results with
much-improved numerical accuracy, which was necessary to answer some more subtle
questions. In contrast to previous work [22] that solved the full nonlinear equations,
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we improved the accuracy by taking a perturbative approach from the outset, starting
from a system at zero driving (which means to solve the nonlinear Poisson-Boltzmann
equation), and linearizing the equations with respect to the driving field around that
state. A first important step in that program was the development of a highly stable
Poisson-Boltzmann solver [23], building upon Maggs’ field-based formulation of elec-
trostatics. This solver was also very useful for the studies of J. Zhou and F. Schmid
[24], which are reported in their contribution in this volume. Most results that are
the focus of the present report (i. e. the following section) have been published in a
long paper [25], and hence we will be fairly brief here.

3 Numerical solution of the electrokinetic equations

Since we study the single-colloid system in the stationary state, the equations need
to be studied only in their time-independent formulation (in the colloid’s rest frame):

0 = ∇
2ψ +

1

ε
e
∑

i

zici , (10)

0 = ∇ ·

(

Di∇ci +
Di

kBT
ezi(∇ψ)ci − vci

)

, (11)

0 = −∇p+ η∇2v − e(∇ψ)
∑

i

zici , (12)

0 = ∇ · v . (13)

The first equation is the Poisson equation for the electrostatic potential ψ, the second
the convection-diffusion equation for the ionic concentration ci, the third the Stokes
equation for the velocity flow field v where p is the pressure enforcing the incompress-
ibility condition (the fourth equation). Linearization involves an expansion

ci = c
(0)
i + ǫc

(1)
i +O(ǫ2) , (14)

ψ = ψ(0) + ǫψ(1) +O(ǫ2) , (15)

v = ǫv(1) +O(ǫ2) , (16)

p = p(0) + ǫp(1) +O(ǫ2), (17)

where the dimensionless parameter ǫ is a measure for the strength of the external
driving. At zeroth order, one just obtains the Poisson-Boltzmann system (the solution
of which is obtained by the method discussed in Ref. [23]), and the zeroth-order
concentrations and potential then show up as coefficients of the linear first-order
equations. The first-order convection-diffusion equation then acquires source and sink
terms. Each of the first-order equations is solved by its own specialized method, and
the whole procedure is coupled by a big iteration that finally brings the system into
the stationary solution, from which µ can be read off. While the Poisson equation is
solved by Fast Fourier Transform, the convection-diffusion equation is handled by a
finite-volume solver that moves the concentrations from one lattice site to another
along the links, and modifies them locally according to the sources and sinks. Finally,
the Stokes equation is solved by a surface element method, which is based upon the
lattice Green’s function, and a self-consistent determination of reaction forces at the
particle surface, such that the no-slip boundary condition is satisfied. As outlined
in more detail in Ref. [25], we find good agreement with previous raspberry and
experimental results, and we find also good agreement with the results of O’Brien
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Fig. 1. Dependence of the reduced electrophoretic mobility µred on f0, the fraction of
counterions relative to the salt ions.

and White [7] in the limit of strong salt screening, in which case the charge clouds of
the colloids in the crystal do not overlap, and the two theories must coincide.

Experimental investigations often interpret their µred data in terms of the O’Brien-
White theory, even in the low-salt limit, although that theory was clearly not devel-
oped for that case. This means, implicitly, that one does not only assume the validity
of a Mean Field description (which seems more or less reasonable), but also ignores the
dependence of µred on all of the discussed scaling parameters except κR and ZlB/R.
In other words, it assumes that the non-dimensionalized diffusion coefficients take
the value unity (which seems to be the value used in Ref. [7], and is also physically
reasonable), and that the dependence on the ion species fractions fi does not exist
or at least is weak (at fixed κR and ZlB/R). This latter assumption means that one
can replace a system with counterion-dominated screening by an “equivalent” system
whose screening is salt-dominated, and for which Ref. [7] is valid. In physical terms,
this means that one has to envision a thought experiment where more and more salt
is added to the system, while at the same time the simulation box size is systemati-
cally increased in order to keep κR constant. Our investigations then showed clearly
that indeed µred does depend on the fi, as predicted by scaling theory, but that on
the other hand the dependence is fairly moderate and is typically of order five to ten
percent (which is comparable to the accuracy of the experiments). Furthermore, the
dependence of µred on the rescaled diffusion coefficients was also found to be fairly
weak.
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Fig. 2. Concentration profile of negative salt ions for a sphere (upper panel) and a cylinder
(lower panel), where the zeroth-order contribution (left) and the first-order contribution
(right) are shown separately.

An interesting effect was found when studying the orientation of the charge cloud
(e. g. in terms of the first-order dipole moment). The picture of a static polarizability
implies that one should expect the dipole moment to be aligned with the driving field.
On the other hand, the picture of ionic currents that result in an accumulation of
charges at the surface of the colloid (which can be viewed as an “obstacle”) leads to the
prediction of a dipole moment aligned in the opposite direction. This means that there
is a competition between electrostatic and hydrodynamic effects. We found that there
is no universal answer to the question which effect wins. Rather, the hydrodynamic
prediction is correct only in the limit of weak colloid charges (the special case Z = 0 is
amenable to analytic treatment [26], and that theory could be nicely confirmed). Upon
increasing Z, the absolute value of the dipole moment decreases, and at a critical Z
value the charge cloud changes its orientation. It should be noted that this “flipping”
has no direct influence on the behavior of the electrophoretic mobility, which is a
perfectly smooth function of Z.

Fairly recent (and so far unpublished) studies have generalized these investiga-
tions to the two-dimensional case, which means the electrophoresis of infinitely long
cylinders with a driving field perpendicular to the cylinder axis. Figure 1 studies µred

for κR = 1, Ẑ = 10, D̃i = 1.5 for the two ionic species i = 1, 2 (z1 = −z2 = 1), where
we varied the fraction of counterions f0. This is done for both a sphere as well as for a
cylinder, and one sees that the dependence is clearly stronger in the two-dimensional
case. On the other hand, when comparing the ionic profiles of both zeroth and first
order, on sees that the two-dimensional case is substantially flatter (Fig. 2).
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4 Outlook

The numerical solution of the electrokinetic equations is a viable route to study
electrokinetic phenomena, and in many cases the involved Mean Field approximation
is reasonably accurate. The description of the Poisson-Boltzmann theory in terms of
the positive-definite Maggs functional [23] allows us to straightforwardly construct
a well-defined equilibrium thermodynamics and statistical mechanics of the system.
To accurately study many-colloid systems under the influence of a driving electric
field is still demanding but possible. In this case the absence of a colloidal rest frame
prohibits the application of the perturbative approach that we have taken so far;
rather it will be necessary to solve the full nonlinear equations.
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