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We perform Monte Carlo simulations of a model for a binary alloy exhibiting superstructure
formation with two sublattices, in the constant-pressure semi-grand canonical ensemble. This cor-
responds to an elastic antiferromagnetic Ising model, where spins sit on a distortable diamond net
and the interaction is described by the Stillinger-Weber potential. We find a phase transition line
separating the disordered from the ordered phase. The finite-size scaling analysis of the critical
behavior shows no deviations from three-dimensional Ising behavior. This would be expected in the
rigid limit of the model, while for the compressible case, as realized by our model, theory predicts
a weak first-order transition.

I. INTRODUCTION

The Ising model is among the most important and
most intensely studied models of statistical physics. Its
critical behavior is quite well understood, based on differ-
ent approaches like renormalization group, ε-expansion,
series expansions1–4, and Monte Carlo simulations5,6,
which have all provided quite accurate values for criti-
cal parameters. Although the model is formulated in a
“magnetic” language, it is only rarely applicable to real
magnetic systems. This is due to the scalar nature of the
order parameter. Typical Ising-like transitions therefore
include, for instance, the gas-liquid transition, and un-
mixing in liquids, where the composition corresponds to
the magnetization, and the chemical potential difference
to the magnetic field.

In a solid, important phase transitions with a scalar
order parameter (and hence possible candidates for Ising-
like behavior) are (i) the unmixing of a binary alloy (cor-
responding to ferromagnetic ordering), and (ii) the for-
mation of a simple superstructure which is described by
just two sublattices (corresponding to antiferromagnetic
ordering). However, taking into account the elastic de-
formability of the lattice, i. e. the coupling of the compo-
sitional and translational degrees of freedom, the phase
transitions need not necessarily remain Ising-like. Due
to the long-range nature of the elastic interaction, fun-
damentally different kinds of behavior are possible, in-
cluding first-order transitions, Fisher renormalization of
the critical exponents, and Mean Field behavior. This
“zoo” arises from certain details (see below) playing an
important role, such that various cases need to be distin-
guished. The main source of our current understanding
of these phenomena is theoretical reasoning based on sim-
ple (usually field-theoretic) Hamiltonians. To our knowl-
edge, it has not been attempted to attack these questions

experimentally in a systematic fashion. This is under-
standable, since rather high resolution would be neces-
sary; furthermore, some of the theoretically interesting
situations are hard if not impossible to realize. Numerical
simulations of these systems7–14, which are significantly
more complicated than the “bare” Ising model, could
only attain the necessary resolution within (roughly) the
last decade. It is in this field where the present study
attempts to make a contribution.

One of the present authors has recently15 attempted
a survey of the pertinent theoretical literature, in order
to obtain an overview over the possible cases and various
predictions. For a sketch of the underlying reasoning,
and references to the original papers, see Appendix A.
So far, the following aspects have been identified as be-
ing important for the critical behavior of elastic alloys:
Firstly, the nature of the coupling is crucial. Depend-
ing on the order parameter symmetry, the lowest-order
coupling term can either be written as a product of or-
der parameter and strain, or square of the order param-
eter and strain. The former case applies to unmixing,
the latter to superstructure formation – in this case, a
sign change of the order parameter just corresponds to
an exchange of sublattices, which is a valid symmetry
operation, and hence a linear term is prohibited. Sec-
ondly, the critical behavior is influenced by macroscopic

constraints, or the thermodynamic ensemble (plus bound-
ary conditions). Since it turns out that the macroscopic

fluctuations (i. e. those at wave number ~k = 0) are cru-
cial for the critical behavior, it makes a difference if the
ensemble permits these fluctuations or not. For exam-
ple, the constant-pressure ensemble allows fluctuations
of the overall volume, but the constant-volume ensem-
ble does not. Similarly, a simulation of a binary alloy

in the semi-grand canonical ensemble allows ~k = 0 fluc-
tuations of the composition (or magnetization, which is
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the order parameter in the case of unmixing), while they
are suppressed in the canonical ensemble. The resulting
non-equivalence of ensembles has first been noticed by
Vandeworp and Newman12. This is intimately related
to the difference between coherent and incoherent phase
coexistence as it is well-known from metallurgy16,17. A
coherent alloy is one characterized by a single crystal
with well-defined neighbor shells. The condition of co-
herency, i. e. of absence of broken bonds, usually implies
that the system is in a metastable state. Conversely, an
incoherent alloy is one where bond-breaking is permit-
ted; this additional relaxation mechanism then allows the
system to reach full equilibrium. Coherency usually im-
plies the occurence of internal stresses, which are most
pronounced near the interface of two components with
different lattice spacings. Since the semi-grand canoni-
cal ensemble avoids the explicit treatment of the inter-
face, and the associated coherency stresses, such a sim-
ulation produces the incoherent phase diagram (or some
approximation thereof). Conversely, data obtained in
the canonical ensemble (with fixed composition) pertain
to the situation with an interface, and with coherency
stresses (note that the computational models explicitly
forbid bond-breaking). Therefore, this yields the coher-
ent phase diagram. For these reasons we may not infer
the coherent canonical phase diagram from semi-grand
canonical data. For a more detailed elaboration on that
point, see Ref. 12. — Finally, it is also believed that
elastic anisotropy plays a role in the critical behavior of
elastic alloys.

For an elastic lattice gas in the semi-grand ensemble
(i. e. the composition is always allowed to fluctuate), the
following predictions arise from the picture outlined in
Appendix A:

1. A ferromagnet at constant pressure should exhibit a
first-order coexistence line in the field-temperature
plane. The line ends in a critical point with Mean
Field behavior. This has indeed been observed in
the simulations of Refs. 9 and 10.

2. For a ferromagnet at constant volume, the theo-
retical situation is not quite clear. For interme-
diate volumes which enforce an intermediate lat-
tice spacing somewhere in between those of the
two pure species, one expects that a mixed state
is stabilized by elasticity. If one then assumes15

that this mixed state is just a coexistence of two
macroscopic domains, with an interfacial free en-
ergy which does not contribute in the thermody-
namic limit, one arrives at the prediction of two
first-order lines ending in critical points. However,
simulations14 have shown that this assumption is
apparently incorrect: One rather finds a region in
the phase diagram which is completely separated
from the homogeneous phase by two merging first-
order lines. Within this region, the structures are
much more complicated than simple macroscopic
domains. This is further corroborated by addi-

tional simulations18 which have carefully studied
interface fluctuations in such a system: It turns out
that capillary waves are completely suppressed, im-
plying that the interfacial tension is indeed infinite.

3. An antiferromagnet, since it couples quadratically
to the strain, should correspond precisely to what
is known as the “compressible Ising model” in the
literature. In the case of constant pressure, a (very
weak) first-order phase transition is predicted. A
Monte Carlo study of the 2D compressible Ising
antiferromagnet also found the transition is weakly
first order and possibly second order when the cou-
pling increased19.

4. In the constant-volume case, the prediction is
rather a second-order phase transition with Fisher-
renormalized critical exponents. A recent MC sim-
ulation, however, found Ising-like critical behav-
ior20.

The present study is an attempt to test the prediction
of case 3 by simulations. For this purpose, we slightly
modify the model of Ref. 10 and introduce a nearest-
neighbor interaction which favors antiferromagnetic or-
dering. This is then simulated at constant zero pressure.
The details of the model and the simulation technique are
outlined in Sec. II. Section III then presents the results
on the phase diagram, and on the critical behavior, ob-
tained via a standard finite-size scaling analysis. Within
the resolution of our data, it was impossible to detect
any deviation from standard Ising criticality. In Sec. IV
we attempt to assess the influence of the elastic degrees
of freedom, i. e. to determine how far the model deviates
from a rigid Ising model. Finally, Sec. V concludes with
a brief discussion.

II. BACKGROUND

A. Model and Method

In order to make contact with previous simulation re-
sults of an analogous ferromagnetic system10, we just
modify this model slightly. Reference 10 had attempted
to provide a semi-realistic description of the unmixing
of the semiconductor alloy Si-Ge. As an interaction po-
tential, the Stillinger-Weber (SW) potential21, suitably
generalized to the binary case, was chosen. Other poten-
tials for such systems have been proposed as well22–24,
but we view the SW potential as a good compromise be-
tween computational simplicity and realistic description
of the system’s properties. The only change compared
to Ref. 10 is a modification of the nearest-neighbor in-
teraction such that unlike neighbor pairs are favored. It
should be noted that this choice of parameters implies
that the present study makes no attempt to study some
particular semiconductor alloy in a realistic fashion.
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For reasons of computational efficiency, the particles
are located on the nodes of a diamond network with fluc-
tuating bonds but fixed topology. Although the nodes
can move stochastically, the four nearest neighbors and
the twelve next-nearest neighbors of a given node are
known at the very beginning, and this information is used
throughout the simulation. Each node has four degrees of
freedom: The first one is a pseudospin variable Si which
is either +1 or −1, corresponding to the two species of the
alloy. The other three are the node’s spatial coordinates
~ri.

The diamond lattice can be decomposed into two in-
terpenetrating FCC sublattices. In the totally ordered
antiferromagnic phase, the spins of the two sublattices
are oppositely aligned. A further decomposition of the
diamond lattice into eight simple cubic (SC) sublattices
is useful for computational purposes; no two nodes within
the same SC sublattice interact with each other.

The Hamiltonian consists of four parts:

H = H1 + H+
1 + H2 + H3 (1)

where H1 and H+
1 are the uniform magnetic field energy

and staggered magnetic field energy, respectively.

H1 = −h
∑

j

Sj (2)

H+
1 = −h+

∑

j

S+
j (3)

The staggered spin S+
j is defined as

S+
j =

{

Sj if Sj is in FCC sublattice a
−Sj if Sj is in FCC sublattice b

The staggered magnetization M+, also called the order
parameter, is the summation of all S+

j ,

M+ =
∑

j

S+
j . (4)

The two-body part H2 can be written as:

H2 =
∑

<i,j>

ε(Si, Sj)F2[rij/σ(Si, Sj)], (5)

and the three-body part is

H3 =
∑

<i,j,k>

[ε(Si, Sj)ε(Sj , Sk)]1/2L(Si, Sj , Sk)

×F3[rij/σ(Si, Sj), rjk/σ(Sj , Sk)]

×(cos θijk +
1

3
)2. (6)

The two-body part H2 and three-body part H3 to-
gether give the SW potential energy. For a detailed de-
scription of the involved functions and the chosen set
of parameters, see Ref. 10. The only change is that

we decrease ε(+1,−1), the covalent binding energy be-
tween unlike species, from the original value −2.0427eV
to −2.3427eV to make the system antiferromagnetic.
The choice of this new value is arbitrary as long as it
is lower than the corresponding energies for like species,
ε(+1,+1) = −2.17eV and ε(−1,−1) = −1.93eV .

Our MC simulation is performed as follows. For spin
Sj at position ~rj , we generate a new spin S′

j at a slightly

altered position ~rj
′, and then use the Metropolis rejection

method to accept or reject this attempt. The maximum
displacement in a step is 0.005 times the length of unit
cell in each of the x, y and z directions. After sweeping
over the entire system, we keep the pressure constant and
allow volume fluctuations by attempting to rescale the
system to slightly different linear sizes Λ′

x,Λ′
y,Λ′

z from the
current ones: x′ = xΛ′

x/Λx,y′ = yΛ′
y/Λy,z′ = zΛ′

z/Λz.
The acceptance or rejection of this attempt is determined
by the Metropolis rejection method using the effective
Hamiltonian Heff = H − NkBT ln(ΛxΛyΛz), where N
is the number of nodes. A Tausworthe (shift-register)
generator25 is used to generate random numbers, and the
magic numbers are p = 1279, q = 1063. All floating point
quantities are double-precision. The code is parallelized
so that it runs on multiple processors with different ran-
dom number sequences simultaneously. The multiple
random number sequences diversify the data and improve
the data quality used for histogram reweighting. Our sys-
tem sizes are up to L = 24, or N = 8L3 = 110, 592. The
number of spins is N = 8L3 because each diamond unit
cell has 8 spins. All simulation runs are over 107 Monte
Carlo steps (MCS, sweeps through the entire lattice).

B. Finite-Size Scaling Analysis

According to Fisher’s finite-size scaling theory26,27, the
critical behavior of an infinite system may be extracted
from that of finite systems by examining the size depen-
dence of the singular part of the free energy density. The
free energy of a system of linear dimension L is described
by the scaling ansatz

F (L, T, h) = L−(2−α)/νF0(tL1/ν , hL(γ+β)/ν), (7)

where t = (T − Tc)/Tc (Tc is the infinite-lattice critical
temperature) and h is the staggered magnetic field. The
critical exponents α, β, γ, and ν are all the appropri-
ate values for the infinite system. Based on this scaling
ansatz, we may obtain the following scaling form in zero
field h = 0:

m+ = L−β/νm̃(xt), (8)

where xt = tL1/ν is the temperature scaling variable, and
m+ = 1

8L3M
+ is the staggered magnetization per spin.

The specific heat capacity C is calculated from the
fluctuation of internal energy E

C =
1

8L3

1

T 2
(< E2 > − < E >2), (9)
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where we use a unit system in which the Boltzmann con-
stant is unity. Furthermore, the staggered finite-lattice
susceptibility is obtained from the fluctuation relation

χ+ =
8L3

T
(< |m+2| > − < |m+| >2), (10)

while the Binder cumulant28 is given by

U4 = 1 −
< m+4 >

3 < m+2 >2
. (11)

Then, we also have the following scaling forms

C(T ) = Lα/νC̃(xt), (12)

χ+(T ) = Lγ/ν χ̃(xt), (13)

U4(T ) = Ũ(xt). (14)

The finite-lattice (or effective) critical temperature Tc(L)
is defined to be where the scaling function reaches a max-
imum, or, in the case of the cumulant, has maximum
slope. If the effective critical coupling Kc(L) is defined
to be the reciprocal of the effective critical temperature,
Kc(L) = 1/Tc(L), then the following scaling form holds:

Kc(L) = Kc + λL−1/ν(1 + bL−ω) (15)

where Kc is the critical coupling of the infinite lattice,
and ω is the correction-to-scaling exponent.

Binder28 showed that the maximum slope of the cumu-
lant U4 at Kc varies with system size like L1/ν . Taking
into account a correction term, the size dependence be-
comes

dU4

dK

∣

∣

∣

∣

max

= aL1/ν(1 + bL−ω) (16)

The logarithmic derivative of any power of the staggered
magnetization

∂

∂K
ln < m+n > =

1

< m+n >

∂

∂K
< m+n >

= −

[

< m+nE >

< m+n >
− < E >

]

, (17)

has the same scaling properties as the cumulant slope.
This provides us with additional estimates for ν and
Kc(L).

C. Histogram Reweighting Method

The histogram reweighting technique29 proposed by
Ferrenberg and Swendsen has proved to be very effec-
tive. It yields excellent results in the neighborhood of
the point where a sufficient MC simulation is performed.
We rewrite the Hamiltanian of the system as follows.

H = −hM − h+M+ +W (18)

where W is the SW potential energy, W = H2 + H3.
An MC simulation of length N performed at tempera-
ture T0, uniform magnetic field h0, and staggered mag-
netic field h+

0 generates N configurations with a distri-
bution frequency proportional to the Boltzmann weight,
exp[−K0H], where K0 = 1/T0. If we fix h = 0 and
h+ = 0, and reweight over temperature, then the expec-
tation value of an operator A at K = 1/T is given by

< A >K=
1

Z

N
∑

j

A(Wj) exp[−(K −K0)Wj ],

where

Z =

N
∑

j

exp[−(K −K0)Wj ]

In histogram reweighting, it is necessary to check the
histogram distribution. The reweighted mean internal
energy should not be too far away from the center (or the
maximum value) of the histogram. Otherwise, systematic
errors will prevail. In practice, we require that

H(reweighted mean internal energy) ≥ 0.22Hmax,

where H is the histogram value, and Hmax is the
maximum histogram value. This guarantees that the
reweighted mean internal energy is within two standard
deviations from the center of the histogram.

III. RESULTS

A. Phase Diagram

The field dependence and temperature dependence of
specific heat and staggered susceptibility are shown in
Fig.1. These properties reach maxima at slightly differ-
ent points. The staggered suscepbility exhibits smaller
fluctuations and diverges with the system size much
faster than the specific heat, which makes it an ideal
indicator for critical points.

We determine the critical points along the phase
boundary by locating the points where the staggered
susceptibility reaches a maximum. In the plane T − h
(temperature-field, where h is the uniform magnetic field
thermodynamically conjugate to the concentration) we
find a single phase boundary separating a disordered
state from an ordered antiferromagnetic state as shown
in Fig. 2a. The phase diagram is approximately (actu-
ally, within error bars) symmetric around the maximum.
This is a non-trivial aspect, since it is not dictated by
an obvious symmetry of the Hamiltonian (in contrast
to symmetry with respect to the staggered field; note
also that the symmetry axis is not located at h = 0).
The corresponding phase diagram in the temperature-
concentration plane, which exhibits a similar symme-
try, is shown in Fig. 2b. An interesting feature of
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FIG. 1: The field and temperature dependence of specific
heat and susceptibility. The left two plots (a and b) show the
temperature dependence at fixed field. The right two (c and
d), the field dependence at fixed temperature. Two systems
of different sizes are used to show the finite size effects.
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FIG. 2: Fig.(a) shows the phase diagram in magnetic field
- temperature space, and (b) in concentration-temperature
space. The system size is 6 × 6 × 6. Each simulation length
is 106 MCS. The error bars are smaller than the sizes of data
symbols.

this is that the temperature-concentration curve turns
slightly inward at low temperature. We believe this low-
temperature behavior is real, because it occurs consis-
tently in different runs, and the difference (0.0039) to the
concentration at T=0.1 exceeds the standard deviation
(0.0014). We have, however, not carefully investigated
this interesting phenomenon.

-2 -1 0 1 2
m+/σm

0.0

0.1

0.2

0.3

0.4

0.5

P(
m

+ )σ
m

3D Ising
L=6
L=12
L=18
L=24

FIG. 3: The order parameter distributions at the critical tem-
perature. Also shown for comparison is the rigid 3d Ising
universal distribution (solid line) according to Ref. 6. The
distributions have been scaled to unit variance. σm is the
standard deviation of the staggered magnetization m+. Er-
ror bars are smaller than the symbol sizes, except for L = 18
where they are smaller than twice the symbol sizes.

B. Critical Behavior

In what follows, we will present data which show
that within the resolution of our simulation the phase
transformation can be perfectly described by a second-
order transition with the critical exponents of the three-
dimensional Ising universality class. A first, rather direct
indication comes from the order parameter distribution
at the critical point (we will describe below how we locate
it accurately). In Fig.3, all distributions for different sys-
tem sizes collapse to the universal 3d Ising distribution
function.

The estimation of critical parameters was then done as
follows: Firstly, we extracted ν by considering the scaling
behavior of certain thermodynamic derivatives, including
the derivative of the cumulant U4, and the logarithmic
derivatives of |m+|, |m+|2, as in Ref. 5. We plot these
properties as a function of lattice size on a log-log scale
in Fig.4.

The estimates for 1/ν from the nonlinear least square
fits are given in Table I. Combining these three esti-
mates we get 1/ν = 1.60 ± 0.01. This agrees with the
value (1.594 ± 0.004) reported for the rigid case5 within
one standard deviation. Therefore, our estimate for ν is
0.625± 0.004. The size of the error bars comes primarily
from the statistical errors in our simulation. Since this is
an elastic Ising model, i.e., spin positions are continuous
variables, we cannot utilize the same ultrafast multispin
coding algorithm as in Ref. 5, therefore we cannot handle
very large systems such as L = 96. With relatively mod-
est lattice sizes, we expect a noticeable correction term
denoted by ω. However, we find ω is extremely volatile,
ranging from 0.6 to 4.5. This volatility also comes from
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FIG. 4: Log-log plot of the maximum slopes of various ther-
modynamic quantities used to determine ν. The straight lines
show the nonlinear least-square fit of Eq.16. All data points
agree within one standard deviation.

TABLE I: Estimates for 1/ν obtained by finite size scaling
of the maximum slopes of the cumulant and the logarithmic
derivatives of |m+|2 and |m+|.

1/ν

U4 1.597 ± 0.016

log |m+| 1.607 ± 0.006

log |m+|2 1.603 ± 0.015

the statistical errors in our data which submerges the
correction terms.

We find that the elasticity has a strong effect on the
critical transition temperature. In the absence of elas-
ticity, the model becomes a rigid Ising model on a di-
amond lattice, whose transition temperature is known
to be T diamond

c = 2.70404|J |.30 With |J | = |2ε(+1,−1)−
ε(+1,+1)−ε(−1,−1)|/4, the transition would be kBTc =
0.14635eV , less than half of the transition temperature
found in our simulation. We fitted the data to Eq.15
by fixing 1/ν = 1.60, ω = 1.0 and varying Kc, λ, and
b. The choice ω = 1.0 is not necessarily optimal, but
it works very well. In fact, previous works5 have sug-
gested ω = 1.0. The results are shown in Fig.5 and
Table II. Almost all data agree with the fitted data
within one standard deviation, and all agree within two
standard deviations. The average of these values is
3.20444 ± 0.00019. This corresponds to the critical tem-
perature kBTc = 0.312067± 0.000018eV . Our error bars
are bigger than those in the rigid case due to the added
complexity.

The Binder cumulant U4 scales with the linear sys-
tem size L as Eq.14. At the critical temperature Tc, the
U4(T ) curves of all lattice sizes should have the same

value Ũ(0), which would be a crossing point of all curves
in Fig.6. The crossing value is one of the universal prop-

0 0.02 0.04 0.06 0.08 0.10
L-1/ν

3.14

3.16

3.18

3.20

3.22

3.24

3.26

3.28

3.30

K
c(L

)

C

d<|m
+ |>/dK

χ+

d ln<|m +|>/dKd ln<|m +2|>/dKdU
4 /dK

FIG. 5: Size dependence of the finite-lattice critical tempera-
ture estimated from various properties. Data are shown with
standard deviations. The solid lines are nonlinear least square
fits to Eq.15.

TABLE II: Estimates for Kc obtained by finite size scaling of
locations of the maximium slopes (except χ+ where the max-
imum value is used) of various thermodynamic derivatives.

Kc

U4 3.204 50 ± 0.000 64

log |m+|2 3.204 11 ± 0.000 36

log |m+| 3.204 54 ± 0.000 30

χ+ 3.204 53 ± 0.000 32

|m| 3.204 52 ± 0.000 50

erties, which determines the university class the model
belongs to. Due to finite lattice size effects, the curves
do not cross exactly at the same point, but have their
crossing points change systematically for small systems.
For large systems, no systematic variation is visible. By
averaging the crossing points for L ≥ 10, we find that this
crossing value is 0.472±0.002. This is the same as that in
the universality class of the rigid three-dimensional Ising
model.

We also estimate β/ν = 0.5034 ± 0.0035 by scaling
|m+| at Kc. The estimate for the exponent β is then
β = 0.315± 0.004, which is close to the consensus Monte
Carlo rigid Ising result 0.3263± 0.00065,6. The exponent
γ/ν is determined by the scaling behavior of the finite-
lattice susceptibility defined in Eq.10. The estimate is
γ/ν = 2.027 ± 0.0045, and the estimate for γ is γ =
1.27 ± 0.01, which is also close to the rigid Ising result
γ = 1.242 ± 0.0075,6.

All of the above analyses yield consistent results, i.e.
the critical behavior is simple Ising-like.
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FIG. 6: The Binder cumulant crossing. The curves alternate
in solid and dashed lines for clarity. They are smooth because
the data points are reweighted from histograms, and can reach
any resolution. Lattice sizes are shown on both ends of each
curve.

IV. ELASTICITY IN THE MODEL

We have seen that the critical transition temperature is
quite different from that of the rigid model, but the phase
transition still appears to belong to the universality class
of rigid Ising model. Is this because the model is still
too rigid to see the asymptotic behavior? To answer this
question, we will assess the elasticity in our model in
this section. However, this is a rather vague issue. The
theory does not tell us how much elasticity is sufficient
to see the deviation from Ising behavior. We have tried
a number of approaches to assess the elasticity in the
model, but these have so far not been able to produce
a clear picture. Here we will only show the bond length
distribution as an assessment of elasticity. In Fig.7, the
bond length distributions are quite broad, with the half-
height-width being about 20% of the mean value, which
means our model is indeed very elastic. Fig.7 also shows
the uniformity of elasticity in the system, because the
bond length distribution of all sites and that of a single
site agree very well and almost overlap with each other.
Nonetheless, untangling the interplay between magnetic
and elastic degrees of freedom remains a challenge.

V. CONCLUSION

We have investigated the phase diagram and critical
behavior of an elastic antiferromagnetic Ising model with
SW potential. The simulations were performed at con-
stant pressure in a semi-grand-canonical ensemble. The
phase transition is found second order everywhere, which
disagrees with the theory. The reason might be that the
theory is overly simplified, or our lattice sizes are not
large enough. Note that it is expected that deviations
from rigid behavior should be much harder to detect than
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FIG. 7: The bond length distribution (a) - (c) are normalized
together so that their integrated areas reflect their relative
concentrations. Plot (d) is the distribution of all bonds, which
is the sum of (a), (b) and (c). Plot (e) shows the bond length
distribution of a single site over time.

in the ferromagnetic case, where the coupling between or-
der parameter and elastic strain is linear in the former,
i. e. intrinsically much stronger than in the present case,
where it is quadratic in the order parameter. By ex-
amining the critical exponents and the crossing point of
the Binder cumulant, we find that the transition appears
to belong to the universality class of the rigid three di-
mensional Ising model, but the possibility of a very slow
crossover toward a first order transition cannot be com-
pletely ruled out. If this happens, however, the lattice
sizes that will be required to see this behavior will be far
larger than those that are accessible using current com-
puters and algorithms. We then have the intriguing situ-
ation in which either the theory is somehow incomplete,
or much more challenging simulations are needed.
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APPENDIX A: THEORETICAL BACKGROUND:

PHASE TRANSITIONS IN ELASTIC ALLOYS

FORMING A SIMPLE SUPERSTRUCTURE

It is easy to see that the Hamiltonian can be cast in
the form

H =
∑

i6=j

Jij ({~ri})SiSj

+
∑

i−j−k

Jijk ({~ri})SiSjSk

−
∑

i

Hi ({~ri})Si (A1)

+ H0 ({~ri}) .

We now assume that the interaction constants are cho-
sen such that the low–temperature phase of the sys-
tem is an ordered superstructure which can be described
by a simple decomposition into two sublattices a and
b. We define sublattice magnetizations ma and mb via
ma = (2/N)

∑

i∈a Si and mb = (2/N)
∑

i∈b Si, as well as
the total magnetization m = (1/2) (ma +mb), and the
antiferromagnetic order parameter φ = (1/2) (ma −mb).
Here N denotes the total number of lattice sites. If the
elastic degrees of freedom were absent (i. e. if all J ’s were
just constants which do not depend on the atom coor-
dinates), then the system would exhibit a second–order
phase transition whose critical behavior falls into the uni-
versality class of the three–dimensional Ising model (note
that the order parameter is one–dimensional).

For the elastic distortions, we choose the ground state
of H0 as a reference state. Except for trivial translations
and rotations of the overall system, this specifies both

the atomic positions ~r
(0)
i and the size and shape of the

overall system uniquely. The displacement ~ui of the ith

atom, ~ui = ~ri − ~r
(0)
i , can then be thought of being com-

posed of two contributions: First, the atom is displaced

by a certain amount ~u
(0)
i but the system is kept macro-

scopically fixed; second, the overall system is subjected

to a macroscopic strain described by a strain tensor E
↔

(which we assume to be symmetric, in order to eliminate
trivial rotations):

~ri =
(

1
↔

+E
↔)(

~r
(0)
i + ~u

(0)
i

)

(A2)

or

~ui = ~u
(0)
i +E

↔
~r
(0)
i ; (A3)

in the second equation, we have linearized with respect

to ~u
(0)
i and E

↔
, assuming that the elastic distortions are

small. In the disordered state, and in the vicinity of the
phase transition, this is a reasonable assumption, since
most of the local (atomic) distortions will cancel out (and
this holds even if we confine ourselves to one sublattice
only).

In order to demonstrate that a first–order phase tran-
sition is expected, we now switch to a field–theoretic de-
scription. In essence, the discussion is nothing but an

abbreviated outline of the seminal paper by Larkin and
Pikin31,32. It should be noted that the same result has
also been obtained by other authors33–40, using slightly
different formulations and / or theoretical approaches (in
particular, the renormalization group).

Firstly, we view the displacement as a continuous vec-
tor field ~u(~r),

~u(~r) = E
↔
~r + ~u0(~r), (A4)

and for the second part, for which the periodic boundary
conditions apply, we write down the Fourier expansion

~u(~r) = E
↔
~r +

∑

~k 6=0

∑

λ

ũλ(~k)~ελ(~k) exp
(

i~k · ~r
)

. (A5)

Here ~k 6= 0 are the reciprocal lattice vectors of the undis-
torted system, while λ = 0, 1, 2 is a polarization index:

~ελ are orthogonal unit vectors (~ελ ·~εµ = δµν) with ~ε0 ≡ k̂

(unit vector in ~k direction) denoting the longitudinal po-
larisation.

Instead of H0 we now consider the Hamiltonian of lin-
ear elasticity theory41 (as discussed, we assume weak dis-
tortions)

Hel =

∫

dd~r

(

K

2
eααeββ + µ ēαβ ēαβ

)

. (A6)

Here the integration runs over the volume of the (undis-
torted) system. K > 0 and µ > 0 are bulk and
shear modulus, respectively (for simplicity, the cubic
anisotropy of the crystal is ignored), while eαβ is the
strain tensor

eαβ =
1

2

(

∂uα

∂rβ
+
∂uβ

∂rα

)

(A7)

and ēαβ its traceless part:

ēαβ = eαβ −
1

d
δαβeγγ . (A8)

In these equations, α and β denote Cartesian indices (for
which we assume the Einstein summation convention),
and d is the spatial dimension. For the macroscopic strain

E
↔

we introduce a similar decomposition into trace (Eαα ≡
E0) and traceless part Ēαβ . It is now straightforward to

express Hel in terms of the phonon modes ũλ(~k) and the
macroscopic strain. Denoting the system volume with V ,
one finds

Hel

V
=

K

2
E2

0 + µĒαβĒαβ (A9)

+
1

2

[

K +

(

2 −
2

d

)

µ

]

∑

~k

k2
∣

∣

∣
ũ0(~k)

∣

∣

∣

2

+
µ

2

∑

~k

d−1
∑

λ=1

k2
∣

∣

∣
ũλ(~k)

∣

∣

∣

2

.
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The most important feature is the fact that the long–
wavelength longitudinal modes have a stiffness which is
larger than that of the macroscopic distortion. This re-
sults in a singularity of the effective spin–spin interaction

at ~k = 0, and it is this peculiarity which governs the crit-
ical behavior.

Furthermore, we consider the system at frozen–in

atomic positions ~ri = ~r
(0)
i . This is a standard antiferro-

magnetic Ising model, for which we can write down the
field–theoretic Landau–Ginzburg–Wilson Hamiltonian

HLGW =

∫

dd~r

{

R

2
(∇φ)

2
+
r

2
φ2 +

u

4!
φ4

}

. (A10)

Here φ is the order parameter. It should be noted that
the Hamiltonian must be strictly of even order in φ,
since the transformation φ → −φ just corresponds to
an exchange (or relabeling) of sublattices, with respect
to which it is of course invariant. Geometrically, this
is facilitated by a translation of the crystal such that
the sublattices are mapped onto each other. Using the
Fourier expansion

φ(~r) =
∑

~k

φ̃(~k) exp
(

i~k · ~r
)

(A11)

= φ0 +
∑

~k 6=0

φ̃(~k) exp
(

i~k · ~r
)

,

the Hamiltonian can be written as

HLGW

V
=

R

2

∑

~k

k2
∣

∣

∣φ̃(~k)
∣

∣

∣

2

+
r

2

∑

~k

∣

∣

∣φ̃(~k)
∣

∣

∣

2

(A12)

+
u

4!

∑

~k1
~k2

~k3

φ̃(~k1)φ̃(~k2)φ̃(~k3)φ̃(−~k1 − ~k2 − ~k3).

Finally, we study a coupling term between the order
parameter and the phonons. Noting that it is not the dis-
placement field but rather the strain that describes the
distortions on a local scale, we seek an interaction term
of lowest order in the latter (weak distortions). Further-
more, the coupling should also be of lowest order in the
order parameter (weak deviations from the disordered
phase), and be compatible with the symmetries of the
system. This leads directly to

Hc = g

∫

dd~rφ(~r)2eαα(~r), (A13)

for the following reasons: The lowest order in φ must be
quadratic, since the coupling must also obey the funda-
mental symmetry φ → −φ. For the strain, the lowest
order is linear. Considering the invariance with respect
to rotations (point symmetry of the crystal), one first no-
tices that φ behaves as a scalar field. As the overall cou-
pling must be a scalar, it must have the form φ2gαβeαβ ,
where gαβ is a constant second–rank tensor (a property
of the undistorted disordered crystal). However, in the
cubic system the only invariant tensors are multiples of
the unit tensor. Note that the sign of g is not specified.
Next we introduce the variable ψ(~r) = φ(~r)2, plus the

corresponding Fourier expansion (ψ0 denoting the ~k = 0
component of ψ). In Fourier space we then have

Hc

V
= gφ0E0 + ig

∑

~k 6=0

kψ̃(~k)?ũ0(~k). (A14)

The further development is somewhat technical but

rather straightforward. Since the phonon modes ũλ(~k)
are Gaussian degrees of freedom, they can be integrated
out exactly (with different behavior for longitudinal and
transversal modes). This results in an effective Hamil-
tonian depending only on the order parameter and the
macroscopic strain. The treatment of the latter depends
on the ensemble: In our case, we do not allow macro-
scopic shear (hence we can set Ēαβ = 0), but volume
fluctuations (which correspond to E0, which variable can
hence be integrated out). One thus obtains for our case

Heff

V
=

HLGW

V
−

1

2

g2

K
ψ2

0 (A15)

−
1

2

g2

K + (2 − 2/d)µ

∑

~k 6=0

∣

∣

∣
ψ̃(~k)

∣

∣

∣

2

.

At this point, it is useful to introduce the constant

J =
g2

2

(

1

K
−

1

K + (2 − 2/d)µ

)

> 0, (A16)

such that we can write

Heff

V
=

HLGW

V
− Jψ2

0 (A17)

−
1

2

g2

K + (2 − 2/d)µ

∑

~k

∣

∣

∣ψ̃(~k)
∣

∣

∣

2

,

where in the second term now all Fourier modes con-
tribute. However, since

V
∑

~k

∣

∣

∣ψ̃(~k)
∣

∣

∣

2

=

∫

dd~rψ(~r)2 =

∫

dd~rφ(~r)4, (A18)

and we assume rather weak coupling, the second term
can be absorbed into a re–definition of the fourth–order
coupling constant u of HLGW . Furthermore,

ψ0 =
1

V

∫

dd~rψ(~r) =
1

V

∫

dd~rφ(~r)2 =
∑

~k

∣

∣

∣φ̃(~k)
∣

∣

∣

2

,

(A19)
such that the final effective Hamiltonian reads

Heff

V
=

HLGW

V
− J





∑

~k

∣

∣

∣
φ̃(~k)

∣

∣

∣

2





2

. (A20)

The remaining fourth–order term is treated via a
Hubbard–Stratonovich transformation: With β = 1/T ,
we can write the partition function (apart from irrele-
vant prefactors) as
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Z =

∫

Dφ exp











−βHLGW (r) + βJV





∑

~k

∣

∣

∣φ̃(~k)
∣

∣

∣

2





2










(A21)

∼

∫ ∞

−∞

dx

∫

Dφ exp







−βHLGW (r) −
x2

4βJV
− x

∑

~k

∣

∣

∣φ̃(~k)
∣

∣

∣

2







=

∫ ∞

−∞

dx

∫

Dφ exp

{

−βHLGW (r +
2

βV
x) −

x2

4βJV

}

=

∫ ∞

−∞

dx exp

{

−βV f(r +
2

βV
x) −

x2

4βV J

}

∼

∫ ∞

−∞

dy exp

{

−βV f(y) −
βV

16J
(y − r)

2

}

.

In these equations, we have (i) emphasized the depen-
dence of HLGW on the second–order coefficient r, (ii)

made use of the fact that the term quadratic in φ̃ can
be combined with the second–order term of HLGW , (iii)
integrated over the order parameter field — f(r) denotes
the (known) free energy per unit volume of the rigid Ising
model described by HLGW (r) — and (iv) introduced a
variable transformation. Since the remaining integral is
just one–dimensional, it is, in the thermodynamic limit
V → ∞, rigorously correct to replace the integration by
just maximizing the argument of the exponential:

f(y) +
1

16J
(y − r)

2 !
= Min. (A22)

or

df

dy
=

1

8J
(r − y) . (A23)

The critical point of the rigid Ising model occurs at some
value y = rc, in the vicinity of which the free energy has
the leading–order form

f(y) =

{

−A+ |y − rc|
2−α

y > rc

−A− |y − rc|
2−α

y < rc.
(A24)

Here A+ > 0, A− > 0 are critical amplitudes. Noting
that α > 0 in the three–dimensional Ising universality
class, one thus finds that the graphical solutions of Eq.
A23 look generically as plotted in Fig. 8 (where how-
ever the “clarity” of the behavior is exaggerated — in
order to make the deviation of df/dy from a straight line
clearly visible, we had to increase the value of α substan-
tially). The system is driven through the transition by
varying the parameter r, which corresponds to shifting
the straight line up and down. One clearly sees typi-
cal first–order behavior, where the system jumps from
one stable solution to another one. Furthermore, one
notes that upon increasing the coupling between compo-
sitional and translational degrees of freedom, J increases

and the straight line becomes flatter. Correspondingly,
the first–order jump increases, too. In the limit of van-
ishing coupling, one obtains an infinite slope, and only
one solution, corresponding to the second–order phase
transition of the rigid model.

0.4999 0.49995 0.5 0.50005 0.5001
-0.06

-0.04

-0.02

0

0.02

0.04

y

r
df
dy

critical
point of
rigid system

(r − y) / (8 J)

FIG. 8: Graphical solution of Eq. A23. The numbers at
the figure axes are arbitrary. Note also that the value of the
exponent α was increased to α = 0.4 for better visibility of
the plot.

.

A few final remarks are in order. Firstly, it should be
noticed that the present approach can easily be applied
to other cases. In the constant–volume ensemble, one
has to take into account that the variable E0 is not to be
integrated over but rather is a constant. This leads to an
effective Hamiltonian just of the same form as Eq. A20,
however with a negative coupling J . Analytically contin-
uing Eq. A23 yields a similar plot, just with the slope
of the straight line reversed. One sees that in this case
only one solution occurs (second–order transition). Fur-
thermore, in the vicinity of the critical point this yields a
nonlinear relationship between the “external” tempera-
ture r and the “intrinsic” temperature y corresponding to
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the rigid model, |y − rc|
1−α

∝ |r − rc| — in other words,
one expects Fisher–renormalized critical exponents42.

Similarly, one can also treat the case of an elastic alloy
with no tendency to superstructure formation, e.g. the
Si–Ge system studied in Ref. 9. Here there is no intrinsic
symmetry φ→ −φ, and hence the coupling term is linear

in φ. Using the same formalism as above, one can show
(for the case of constant pressure) rather easily that the
system exhibits a Mean–Field–like second–order transi-
tion at a temperature above the critical point of HLGW .
Another way to see this is to directly assume that the
strain is the primary order parameter — because of bi-
linear coupling it should not matter if one considers the
strain in response to a given order parameter field, as
done here, or vice versa. Therefore the system can be di-

rectly identified with one case, the so–called “type–zero”
transition, of Cowley’s classification scheme43 of struc-
tural phase transitions in solids. For type–zero, Mean
Field behavior is predicted. Related systems (with iden-
tical theoretical predictions) are hydrogen in metals44,
and collapsing polymer networks45. In contrast to the
present case, the predicted behavior was not difficult to
observe in a simulation9.

Another important point is to discuss the neglect of cu-
bic anisotropy in the elastic Hamiltonian. This case has
been treated in Refs. 38–40 with renormalization group
methods. For constant pressure, the prediction remains
first–order, while for constant volume the predicted be-
havior is somewhat more complicated (we refer the reader
to the original literature).
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