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We present a Monte Carlo scheme for the computation of phase equilibria at high densities. At

these high densities, all conventional simulation techniques that rely on insertions and deletions of

particles, e.g. the Gibbs ensemble technique, will have problems because the acceptance probability

for these moves is very low. Furthermore, the efficiency of these methods strongly depends on the

complexity of the system, e.g. degree of polymerization and branching of the components.

Our new method is based upon simulating a path of independent systems in the grand-canonical

ensemble. Each system has a slightly different interaction potential, ranging from a full excluded

volume potential to an ideal gas, as well as different imposed chemical potentials of each component.

This path is constructed in such a way that the average number of molecules of a specific component

per system is constant along the path. To sample all systems of the path efficiently, we apply a parallel

tempering procedure to exchange configurations of two adjacent systems. The advantage of these

exchanges is that, for the full excluded volume system, one does not have to rely on particle insertions

and deletions in this system to sample the full phase space, but rather on particle insertions and

deletions in systems with soft interactions. Without excluded volume interactions, the acceptance of

insertions is independent of molecular size and shape; hence our method does not suffer from the

problems of the conventional methods.

We have tested our method for very simple systems (Lennard-Jones particles) and found exact

agreement with Gibbs ensemble simulations. For these simple systems the conventional techniques

to compute phase equilibria are much more efficient. However, we expect that for long chain

molecules this situation will be reversed.
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I. INTRODUCTION

There are several numerical techniques to locate phase equilibria of molecular systems1,2. One of the most pop-

ular techniques, especially suited to locate vapor-liquid equilibria, is the Gibbs Ensemble (GE) technique3–5. In this

technique, two systems, usually the gas and the liquid phase, are simulated simultaneously in such a way that the

systems can exchange both particles and volume. This technique has problems for very dense systems and direct in-

sertion of long chain molecules because particle exchanges between the systems are very unlikely to be accepted and

therefore one has problems in sampling the phase space. Unfortunately, for dense systems this is a common feature

of both Monte Carlo as well as Molecular Dynamics techniques. A possible way to circumvent the direct insertion of

long chain molecules is the use of an expanded grand-canonical ensemble6,7, which facilitates step-by-step insertion

combined with relaxation of the matrix.

For computer simulations of mixtures, it is often very efficient to include trial moves that attempt to change the

identity of a molecule. For example, in a GE simulation of small and large particles one could only exchange the

small particles between the two systems, as the acceptance probability for particle transfer is much larger for the

small particles than for the large ones. Fluctuations in the number of large particles can be sampled by performing a

trial move in which a small particle in phase I is transformed into a large particle and simultaneously a large particle

in phase II is transformed into a small particle (or vice versa) in such a way that the volumes as well as the reduced

particle positions are fixed8. Such identity changes only work when the two components do not differ too much in

geometry. When the nature of the components is very different, one can use special tricks to perform efficient identity

changes. For example, Wijmans et al.9 have developed an algorithm in the GE to exchange a polymer consisting ofM monomers with M solvent molecules in the other phase. In this way, one is able to compute thermodynamic

properties of a polymer chain in an explicit solvent. Another example is the switch move developed by Martin and

Siepmann10 which combines the identity change in the GE11 with chain interconversion using Configurational-Bias

Monte Carlo2,12–15, i.e. the identity of two chains in two different boxes is changed by passing monomers from one

chain to the other. This trial move has also been used by Vlugt et al. in the grand-canonical ensemble to study the

adsorption of mixtures of linear and branched hydrocarbons in zeolites16. However, such methods are not applicable

for all systems.

In this paper, we focus on the development of a method to locate phase equilibria that does not depend on particle

transfers or identity changes, and therefore does not suffer from these problems. It is important to note that we do

not claim that our technique is most efficient for all phase equilibria calculations. Instead, we would like to propose
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our method as a general scheme to compute phase equilibria if all other conventional techniques fail.

In our method, we simulate a path of systems in the grand-canonical ensemble. Each system has different imposed

chemical potentials as well as a different softness of the interparticle potential in such a way that the limiting sys-

tems are the ideal gas and the full interaction potential. By allowing exchanges of configurations between adjacent

systems, i.e. parallel tempering17,18, we are able to simulate fluctuations in the number of particles efficiently without

having to perform particle insertions for full excluded volume systems at high density. Instead, particle exchanges

are very efficient for ultra soft potentials, in particular for the ideal gas.

It is important to note that the systems along the path for which parallel tempering is applied may differ in

any arbitrary simulation parameter, e.g. temperature, density, imposed chemical potential, or interaction strength.

Furthermore, one can apply different parameters for different parts of the system. It is also possible to apply parallel

tempering in more than one variable. For example, Yan and de Pablo have computed phase diagrams of polymer

blends on a lattice by exchanging configurations of different temperature and by changing the state in the expanded

ensemble19, while Vlugt and Smit have combined parallel tempering with respect to the temperature with umbrella

sampling20. However, it is not obvious at all which is the best possible parameter to apply the parallel tempering

procedure to.

To apply parallel tempering successfully, we have to make sure that the phase space densities of two adjacent

systems have enough overlap. In practice, this means that the number of systems that is needed scales with
pN in

whichN is the system size21,22. Additionally, for a path of systems in the grand-canonical ensemble, we want to make

sure that the total number of molecules as well as the composition do not change too much; this is to ensure that the

systems have enough overlap, and to take into account that the total number of particles and the composition tend

to relax particularly slowly in the fully interacting system. Therefore, we impose the chemical potentials in such a

way that the expectation value of the number of particles for all components is approximately constant along the

path.

The main advantage of our method is the following. As the system of the softest potential can be equilibrated

extremely fast, independent of the molecular topology of the system, the relaxation time of the full excluded volume

potential, determined by the time for a system to diffuse from the ideal gas system to the full excluded volume

system, �, will scale with K2 / V in which K is the number of Hamiltonians and V is the volume22. As the minimum

size of the system that one has to choose is proportional to the size of a molecule, R / M1=2 for a random walk

of a polymer (in which M is the chain length), the overall relaxation time of the system scales as � / M3=2. For a
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more detailed discussion, see Ref.22. Other methods to insert or remove chain molecules scale exponentially (� /
exp [
�M℄), like for example, Configurational-Bias Monte Carlo or Recoil Growth23,24 used in the grand-canonical

or Gibbs ensemble, while the expanded GE19 scales like M2. Furthermore, the efficiency of these methods depend on

the complexity of the molecular architecture25,26. Therefore, when M becomes large and the molecular architecture

is complicated, our excluded volume tempering approach is expected to become competitive or even superior.

The remainder of this article is organized as follows. In Sec. II, we briefly discuss how to construct a path of

systems as well as how to locate the phase equilibrium. In Sec. III, we introduce two simple model systems which

we have used to test our method, while in Sec. IV the results of our calculations are presented and compared with

conventional GE simulations. This results in our conclusion in Sec. V. In the Appendix we will show a systematic

method to optimize the strength of the interaction parameters for a given number of Hamiltonians.

II. SIMULATION TECHNIQUE

In this section, we will discuss our simulation technique to compute phase equilibria. In Subsec. II A, we will

describe the way in which we perform our simulations, while in Subsec. II B we describe how to choose a path of

Hamiltonians in parameter space. The way to compute phase equilibria from these paths is described in Subsec.

II C. We derive our equations for the general case of a sequence of interaction potentials Ui, while not changing the

temperature T, or � = 1=(kBT), kB denoting Boltzmann’s constant. Of course, the case of tempering with respect

to temperature is implicitly included, since changing the temperature is equivalent to just rescaling the potential, as

seen from the Boltzmann factor exp(-�U). A similar comment applies for changing pressure or chemical potential,

since these can always be viewed as parameters of an effective Hamiltonian which governs the statistical distribution

of states. We will come back to the issue of modifying the potential versus changing the temperature in some more

detail in Sec. III.

A. Monte Carlo Procedure

In our computations, we simulate K independent three-dimensional systems of equal volume (V) and temperature

(T) in the grand-canonical ensemble. The total partition function of this system equals2Q = KYi=1Qi; (1)
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where Qi is the grand-canonical partition function for system i. For a binary system, we can writeQi (�A (i) ; �B (i) ; V; T) = 1XNA=0 1XNB=0 (2)

exp [� (�A (i)NA + �B (i)NB)℄VNA+NB�3NAA �3NBB NA!NB! �Z dsNA Z dsNB exp
�-�Ui �sNA ; sNB�� ;

in which �A (i) and �B (i) are the imposed chemical potentials of components A and B, respectively, while NA andNB are the number of particles of components A and B, respectively. For a single-component system, the second sum

would have to be restricted to the term NB = 0. �� is the thermal de Broglie wavelength of component �, which, in

the framework of strictly classical statistical physics, just serves as a normalization constant to render the partition

function dimensionless, and to fix the reference state of the chemical potential. The reduced particle coordinate s is

a three-dimensional vector in the unit cube [0; 1℄3.

For a binary system, it is convenient to use a “magnetic” language where we transform from NA and NB to the

total number of particles N = NA + NB, and the magnetization M = NA - NB. The corresponding thermody-

namically conjugate variables are the total chemical potential �t = (�A+�B)2 and the chemical potential difference�� = (�A-�B)2 : �ANA + �BNB = �tN + ��M: (3)

For each of the K systems, the interaction strength of the potential, denoted by �i (see Sec. III), differs in such a

way that � ranges from the ideal gas limit (� = 1, the particles do not interact in any way, and there is no restriction

for overlap) to the fully interacting limit (� = 0, both attractive interactions and the excluded volume interaction are

fully developed).

In the Monte Carlo (MC) simulation, one first chooses the system i for which a trial move is performed. For the

selected system i, we decide at random which trial move is performed:

1. Particle displacement. A particle is chosen at random and given a random displacement from the interval[-Æi; Æi℄3. This trial move is accepted with a probability

acc (o! n) = min (1; exp [-��U℄) ; (4)
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in which �U is the energy change. We have used the symbols n and o for the new and old configuration,

respectively. The maximum displacement of system i (Æi) is adjusted such that 35% of all displacements are

accepted. In general, one could use any reversible algorithm that simulates an NVT ensemble.

2. Exchange particle with the reservoir. It is decided at random to add or to delete a particle (50% each) and to

perform the addition/deletion with component A or B (50% each). The acceptance/rejection rule for these trial

moves are2

acc (NA ! NA + 1) = min

�1; �3A (NA + 1)V exp [� (�A - �U)℄�
acc (NA ! NA - 1) = min

�1; V�3ANA exp [-� (�A + �U)℄� ; (5)

and the analogous formulae for component B. It is important to note that the acceptance probability for particle

exchanges in system i strongly depends on �i.
3. Exchange of the configuration with system i + 1 (except for i = K):xi (n) = xi+1 (o) xi+1 (n) = xi (o) : (6)

To obey detailed balance, this trial move is accepted with a probability18,19

acc (o! n) = min

�1; wi (xi+1)wi+1 (xi)wi (xi)wi+1 (xi+1)� ; (7)

where wi (xj) = exp [-� (Ui (xj) - �t (i)N (xj) - �� (i)M (xj))℄ : (8)

In this notation, i is referring to the Hamiltonian while j is referring to a set of particle positions. In a typical

simulation, we try to choose the difference in softness between adjacent systems in such a way that the fraction

of accepted configuration exchanges is around 0:1. In the Appendix, we will show a more systematic approach

to choose the soft-core parameters �i.
At this point, it becomes quite evident why, in principle, tempering with respect to temperature is particularly
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computationally efficient: In this case, �Ui and �Ui+1 differ only by a global scaling factor, such that the amount

of CPU time required to evaluate the energy change when a system switches Hamiltonians is negligible. This is

even more so as the translational degrees of freedom (step 1) require one to calculate energy changes all the time

anyways, such that the additional effort of keeping track of the overall energy is also quite small. In contrast, if the

Hamiltonian’s structure changes between i and i + 1, then the situation is somewhat different: While for a certain

system xi we do keep track not only of the real energy Ui, but also of the energies Ui+1 and Ui-1, which it would

have after a successful switch, we have no information on Ui+2 or Ui-2. One of these latter energies is then needed

after a successful switch, and therefore a rejected move is computationally cheaper than an accepted one. For these

reasons, a high acceptance rate is not necessarily desirable.

Imposing strict detailed balance does not require equality of the probabilities to select a certain system, or type

of trial move. However, the probabilities have to be kept fixed during the course of the simulation2. In practice,

one would like to perform trial moves for systems with strong excluded volume effects more often than for systems

without such excluded volume interactions21. In our simulations, we typically select the full excluded volume system

three times more often than the softest system. In addition, exchanges with the particle reservoir are very unlikely to

be accepted for the full excluded volume system, while they are easily accepted in the ideal gas system. Therefore,

we only apply particle insertions and deletions to systems that give a reasonable fraction of accepted trial moves.

Because of the exchanges of configurations between systems we are still able to have an efficient sampling of the

total number of particles and the magnetization of the full excluded volume systems. However, when the number

of systems is large the efficiency of sampling fluctuations in composition and total number of particles becomes less

efficient.

The reason to perform simulations in the grand-canonical ensemble instead of the canonical ensemble is that we

do not have to compute the chemical potentials of each component but rather impose the chemical potentials. This

is advantageous because computing the chemical potential of dense systems can be complicated2. The price we have

to pay for imposing the chemical potential is that we have to compute the first and second moment of both the total

number of particles and the magnetization, see Sec. II B.

When a parallel computer is used to do parallel tempering, the naive approach would be to use a homogeneous

system decomposition among the processors, which means that every processor is simulating a single system. How-

ever, this approach will not be particularly efficient, since there will either be severe synchronization problems (all

processors waiting idly until the slowest procedure is finished), or lots of CPU effort wasted due to over-equilibration
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of the soft systems (note that these have much smaller correlation times). This effect will be even more pronounced

for simulations in the grand-canonical ensemble, for which the acceptance probability for exchanges with the reser-

voir is essentially zero for most of the systems (except for the system without excluded volume interactions). A better

approach would be to simulate more than one system on each processor, in such a way that the number of systems

per processor is large for soft systems and small for hard systems. All in all, we feel that our current algorithm,

with its quite different treatment of different systems, and, in particular, with its recursive build-up of the tempering

path (see Subsec. II B) poses highly non-trivial problems for parallelization, which we consider as far from solved.

Therefore, in our current studies, we have only used a single-processor implementation of fairly small systems.

B. Constructing a Path of Systems

When we are simulating a path of K systems, we start for convenience with an ideal gas (� = 1). Therefore, we

know immediately how to choose the chemical potentials of components A and B to have a certain average number

of particles (N(0)A ; N(0)B ): N(0)� = V�3� exp [���℄ : (9)

After a certain number of trial moves, we would like to extend the path by one system (i + 1). This system has

slightly harder interactions than the previous system. For this system (i + 1), we impose the chemical potentials in

such a way that the ensemble averages of the total number of particles as well as the magnetization is the same as

for the previous system (i). In this way, the acceptance probability for configuration exchanges will be reasonably

high because there is a large overlap in the number of particles of both components. An estimate for �t (i+ 1) and�� (i+ 1) can be obtained by using a Taylor expansion for system i:�M = Mi+1 -Mi � (�� (i+ 1) - �� (i))�� hMi��� �i + (10)(�t (i+ 1) - �t (i))�� hMi��t �i +(� (i+ 1) - � (i))�� hMi�� �i= ����� hMi��� �i + ��t �� hMi��t �i + ���� hMi�� �i ;



9�N = Ni+1 -Ni � (�� (i+ 1) - �� (i))�� hNi��� �i + (11)(�t (i+ 1) - �t (i))�� hNi��t �i +(� (i+ 1) - � (i))�� hNi�� �i= ����� hNi��� �i + ��t �� hNi��t �i + ���� hNi�� �i :
We have used the brackets h� � � i to denote an average in the grand-canonical ensemble. The thermodynamic

derivatives are estimated from the fluctuation relations� hMi��� = � h
M2� - hMi2i ; (12)� hMi��t = � [hMNi- hMi hNi℄ ;� hMi�� = -� ��M�U��� - hMi��U�� �� ;� hNi��� = � [hMNi- hMi hNi℄ ; (13)� hNi��t = � h
N2�- hNi2i ;� hNi�� = -� ��N�U��� - hNi��U���� :
By computing the fluctuations (equations 12 and 13) for system i, and imposing �M = �N = 0, one is able to solve

for �t (i + 1) and �� (i + 1) from Eqs. 10 and 11 for a given value of � (i+ 1). The value of � (i+ 1) should be chosen

large enough to reduce the total number of systems (K) but small enough to ensure that configuration exchanges

between the systems i and i+ 1 are possible.

After using these equations to generate a first estimate for �t(i + 1), ��(i + 1), one simulates at these values, to

(usually) find that hNi and hMi are not yet equal to the desired values N(0) and M(0). However, one can then use

the same set of equations again (this time with �� = 0, and prescribed values of �M, �N) to iteratively refine the

estimates for �t and �� until satisfactory agreement has been attained. As only first derivatives are used, several

iterations are needed.

An important requirement of our method is that the magnitude of the fluctuations in the total number of particles

(N) and magnetization (M) of the different systems have enough overlap. As for the sampling of the full excluded
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volume system we rely on particle fluctuations in softer systems, the magnitude of these fluctuations in the full

excluded volume system should be equal or smaller than those in the softer systems. However, close to the binodal

these fluctuations usually increase. When the fluctuations at the binodal are too large, we have to increase the

magnitude of the fluctuations at the softer Hamiltonians. A possibility to control the fluctuations in the number of

particles is the use of a weight function W (N;M) and performing the individual simulations in the ensemble with

partition function �i:�i = 1XNA=0 1XNB=0 exp [W (N;M) + � (�A (i)NA + �B (i)NB)℄VNA+NB�3NAA �3NBB NA!NB! �Z dsNA Z dsNB exp
�-�Ui �sNA ; sNB�� : (14)

Ideally, in this ensemble the distributions of M and N should be flat. This requires thatW (N;M) = - lnp (N;M) ; (15)

where p (N;M) is the probability to have a total ofN molecules and magnetizationM in the original grand-canonical

ensemble. The average of a quantity A in the grand-canonical ensemble is recovered byhAi = hA exp [-W (N;M)℄i�hexp [-W (N;M)℄i� : (16)

C. Locating the Phase Equilibrium

1. Phase Equilibrium of a Single Component

The conditions of equilibrium for two phases containing only one type of particles are that the chemical potential

and pressure of the two phases are equal. Imposing equal pressures implies that the grand free energy
 is equal for

both phases27: 
i = -piV = - lnQi� ; (17)
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provided that the volume of the systems is identical. By differentiating Eq. 2 it is straightforward to show that��
�� �T;V;� = - hNi (18)

and ��
�� �T;V;� = ��U�� � ; (19)

where U is the total energy of the system and N is the number of particles.

The grand free energy of an ideal gas can be derived by integrating Eq. 18 from � = -1 to � = ��, i.e. the chemical

potential of the ideal gas at a given density according to Eq. 9. Along that path Eq. 9 of course holds too, such that

the ideal gas law results: 
 (��)ideal gas = -N (��)� : (20)

Starting from that state, we want to know 
 along the path defined in the previous subsection. Thermodynamic

integration, which we perform numerically, yields
 = 
ideal gas + Z ��
�� d� + �
�� d�� ; (21)

where the integrand is estimated according to Eqs. 18 and 19.

We now wish to find, at fixed �, the chemical potential which corresponds to phase equilibrium. Suppose we have

data at two (usually, but not necessarily different) chemical potentials �I and �II, where the system simulated at �I
is in phase I and the data of �II correspond to phase II. Equating the grand free energies of the two phases up to

second order in � yields 
I +��
�� �I (� - �I) +��2
��2 �I (� - �I)22 =
II +��
�� �II (�- �II) +��2
��2 �II (� - �II)22 : (22)

This is a quadratic equation which can be solved for � easily, since not only the first derivative of 
 is known (Eq.
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18), but also the second derivative according to-�2
��2 = � hNi�� = � h
N2� - hNi2i : (23)

This solution gives a first guess for the coexistence value �
. A more precise estimate is found by performing

thermodynamic integrations along paths of constant �, starting from �I and �II, respectively, into the direction of

the solution of Eq. 22. The procedure can be stopped as soon as the solution of the quadratic equation stabilizes. We

have also tried to even include the third derivative of 
, which involves third-moment fluctuations, and to solve the

corresponding cubic equation numerically. However, no significant improvement over the second-order approach

was found.

2. General Binary Mixture

For the gas-liquid transition, the condition 
I = 
II uniquely defines a first-order transition line in the two-

dimensional parameter space (�; �). For a binary mixture, however, the parameter space (�; �t; ��) is three-

dimensional, such that the condition 
I = 
II singles out a two-dimensional first-order sheet. Usually, however,

one is interested in a two-dimensional phase diagram, i.e. a one-dimensional cut through the two-dimensional sheet,

which depends on the (experimental) conditions and results in a standard first-order line.

The most common experimental condition is that of fixed external pressure p. In the present context, this simply

means that we study the phase diagram at a certain fixed value of 
, which we call 
(0). Instead of Eq. 22, we now

have the following two equations (here however only up to linear order) to determine �t and �� at coexistence:
I +� �
��t�I (�t - �t;I) +� �
����I (�� - ��I) = 
(0);
II +� �
��t�II (�t - �t;II) +� �
����II (�� - ��II) = 
(0) (24)

with � �
��t� = - hNi ;� �
���� = - hMi : (25)
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Of course, this requires to determine 
I and 
II beforehand, which is done via thermodynamic integration, i.e. the

generalization of Eq. 21 based upon the relations Eqs. 19 and 25. After having found the chemical potentials at

coexistence via iterative refinement, one can then determine the properties in both phases. In the most general case,

the phases will not only differ in composition, but also in density.

Another possible condition is the situation of having NA A particles and NB B particles in a fixed container of

volume V. In this case, the two phases will split up into two sub-volumes VI and VII with VI+VII = V. Introducingn = N=V, m = M=V, � = VI=V, nI = NI=V, mI = MI=V, and the analogous quantities for phase II, we have the

conservation laws nI�+ nII(1 -�) = n;mI�+mII(1 -�) = m: (26)

Each of these equations can be solved for �; equating the resulting expressions one findsn - nIInI - nII = m-mIImI -mII : (27)

Viewing nI, nII, mI, and mII as a function of �, �t, and ��, this is the second equation besides 
I = 
II which

determines the phase equilibrium. We shall not elaborate on this further, since we have only done simulations for

the case of a symmetric mixture, which is substantially simpler. It should however be noted that the generalization to

systems with more than two components is straightforward.

3. Symmetric Binary Mixture

For a symmetric mixture, the phase coexistence 
I = 
II occurs at �� = 0. Again, a fixed pressure means a

prescribed value of 
, while in the constant volume ensemble we have nI = nII = n, such that the conservation law

for n is satisfied for arbitrary �. Conversely, mII = -mI and hence� = 12 �1 + mmI� : (28)
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Thus, in the symmetric case the conditions for phase coexistence are �� = 0, and either a prescribed value of 

(constant pressure), or a prescribed value of N (constant volume).

In our test we have calculated the phase diagram of a symmetric mixture in the constant-volume ensemble. Since

we keep N constant along our paths, the phase transition is found by plotting, for a given path, �� as a function of �
and locating the point for which �� = 0. However, the particle number N is only approximately constant along the

path. One therefore again needs an iterative refinement. Starting from an old state (o), we find the refined chemical

potential �t(n) of the the new state by requiringN (n) � N (o) + (�� (n) - �� (o))� �N����o + (29)(�t (n) - �t (o))� �N��t�o= N(0)
with �� (n) = 0, where the thermodynamic derivatives are given by Eq. 13. Again, several iterations are necessary

until N has converged. After this, one directly measures M in one of the phases, while, for symmetry reasons, the

magnetization in the coexisting phase must be -M.

III. MODEL

Quite typically, molecular models are characterized by an interatomic potential �(r) which has both a strongly

repulsive core and an attractive tail, the archetype being the well-known Lennard-Jones potential. There may be

further potentials involved, e.g. to model connectivity, bond bending, torsion, long-range electrostatics, etc., but the

basic excluded volume effect is usually taken into account via �(r). Sometimes the attractive part is omitted, if the

physics under consideration is not related to attractive interactions. Regardless of these details, however, we may

assume, for the phase transitions we are interested in, that the transition is directly related to the properties of �(r).
In the case of the gas-liquid transition of a single component, it is necessary that the potential includes an attractive

tail; the gas-liquid coexistence then occurs up to the critical temperature T
, which is, by order of magnitude, given

by kBT
 = �, which is just the depth of the attractive well. For unmixing of two species, attractive interactions are

not strictly necessary. Here it is rather the exchange potential Uex = UAA +UBB - 2UAB which matters. Unmixing

is expected to occur if Uex is negative at typical interparticle distances; this value of Uex will then, by order of

magnitude, determine the critical temperature.
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Usually one is interested in the phase diagram in the plane temperature vs. density (or temperature vs. chemi-

cal potential) for the gas-liquid transition, and temperature vs. composition (or temperature vs. chemical potential

difference) for the unmixing transition. Thus, parallel tempering with respect to temperature has not only the com-

putational advantages outlined above, but also the additional virtue of yielding thermodynamic information one is

directly interested in. However, a naive application of temperature tempering would lose the advantage of turning

off the excluded volume interaction, since the latter is usually modeled via a singularity in �(r), of which one cannot

get rid by simple rescaling. On the other hand, there is no compelling reason to stick to a singularity in �(r). One

can rather cut the potential off at some finite value �max, which is chosen substantially larger than all temperatures

(in units of kBT) where the interesting physics takes place. In that latter temperature regime, which can be estimated

beforehand (see above), the behavior of the system will only be minimally altered by this modification. By extending

the temperature paths from physically interesting temperatures up to values kBT� �max, it is possible to reach the

ideal gas limit, which is essential for our approach to work.

The cutoff at �max should be rather sharp, for the following reasons: On the one hand, �(r) should be kept as

the original potential up to � = �max, in order to leave the physics at low temperatures unchanged. On the other

hand, potential values substantially larger than �max should be avoided, in order to reach the ideal gas limit as

quickly as possible. Such a sharp cutoff involves a rather large (perhaps infinite) curvature of �, which would cause

problems for Molecular Dynamics (MD) or Stochastic Dynamics (SD) algorithms. It is therefore advisable to not try

to equilibrate the translational degrees of freedom by MD or SD, but rather by MC, which is unaffected by such

problems.

In spite of all these considerations, which seem rather compelling to us if phase diagram calculations of real

systems are desired, we have not taken the outlined route in our first simulations. Rather, we simply wanted to

perform a feasibility study of the approach as such, and for this purpose to make contact with previous simulations

which had been performed in our group. Bunker and Dünweg22 studied the effect of excluded volume tempering

on the equilibration of bead-spring polymer melts, using a modified WCA interaction28 of the form

U (r) = 8>>>>><>>>>>: A- Br2 r � rt1+ 4 h�1r �12 - �1r �6i rt � r � r
0 r
 � r (30)

where the unit system is given by setting both the Lennard-Jones length � and the Lennard-Jones energy � to unity.
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The cutoff is chosen as r
 = 21=6, such that the potential is purely repulsive, while rt (the “transfer” value) is varied to

turn the interaction off. Introducing � = rt=r
, one sees that full repulsion occurs for � = 0, while � = 1 corresponds

to the ideal gas. The parameters A and B are chosen such that both U and its first derivative are continuous.

Soddemann29 studied binary A-B mixtures (both simple mixtures and amphiphilic systems) using a purely repul-

sive WCA interaction (i.e. Eq. 30 for � = 0) for unlike species, while A-A and B-B contacts are also subject to an

attractive tail: U (r) = 8>>>>><>>>>>: -�+ 1 + 4 h�1r �12 - �1r �6i r � r
12� �
cos

��r2 + 
�- 1� r
 � r � rm0 rm � r (31)

where r
 is defined as before, rm = 1:5, and the parameters � and 
 are chosen such that the potential and its first

derivative are continuous at r
 and rm, i.e. �r2
+
 = �, �r2m+
 = 2�. In Ref.29 the depth of the potential well, �, was

varied in order to drive the unmixing transition. To simulate an asymmetric binary system using such a potential,

one could use different values of � for the AA and BB interactions.

Combining these two potentials, we use for studying a binary liquid the potential Eq. 30 for unlike species, while

for A-A and B-B contacts we use a modified form of Eq. 31

U (r) = 8>>>>>>>>><>>>>>>>>>:
A- Br2 r � rt-� (1 - �)+ 1 + 4 h�1r �12 - �1r �6i rt � r � r
12� (1 - �)�cos

��r2 + 
�- 1� r
 � r � rm0 rm � r (32)

Here the symbols have the same meaning as above. We have studied this system at temperature kBT = 1 and density� = 0:85 for the single value � = 1. According to Ref.29, this is deeply in the unmixed state. Since this system is

also an ideal gas for � = 1, i.e., in particular, in the mixed state, we can study the unmixing transition just driven by

varying �. The results of this calculation will be presented in Sec. IV.
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For the gas-liquid transition of a single component, we rather use a modified standard Lennard-Jones potential:

U (r) = 8>>>>><>>>>>: A- Br2 r � rt4 [1 - �℄h�1r �12 - �1r �6i rt � r � rcut0 r > rcut

(33)

with the usual meaning of symbols and rcut = 2:5. We study the gas-liquid transition at kBT = 2=3 as a function of�, while the density is varied.

In Fig. 1 (left), we have plotted the potential Eq. 32 for various values of �. In the same figure (right), we have

plotted the radial distribution function g(r) of the single component system in the NVT ensemble at � = 0:85, also

for various values of �. This figure clearly shows the transition from an ideal gas to a liquid. For � = 0, the particles

cannot pass each other, while for larger values they can. Interestingly enough, there is a maximum of g (r) at r = 0 for

intermediate values of �. We believe that the origin of this behavior are local clusters of particles. A particle which

sits on top of the central particle of the cluster is preferentially located right at the center. Although this maximizes

the interaction energy with the central particle, this configuration is particularly stable with respect to the attractive

interactions with the surrounding neighbor shell. Apparently the latter dominates in a certain region of � values.

IV. RESULTS AND DISCUSSION

In all our simulations, we have used around 106 simulation cycles. In a cycle, the number of trial moves equals

the number of particles times the number of Hamiltonians. This makes the conventional GE simulations more than

an order of magnitude faster. In our GE simulations of mixtures, we have used identity changes to speed up our

computations. It is important to note that in GE simulations of symmetric mixtures it is not necessary to perform

volume changes or particle exchanges between the boxes2.

A. Symmetric Binary Mixture

In Fig. 2, we have plotted the phase diagram for a symmetric binary mixture calculated by our parallel tempering

method, as well as the result from GE simulations of various system sizes, in the (�; �) plane. The reasons to choose

this plane have been discussed in Sec. III. Here, � is the density of one species (number of A particles per unit

volume), while the total density is �t = 0:85 and the temperature kBT = 1.
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In our parallel tempering simulations, we have used 25 different Hamiltonians and an average of hNi = 100
particles. For a system with hNi = 300 and 35 Hamiltonians we found exactly the same coexistence densities; the

error in the coexistence density is smaller than the symbol size. Clearly, the parallel tempering method gives the

same results as the GE method. However, for this system the conventional Gibbs ensemble technique is two orders

of magnitude faster that our parallel tempering technique.

In Fig. 3, we have plotted the chemical potentials as well as the quantity h�U=��i as a function of � for the com-

putation of the phase equilibrium at � = 0:55. Apparently, starting from the ideal gas case, we have to increase the

chemical potential to overcome the repulsion until at � � 0:9 the attractive part of the potential becomes dominant

and therefore the total chemical potential decreases with decreasing �. Note that the chemical potential difference,��, is almost a linear function of �. This can provide us with an initial estimate of the phase coexistence.

In Fig. 4, we have plotted the standard deviation of the number of particles of both components as a function

of the Hamiltonian index. When the system approaches the binodal curve, the fluctuations increase slightly; for

the systems studied here we still have enough overlap between the distributions to have an adequate sampling.

Therefore, in this case we do not need a weight function to enhance fluctuations in the number of particles (Eq. 14).

An important quantity is the distribution of the magnetizationM at phase coexistence. This distribution should be

identical to the distribution ofM obtained in the semi-grand ensemble2. However, the (correct) two-peak structure of

the distribution is only reproduced in the second case. The reason is that the semi-grand ensemble is able to “flip” the

overall system from theA-rich to the B-rich phase, and the two-peak distribution is the result of averaging over a long

run in which many of these events have occurred. Conversely, our method samples composition fluctuations only

by insertions and deletions in the soft limit, where the system is (uniquely) A-rich. Therefore, B-rich configurations

are extremely strongly suppressed, with a statistical weight exp(-const: � V), where V is the system volume. They

actually have never been observed during our runs. Effectively, our simulation therefore only samples the A-rich

peak of the distribution, see Fig. 5. From the point of view of Markov chains, our method thus suffers, strictly

spoken, from ergodicity problems. However, we are only interested in the behavior in the thermodynamic limit,

where exactly the same type of non-ergodicity occurs. We hence do not view this feature of the algorithm as a

drawback, but rather as an advantage.
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B. Single Component System

In Fig. 6 we have plotted the phase diagram for a Lennard-Jones system at � = 1:5. Again, we find the same

results for the coexistence density as for the Gibbs ensemble simulations, except for some small finite size effect near

the critical point. The method is thus demonstrated to work for a gas-liquid transition, too. Again, for our simple

system the standard GE approach is much more efficient.

V. CONCLUSION

In summary, we have presented a new Monte Carlo technique to compute phase equilibria that does not rely on

insertions and deletions of molecules in systems with strong excluded volume interactions. Therefore, our method

does not depend on the complexity of the individual molecules. One should expect that this approach, or related

variants, might be useful for systems where insertions are particularly difficult, e.g. for mixtures whose constituents

are complex macromolecules. In particular, we expect the method might outperform conventional approaches if the

molecular architecture is non-linear, and even piece-by-piece insertions run into problems.
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Appendix: How to Choose the Soft-Core Parameters �i
As is explained in the main text of this article, in parallel tempering simulations it is important to choose the

Hamiltonians of the individual systems (denoted by the soft-core parameters �i) in such a way that two neighboring

systems have enough overlap. This can be done by choosing a large number of Hamiltonians (K). However, this is

undesirable because the time that it takes for a single system to diffuse along a path of Hamiltonians is proportional

toK2. Therefore, one has to make a compromise. It is important to note that the number of systems is also constrained

by our thermodynamic integration (Eq. 21). Once the number of systems has been chosen, we still have to choose

the individual values of �i in such a way that the acceptance rate for exchange moves between two neighboring

systems is as uniform as possible. When, for example, the acceptance probability between one pair of systems is
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extremely low, then this “bottleneck” is going to influence the overall time that it takes for one system to diffuse

from the full excluded volume Hamiltonian to the ideal gas Hamiltonian. The exact same problem is present when

the temperature is used as a tempering variable.

A naive way to choose �i would be to do a series of simulations in which the acceptance rate is computed; by

comparing a series of simulations we can get a feeling which distribution of � is optimal. However, when the

number of systems is large this approach will require many simulations. Moreover, by changing a single value of �i
the acceptance probabilities of adjacent exchanges will also be influenced. Therefore, such an approach will hardly

ever work in practice.

A more systematic, albeit still somewhat heuristic, approach to choose �i would be the following. Suppose that

we have K Hamiltonians with soft-core parameters �i in such a way that the endpoints are fixed, for example, �1 = 1
and �K = 0. We define a function A (�) in the following way:p (i; i+ 1) = max

�0; 1 -A��i+1+ �i2 � j�i+1- �ij� ; (34)

in which p (i; i+ 1) is the acceptance probability of exchanges between system i and i+1. Essentially, the acceptance

probability increases when �i and �i+1 are closer; the function A (�) is describing the sensitivity of the acceptance

ratio to the distance between systems i + 1 and i. In our previous study we found that this sensitivity can be quite

big22. By performing a short simulation for a given set of �, one is able to compute A (�). We then start a Monte Carlo

simulation in which we randomly select a system i and try to change �i. Instead of performing a simulation with the

physical system, the new acceptance probabilities are computed using Eq. 34 and using a linear interpolation scheme

to compute A (�). The figure of merit is chosen in such a way that the acceptance rate is as uniform as possible, i.e.H = Dp (i; i+ 1)2E - hp (i; i + 1)i2. Furthermore, we apply the restriction that the soft-core parameters cannot pass

each other.

To demonstrate this procedure, in Fig. 7 (left) we have plotted the soft-core parameter �i as a function of the

Hamiltonian index i for a typical system in which the acceptance rate is and is not constant. In the right figure, the

corresponding acceptance probability of exchanges between systems i and i + 1 are plotted. Clearly, the fraction of

accepted exchange trial moves is very sensitive to �i, which requires a self-consistent method to choose the soft-core

parameters.
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Figure captions� Figure 1. Left: Potential energy function for various values of the interaction strength � (Eq. 32). Right: Radial

distribution function for a single component system at � = 0:85 simulated in the NVT ensemble.� Figure 2. Phase diagram of a symmetric binary mixture at a total density of �t = 0:85 for various system sizes

(N). � = 1. As the mixture is symmetric, the concentration of the other component equals �b = �t - �A. The

lines show the results from GE simulations, while the symbols represent the results from our parallel tempering

algorithm.� Figure 3. Left: �� and �t as a function of the interaction strength for the computation of the phase equilibrium

at � = 0:55 and � = 1 for a symmetric binary mixture. Right: hdU=d�i for the same system.� Figure 4. Standard deviation of the total number of particles of both components as a function of the Hamil-

tonian index i; i = 1 represents the ideal gas (�1 = 1), i = 20 represents the point of the binodal for which

the phase equilibrium is computed (here, �20 = 0:65). hNi = 106:25, hMi � 90. The standard deviation � of

component j is defined as �2 = 
N2j � - hNji2 in which Nj is the total number of particles of component j.� Figure 5. Distribution of the magnetization at � = 0:55 and � = 1 for a symmetric binary mixture at phase

equilibrium (�� = 0); hNi = 106:25. This distribution is identical to the distribution obtained from a single

semi-grand ensemble simulation with N = 106 and �� = 0 (left figure), except for the region between the two

stable states (right figure), and for the fact that we observe only one peak of the distribution, as explained in

the text.� Figure 6. Phase diagram of the Lennard-Jones fluid (Eq. 33); densities as a function of the interaction strength� at � = 1:5. Comparison of our method with standard Gibbs ensemble simulations. Only close to the critical

point, there is a small finite size effect.� Figure 7. Left: Soft-core parameter �i for the optimized (squares) and unoptimized (circles) systems as a func-

tion of the Hamiltonian index (i). Right: The average acceptance probability for exchanges between system i
and i+ 1.
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Figure 1 (Left)
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Figure 1 (Right)

0.0 1.0 2.0 3.0 4.0 5.0
r

0.0

1.0

2.0

3.0

g(
r)

Γ=0
Γ=0.94
Γ=1



25

Figure 2
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Figure 3 (Left)
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Figure 3 (Right)
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Figure 4
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Figure 5 (Left)
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Figure 5 (Right)
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Figure 6
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Figure 7 (Left)
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Figure 7 (Right)
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