
A new model for simulating olloidal dynamisVladimir Lobaskiny and Burkhard D�unwegMax Plank Institute for Polymer Researh, Akermannweg 10, D-55128 Mainz,GermanyAbstrat. We present a new hybrid lattie-Boltzmann and Langevin moleulardynamis sheme for simulating the dynamis of suspensions of spherial olloidalpartiles. The solvent is modeled on the level of the lattie-Boltzmann method whilethe moleular dynamis is done for the solute. The oupling between the two isimplemented through a fritional fore ating both on the solvent and on the solute,whih depends on the relative veloity. A spherial olloidal partile is representedby interation sites at its surfae. We demonstrate that this sheme quantitativelyreprodues the translational and rotational di�usion of a neutral spherial partile ina liquid and show preliminary results for a harged spherial partile. We argue thatthis method is espeially advantageous in the ase of harged olloids.Submitted to: New J. Phys.

y To whom orrespondene should be addressed (lobaskin�mpip-mainz.mpg.de)



A new model for simulating olloidal dynamis 21. IntrodutionUnderstanding the dynamis of olloidal dispersions has been a long-standing problemin ondensed matter physis. Despite the ontinuous need for aurate theoretialpreditions onerning partile mobilities or sedimentation rates, the development of the�eld meets a nearly unpassable barrier. The many-body harater of the hydrodynamiinterations (HI) between the olloidal partiles (i. e. their orrelated motion as a resultof solvent-mediated fast momentum transport) poses a serious hallenge for analytitheory. On the other hand, the rapid growth of available omputer power in the lastdeades has made it more and more feasible to desend to a more basi desriptionof olloidal systems rather than trying to develop an adequate marosopi desription.Suh a step was made reently for the statis of harged olloids, where simulations of theprimitive eletrolyte model, taking the partile harater of the harges and utuationsin the harge distribution fully into aount, resolved some important strong orrelationissues and thus have resulted in a signi�ant re�nement of the existing theories ofsreening [1℄. In a similar fashion, many-body e�ets in the HI of suspensions of onlymoderate density are quite important. Although their analytial form is, in priniple,known in terms of a multipole expansion [2℄, it is numerially very umbersome to takethese higher-order many-body terms into aount in a Brownian or Stokesian dynamis[3℄ simulation, where only the positions of the olloidal partiles enter. For this reason,it is more onvenient and for large partile numbers also more eÆient, to take thesee�ets into aount by simulating the solvent degrees of freedom, and, in partiular,the momentum transport through the solvent expliitly. An additional bonus is thatretardation e�ets, if present, are automatially taken into aount.Standard Moleular Dynamis (MD), where just Newton's equations of motion areintegrated numerially, is of ourse able to simulate HI orretly. However, it is verytime-onsuming to simulate the motion of a huge number of partiles expliitly in suhdetail. The time step is governed by the loal osillations of the solvent partiles intheir temporary \ages", whih is muh faster than the motion of the olloidal partiles.This information is however not needed for orretly reproduing HI. One just needsan appropriate mehanism for momentum transfer on somewhat larger time sales(however still small ompared to the motion of the olloidal partiles). This an bedone in various ways: Dissipative Partile Dynamis (DPD) [4℄ is essentially MD, wherehowever the partiles are made very soft in order to inrease the time step, and where amomentum-onserving Langevin thermostat is added [5℄. Another possibility is multi-partile ollision dynamis (MPCD) [6℄, where the solvent is modeled as an ideal gas,and ollisions are modeled as simple stohasti updating rules whih onserve energy andmomentum. Grid-based methods an be either the diret solution of the Navier-Stokesequation by a �nite di�erene method, or the Lattie Boltzmann (LB) [7℄ approah,where essentially a linearized Boltzmann equation is solved in a fully disretized version(i. e. spae, time, and veloities are disretized).All these methods are quite similar in spirit, and hene one should expet that



A new model for simulating olloidal dynamis 3they will produe similar results, and have roughly similar omputational eÆienies.However, to the authors' knowledge, this has never been tested in any systemati way.An important question, however, is whether thermal noise is being taken into aount.A partile method like DPD or MPCD will always inlude thermal noise automatially.Conversely, a grid method, as being based on a disretized �eld theory, an be runboth in a noisy and a deterministi noise-free version. The latter ase is of pratialinterest, sine in many non-equilibrium situations, like, e. g., sedimentation, the noise isnot important for the results. On the other hand, there are also many situations wherenoise is inherently neessary: These inlude, apart from the obvious ase of thermally-driven Brownian motion, also the study of soft objets like polymers, membranes, orharge louds (in an approah where harges are modeled as expliit partiles), where thenoise is needed to sample the on�guration spae properly on the relevant time sales.Nevertheless, it is advisable to use a noise-free method whenever physially permitted,beause this is omputationally more eÆient: Apart from saving some operations, theneed for averaging over realizations of the noise is removed, and the only randomness,if any, involves sampling initial onditions. For these reasons, we prefer a grid-basedapproah to simulate HI, beause it o�ers more exibility in the treatment of noise.Another advantage is the simple data struture assoiated with the lattie. For ourmodel we have hosen the LB route; this algorithm is partiularly simple to implementand parallelize. Moreover, we were inspired by previous highly suessful simulations ofhard-sphere olloidal suspensions using the LB tehnique [8, 9, 10, 11, 12, 13, 14, 15, 16℄.The original approah by Ladd [8, 9, 10, 11, 12℄ models the olloidal partiles asextended hollow spheres, while stik boundary onditions at the surfae are implemented(roughly spoken) via boune-bak ollision rules. One should note that for movingspheres this involves some minor utuations in the uid mass, whih is inluded withina sphere: The moving shell inorporates some new uid at the front, while it releasesmass at the rear. The utuations are a natural e�et of the thermal density utuationsof the uid, and of the lattie disretization. Using this method, the translational andthe rotational dynamis of olloidal spheres were aurately desribed.This model has been reently extended to the ase of harged systems [17℄, wherethe olloidal partiles arry a harge, while the ounterions and salt ions are taken intoaount as LB populations, suh that the eletrostatis is essentially taken into aounton the level of the Poisson-Boltzmann equation. This method has two disadvantages:�rstly, the disrete nature of the ions and orrelations beyond the Poisson-Boltzmannlevel are not taken into aount; seondly, one annot avoid a leakage of harge into(and out of) the sphere (as in the ase of mass), suh that it is hard (if not impossible)to maintain a well-de�ned Debye layer of harges around it [18℄. For these reasons, itis advisable to take the ounterions expliitly into aount. The disadvantage, however,is that only rather small size ratios (size of olloidal partile vs. size of ion) are easilyaessible. Nevertheless, we believe it is useful to study suh a system, with respetto both its equilibrium and its nonequilibrium properties. The purpose of the presentpaper is to desribe �rst steps in the development and validation of the orresponding



A new model for simulating olloidal dynamis 4model.For the oupling of the small ions to the LB hydrodynamis, one would like tosimply model the former as point partiles. Fortunately, suh a oupling has beenreently developed by Ahlrihs and D�unweg [19, 20℄ with the purpose of studyingthe dynamis of polymer solutions [21℄. Eah Brownian point partile is assigneda phenomenologial frition oeÆient �, and the oupling is implemented just asa dissipative fore ~F = ��(~V � ~u) ating on the partile, where ~V is the partileveloity, while ~u is the solvent ow veloity at the partile's position, obtained vialinear interpolation from the surrounding lattie sites. Furthermore, the LB variablesat these sites are adjusted to ensure momentum balane, and thermal utuations areadded to both types of degrees of freedom. For more details on implementation andvalidation of this method, see Refs. [19, 20℄.It is then onvenient to use this oupling not only for the ions, but also for theolloidal partiles, whose larger size is taken into aount by modeling them as somearrangement of interation sites (this idea was previously implemented by Fogelson andPeskin [22℄, but in a slightly di�erent ontext). For reasons of eÆieny, we take onlypoints at the surfae of the olloid. Furthermore, the oupling onstant � is hosenrather large, whih approximates stik boundary onditions. It should be noted thatthe dissipative nature of the oupling does not model any squeezing-out of solvent,hene the sphere is �lled with the same amount of solvent regardless if it is hollow orif it were �lled with partiles. The solvent within the sphere follows the motion of thesurrounding shell (with some minor time lag, see below), and therefore one an viewthe solvent inside the sphere as just belonging to the olloidal partile. Adding furtherpartiles in the sphere's volume would have no e�et exept oupling the uid withinthe sphere even tighter to its motion. Within our desired level of auray, this turnedout not to be neessary. The long-time motion of the sphere is the same as that of aorresponding hard sphere, as we will show in the present paper.We analyze basi dynami properties of suh a model olloid, where we restritourselves to the ase of a single sphere. A detailed analysis is done for the neutralase, while some preliminary data for the ase of a harged sphere are presented.We show that the (neutral) model exhibits the essential dynamial features of aspherial olloidal partile in a liquid. In our view, our method is likely to providereasonably omparable eÆieny to Ladd's approah, while being quite straightforwardto implement. Furthermore, it provides substantial exibility with respet to theproperties of the olloidal surfae, namely, deformable, permeable, and non-stik surfaesan be easily simulated. On the other hand, we expet very similar problems in treatinghydrodynamis in the limit of dense suspensions where the distane between the olloidalsurfaes is omparable to the lattie resolution. We expet that lubriation orretions,whih have been able to substantially improve the quality of the simulations of Ladd etal. [11℄, will also be needed for the present model.It should also be noted that the two approahes disussed in this Setion (LBand boune bak, LB and dissipative point partiles) are not the only possibility of



A new model for simulating olloidal dynamis 5onstruting a hybrid algorithm (MD for the solute, oarse-grained desription for thesolvent). Another possibility is to model the solvent diretly as an ideal gas of partileswith non-trivial interations with the solute, and use MPCD to model the solute-soluteollisions. This approah has been used for olloidal dispersions by Malevanets andKapral [23℄ (however with olloidal partiles without rotational degrees of freedom),and by Malevanets and Yeomans [24℄ for polymers in solution. As mentioned already,not muh is known in omparing the eÆieny of these approahes. We believe MPCDto be quite ompetitive as long as utuations in thermal equilibrium are studied, whileit will have onsiderable disadvantages as soon as noise-free nonequilibrium situationsare onsidered.The remainder of this artile is organized as follows: In Se. 2, we desribe oursimulation model, while Se. 3 ontains the numerial results on translational androtational di�usion. Finally, Se. 4 onludes with a brief summary.2. ModelOur hybrid simulation method involves two subsystems: the solvent that is modeled viaLB with utuating stress tensor (i. e. we run a onstant-temperature version of theLB method) and a Langevin MD simulation for the partiles immersed in the solvent.The LB simulation is performed using the 18-veloity model [9℄, using the protooldesribed in [19, 20℄. The uid simulation onsists of ollision and propagation steps,the former being performed with inlusion of the momentum transfer from the solutepartiles (surfae beads, and, for harged systems, ions).The olloidal partile is represented by a two-dimensional tethered bead-springnetwork onsisting of 100 beads, whih is wrapped around a ball of a radius �s (fornotation, see below), so that the whole onstrution resembles a raspberry (see Fig. 1).The network onnetivity is maintained via �nitely extendable nonlinear elasti (FENE)springs, VFENE(r) = �kR202 ln 1� � rR0�2! ; (1)where k is the spring onstant, and R0 the maximum bond extension. Furthermore, thebeads repel eah other by a modi�ed Lennard-Jones (LJ) potentialVLJ(r) = ( 4�ij ���ijr �12 � ��ijr �6 + 14� r < 21=6�ij0 r � 21=6�ij: (2)An additional repulsive LJ bead is introdued at the enter of the sphere in order tomaintain its shape. In Eq. 2, i; j denote either a entral (\") or a surfae (\s") bead.The unit system is ompletely de�ned by the surfae bead parameters by setting �ss,�ss, and the surfae bead mass ms to unity. The interation between the entral beadand the surfae beads is desribed by �s = 3, whih is thus the sphere radius, and�s = 8. Furthermore, the FENE spring onstant for the surfae beads is k = 300 and



A new model for simulating olloidal dynamis 6

Figure 1. Raspberry-like model of a olloidal sphere. There is a entral large bead ofradius R = 3 and harge Z = 10. The small beads of radius 1 are onneted with theirnearest neighbors on the surfae via FENE bonds. A repulsive soft-ore potential isalso operating between all the monomers. The ounterions are moving freely in spaeand interat with the entral bead via the Coulomb potential and with the surfaebeads via the repulsive LJ potential. Moviethe maximum bond extension is R0 = 1:25. To simulate a harged olloidal partile,we plae the harge at the entral bead, and add an appropriate number of ounterions(LJ beads with \s" properties) outside the sphere. The eletrostati interation is takeninto aount via the Coulomb potentialVel(r) = �BkBT qiqjr (3)between the various harges, where the standard Ewald summation tehnique [25℄ isapplied. In Eq. 3, �B = e2= (4�"0"rkBT ) is the Bjerrum length, kB the Boltzmannonstant, qi the harge of speies i in units of the elementary harge e, and T thetemperature.The LB lattie onstant is hosen as one (in our LJ unit system), and the uid issimulated in a ubi box with periodi boundary onditions. The fore between the LBuid and the surfae beads (or ions) is given by~F = �� �~V � ~u� + ~f: (4)Here, � is the \bare" [20℄ frition oeÆient, ~V and ~u are the veloities of the bead andthe uid (at the position of the bead), respetively, while ~f is a Gaussian white noisefore with zero mean, whose strength is given via the standard utuation-dissipationtheorem [19, 20℄ to keep the surfae beads and ions at the same temperature as thesolvent. The entral bead is not oupled to the solvent (here � = ~f = 0); as disussedin the Introdution, the behavior of the model would hange only marginally if suh



A new model for simulating olloidal dynamis 7a oupling were inluded. In our simulation we used a frition onstant � = 20, atemperature kBT = 1, a uid mass density � = 0:85, and a kinemati visosity � = 3,resulting in a dynami visosity � = 2:55. At least 20000 MD steps were performedto equilibrate the initial random bead on�guration before the interation with the LBsolvent was turned on. Further details on the method an be found in [19, 20℄.3. ResultsWe test the simulation method against basi relations for an isolated sphere in solvent.First, we look at the enter of mass' veloity relaxation. The simplest experiment toperform is a \kik". The sphere is plaed in a LB uid at rest (i. e. without thermalnoise), and at time t = 0 all partiles of the sphere are assigned an idential veloity~V = 1 in x diretion. Fig. 2 monitors the time behavior of the sphere's enter ofmass veloity, normalized by the initial value. Aording to linear response theory,this relaxation funtion must be idential to the normalized enter-of-mass veloityautoorrelation funtion for Brownian motion in thermal equilibrium, if the initial kikis weak enough. This is indeed satis�ed, as a omparison of the two urves in Fig. 2shows. For the experiment in thermal equilibrium, we performed 10 runs with di�erentrandom number generator initializations, in order to redue the statistial unertainty.It is well-known that simulations of Brownian motion in a hydrodynami solventare always strongly a�eted by �nite size e�ets. The di�usion onstant, and thereforealso the relaxation funtion, depend on the linear system size L due to hydrodynamiinterations with the periodi images. The di�usion onstant exhibits a �nite-sizeorretion of order R=L [20, 26℄. Asymptoti behavior an therefore only be expetedfor R=L� 1, and this is why we performed the experiment in a rather large box of sizeL = 80. For the same reason, the equivalene between \kik" experiment and Brownianmotion will only hold if the omparison is done for the same box sizes.One learly sees that the initial deay of the relaxation funtion is haraterized bytwo relaxation proesses, one initial fast deay followed by a somewhat slower relaxation.Qualitatively, this may be explained as follows: A ompat sphere of radius R andmass M should exhibit a veloity relaxation whih, after transient ballisti motion,is initially haraterized by an exponential deay exp (�t=�), with a relaxation time� = M=�tot. Here, �tot is the total frition oeÆient, whih we estimate via Stokes'law for stik boundary onditions as �tot � 6��R � 144. However, the e�etive massis time-dependent: While initially only the mass of the beads M = 101 ontributes, atlater times the uid within the sphere is dragged as well, suh that then the mass isroughly estimated as M � 101+ 4��R3=3 � 214. This gives rise to the initial and �nalrelaxation times �in � 0:7 and �fin � 1:5. However, the initial relaxation time annot beobserved, sine in the extreme short-time regime ballisti e�ets play a role. Conversely,the deay with �fin is learly visible (see Fig. 2).After t � 1, the famous long-time tail [27, 28℄ (normalized relaxation funtionV (t)=V (0) = Bt�3=2) sets in. The physial mehanism of this slow relaxation is the
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A new model for simulating olloidal dynamis 11yielding Iin = 546. In the late-time regime the moment of inertia is expeted to bethe ompat-sphere value Ifin � (2=5)MR2 � 770, where the total mass M � 214has been used. This results in relaxation times �r;in = 0:34 and �r;fin = 0:44. Thesevalues are roughly onsistent with a �t to the data in the interval 0:1 < t < 1:0, whihyields a somewhat larger relaxation time �r = 0:68 (see Fig. 5). Given the generalinauray of the estimates, and the rossover of the Debye relaxation funtion both toshort-time ballisti behavior, and long-time hydrodynami behavior, this deviation isnot too surprising.Similar to the translational motion, the exponential deay is then followed by apower-law long-time tail. Theory predits !(t)=!(0) = (�I=�)(4��t)�5=2 [32℄. As wehave seen before, the long-time tail in the translational ase is governed by the short-timemass as a result of normalization. Similarly, the rotational tail must be ontrolled by theshort-time moment of inertia Iin, whih also governs the mean square utuations of theangular veloity via the equipartition theorem h!2i = 3kBT=Iin. For this reason, we andetermine Iin by �tting a t�5=2 law to the data, whih is muh more aurate than ourrough geometrial estimate. The �t results in Iin = 533, whih is reasonably onsistent.If we insert this value into the relaxation time expression, we obtain �r = 0:64, in quitegood agreement with the data. It hene seems that uid dragging e�ets are not yetvery important for the initial Debye relaxation.At longer times, one an again notie a signi�ant �nite-size e�et: the urvesobtained in the smaller simulation box depart from the asymptoti power-law line earlier,i. e. the long-time di�usion is hindered at the small system sizes. In fat, the power-lawregime is inaessible at L = 10 while for L = 100 it extends up to t = 200. This valueharaterizes the interval after whih the partile starts feeling its own periodi images.The rotational di�usion onstant DR is given by the Green-Kubo integral [33℄DR = 13 Z 10 dt h~!(t) � ~!(0)i : (5)We an evaluate this by again making use of linear response theory: The orrelationfuntion h~!(t) � ~!(0)i is idential to the relaxation funtion presented in Fig. 5,multiplied with the initial value h!2i, whih we know from the equipartition theorem(see above). Using this approah, we have alulated DR for di�erent box sizes L. In anin�nite uid,DR has the Stokes-Einstein-Debye valueDR = kBT=(8��R3) = 0:58�10�3,towards whih the results indeed onverge for L ! 1. Again a 1=L behavior (butweaker than for translational di�usion) is observed, as shown in Fig. 4. It should benoted that the auray of the data is slightly hampered by the fat that we had touse a somewhat arbitrary riterion for utting o� the integral funtion, whih does notarrive at a onstant value but rather ends up with a linear inrease originating from asmall nonzero onstant angular veloity in the long-time limit (as a manifestation of the�nite-size e�et).Finally, we have started to study the e�et of harge on the self-di�usion of theolloidal partile. We performed simulations of a sphere with entral harge ZC = 10in an LB box of size L = 40. Ten ounterions of harge �1 were also added. The
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