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A new model for simulating 
olloidal dynami
s 21. Introdu
tionUnderstanding the dynami
s of 
olloidal dispersions has been a long-standing problemin 
ondensed matter physi
s. Despite the 
ontinuous need for a

urate theoreti
alpredi
tions 
on
erning parti
le mobilities or sedimentation rates, the development of the�eld meets a nearly unpassable barrier. The many-body 
hara
ter of the hydrodynami
intera
tions (HI) between the 
olloidal parti
les (i. e. their 
orrelated motion as a resultof solvent-mediated fast momentum transport) poses a serious 
hallenge for analyti
theory. On the other hand, the rapid growth of available 
omputer power in the lastde
ades has made it more and more feasible to des
end to a more basi
 des
riptionof 
olloidal systems rather than trying to develop an adequate ma
ros
opi
 des
ription.Su
h a step was made re
ently for the stati
s of 
harged 
olloids, where simulations of theprimitive ele
trolyte model, taking the parti
le 
hara
ter of the 
harges and 
u
tuationsin the 
harge distribution fully into a
ount, resolved some important strong 
orrelationissues and thus have resulted in a signi�
ant re�nement of the existing theories ofs
reening [1℄. In a similar fashion, many-body e�e
ts in the HI of suspensions of onlymoderate density are quite important. Although their analyti
al form is, in prin
iple,known in terms of a multipole expansion [2℄, it is numeri
ally very 
umbersome to takethese higher-order many-body terms into a

ount in a Brownian or Stokesian dynami
s[3℄ simulation, where only the positions of the 
olloidal parti
les enter. For this reason,it is more 
onvenient and for large parti
le numbers also more eÆ
ient, to take thesee�e
ts into a

ount by simulating the solvent degrees of freedom, and, in parti
ular,the momentum transport through the solvent expli
itly. An additional bonus is thatretardation e�e
ts, if present, are automati
ally taken into a

ount.Standard Mole
ular Dynami
s (MD), where just Newton's equations of motion areintegrated numeri
ally, is of 
ourse able to simulate HI 
orre
tly. However, it is verytime-
onsuming to simulate the motion of a huge number of parti
les expli
itly in su
hdetail. The time step is governed by the lo
al os
illations of the solvent parti
les intheir temporary \
ages", whi
h is mu
h faster than the motion of the 
olloidal parti
les.This information is however not needed for 
orre
tly reprodu
ing HI. One just needsan appropriate me
hanism for momentum transfer on somewhat larger time s
ales(however still small 
ompared to the motion of the 
olloidal parti
les). This 
an bedone in various ways: Dissipative Parti
le Dynami
s (DPD) [4℄ is essentially MD, wherehowever the parti
les are made very soft in order to in
rease the time step, and where amomentum-
onserving Langevin thermostat is added [5℄. Another possibility is multi-parti
le 
ollision dynami
s (MPCD) [6℄, where the solvent is modeled as an ideal gas,and 
ollisions are modeled as simple sto
hasti
 updating rules whi
h 
onserve energy andmomentum. Grid-based methods 
an be either the dire
t solution of the Navier-Stokesequation by a �nite di�eren
e method, or the Latti
e Boltzmann (LB) [7℄ approa
h,where essentially a linearized Boltzmann equation is solved in a fully dis
retized version(i. e. spa
e, time, and velo
ities are dis
retized).All these methods are quite similar in spirit, and hen
e one should expe
t that
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s 3they will produ
e similar results, and have roughly similar 
omputational eÆ
ien
ies.However, to the authors' knowledge, this has never been tested in any systemati
 way.An important question, however, is whether thermal noise is being taken into a

ount.A parti
le method like DPD or MPCD will always in
lude thermal noise automati
ally.Conversely, a grid method, as being based on a dis
retized �eld theory, 
an be runboth in a noisy and a deterministi
 noise-free version. The latter 
ase is of pra
ti
alinterest, sin
e in many non-equilibrium situations, like, e. g., sedimentation, the noise isnot important for the results. On the other hand, there are also many situations wherenoise is inherently ne
essary: These in
lude, apart from the obvious 
ase of thermally-driven Brownian motion, also the study of soft obje
ts like polymers, membranes, or
harge 
louds (in an approa
h where 
harges are modeled as expli
it parti
les), where thenoise is needed to sample the 
on�guration spa
e properly on the relevant time s
ales.Nevertheless, it is advisable to use a noise-free method whenever physi
ally permitted,be
ause this is 
omputationally more eÆ
ient: Apart from saving some operations, theneed for averaging over realizations of the noise is removed, and the only randomness,if any, involves sampling initial 
onditions. For these reasons, we prefer a grid-basedapproa
h to simulate HI, be
ause it o�ers more 
exibility in the treatment of noise.Another advantage is the simple data stru
ture asso
iated with the latti
e. For ourmodel we have 
hosen the LB route; this algorithm is parti
ularly simple to implementand parallelize. Moreover, we were inspired by previous highly su

essful simulations ofhard-sphere 
olloidal suspensions using the LB te
hnique [8, 9, 10, 11, 12, 13, 14, 15, 16℄.The original approa
h by Ladd [8, 9, 10, 11, 12℄ models the 
olloidal parti
les asextended hollow spheres, while sti
k boundary 
onditions at the surfa
e are implemented(roughly spoken) via boun
e-ba
k 
ollision rules. One should note that for movingspheres this involves some minor 
u
tuations in the 
uid mass, whi
h is in
luded withina sphere: The moving shell in
orporates some new 
uid at the front, while it releasesmass at the rear. The 
u
tuations are a natural e�e
t of the thermal density 
u
tuationsof the 
uid, and of the latti
e dis
retization. Using this method, the translational andthe rotational dynami
s of 
olloidal spheres were a

urately des
ribed.This model has been re
ently extended to the 
ase of 
harged systems [17℄, wherethe 
olloidal parti
les 
arry a 
harge, while the 
ounterions and salt ions are taken intoa

ount as LB populations, su
h that the ele
trostati
s is essentially taken into a

ounton the level of the Poisson-Boltzmann equation. This method has two disadvantages:�rstly, the dis
rete nature of the ions and 
orrelations beyond the Poisson-Boltzmannlevel are not taken into a

ount; se
ondly, one 
annot avoid a leakage of 
harge into(and out of) the sphere (as in the 
ase of mass), su
h that it is hard (if not impossible)to maintain a well-de�ned Debye layer of 
harges around it [18℄. For these reasons, itis advisable to take the 
ounterions expli
itly into a

ount. The disadvantage, however,is that only rather small size ratios (size of 
olloidal parti
le vs. size of ion) are easilya

essible. Nevertheless, we believe it is useful to study su
h a system, with respe
tto both its equilibrium and its nonequilibrium properties. The purpose of the presentpaper is to des
ribe �rst steps in the development and validation of the 
orresponding
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s 4model.For the 
oupling of the small ions to the LB hydrodynami
s, one would like tosimply model the former as point parti
les. Fortunately, su
h a 
oupling has beenre
ently developed by Ahlri
hs and D�unweg [19, 20℄ with the purpose of studyingthe dynami
s of polymer solutions [21℄. Ea
h Brownian point parti
le is assigneda phenomenologi
al fri
tion 
oeÆ
ient �, and the 
oupling is implemented just asa dissipative for
e ~F = ��(~V � ~u) a
ting on the parti
le, where ~V is the parti
levelo
ity, while ~u is the solvent 
ow velo
ity at the parti
le's position, obtained vialinear interpolation from the surrounding latti
e sites. Furthermore, the LB variablesat these sites are adjusted to ensure momentum balan
e, and thermal 
u
tuations areadded to both types of degrees of freedom. For more details on implementation andvalidation of this method, see Refs. [19, 20℄.It is then 
onvenient to use this 
oupling not only for the ions, but also for the
olloidal parti
les, whose larger size is taken into a

ount by modeling them as somearrangement of intera
tion sites (this idea was previously implemented by Fogelson andPeskin [22℄, but in a slightly di�erent 
ontext). For reasons of eÆ
ien
y, we take onlypoints at the surfa
e of the 
olloid. Furthermore, the 
oupling 
onstant � is 
hosenrather large, whi
h approximates sti
k boundary 
onditions. It should be noted thatthe dissipative nature of the 
oupling does not model any squeezing-out of solvent,hen
e the sphere is �lled with the same amount of solvent regardless if it is hollow orif it were �lled with parti
les. The solvent within the sphere follows the motion of thesurrounding shell (with some minor time lag, see below), and therefore one 
an viewthe solvent inside the sphere as just belonging to the 
olloidal parti
le. Adding furtherparti
les in the sphere's volume would have no e�e
t ex
ept 
oupling the 
uid withinthe sphere even tighter to its motion. Within our desired level of a

ura
y, this turnedout not to be ne
essary. The long-time motion of the sphere is the same as that of a
orresponding hard sphere, as we will show in the present paper.We analyze basi
 dynami
 properties of su
h a model 
olloid, where we restri
tourselves to the 
ase of a single sphere. A detailed analysis is done for the neutral
ase, while some preliminary data for the 
ase of a 
harged sphere are presented.We show that the (neutral) model exhibits the essential dynami
al features of aspheri
al 
olloidal parti
le in a liquid. In our view, our method is likely to providereasonably 
omparable eÆ
ien
y to Ladd's approa
h, while being quite straightforwardto implement. Furthermore, it provides substantial 
exibility with respe
t to theproperties of the 
olloidal surfa
e, namely, deformable, permeable, and non-sti
k surfa
es
an be easily simulated. On the other hand, we expe
t very similar problems in treatinghydrodynami
s in the limit of dense suspensions where the distan
e between the 
olloidalsurfa
es is 
omparable to the latti
e resolution. We expe
t that lubri
ation 
orre
tions,whi
h have been able to substantially improve the quality of the simulations of Ladd etal. [11℄, will also be needed for the present model.It should also be noted that the two approa
hes dis
ussed in this Se
tion (LBand boun
e ba
k, LB and dissipative point parti
les) are not the only possibility of
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onstru
ting a hybrid algorithm (MD for the solute, 
oarse-grained des
ription for thesolvent). Another possibility is to model the solvent dire
tly as an ideal gas of parti
leswith non-trivial intera
tions with the solute, and use MPCD to model the solute-solute
ollisions. This approa
h has been used for 
olloidal dispersions by Malevanets andKapral [23℄ (however with 
olloidal parti
les without rotational degrees of freedom),and by Malevanets and Yeomans [24℄ for polymers in solution. As mentioned already,not mu
h is known in 
omparing the eÆ
ien
y of these approa
hes. We believe MPCDto be quite 
ompetitive as long as 
u
tuations in thermal equilibrium are studied, whileit will have 
onsiderable disadvantages as soon as noise-free nonequilibrium situationsare 
onsidered.The remainder of this arti
le is organized as follows: In Se
. 2, we des
ribe oursimulation model, while Se
. 3 
ontains the numeri
al results on translational androtational di�usion. Finally, Se
. 4 
on
ludes with a brief summary.2. ModelOur hybrid simulation method involves two subsystems: the solvent that is modeled viaLB with 
u
tuating stress tensor (i. e. we run a 
onstant-temperature version of theLB method) and a Langevin MD simulation for the parti
les immersed in the solvent.The LB simulation is performed using the 18-velo
ity model [9℄, using the proto
oldes
ribed in [19, 20℄. The 
uid simulation 
onsists of 
ollision and propagation steps,the former being performed with in
lusion of the momentum transfer from the soluteparti
les (surfa
e beads, and, for 
harged systems, ions).The 
olloidal parti
le is represented by a two-dimensional tethered bead-springnetwork 
onsisting of 100 beads, whi
h is wrapped around a ball of a radius �
s (fornotation, see below), so that the whole 
onstru
tion resembles a raspberry (see Fig. 1).The network 
onne
tivity is maintained via �nitely extendable nonlinear elasti
 (FENE)springs, VFENE(r) = �kR202 ln 1� � rR0�2! ; (1)where k is the spring 
onstant, and R0 the maximum bond extension. Furthermore, thebeads repel ea
h other by a modi�ed Lennard-Jones (LJ) potentialVLJ(r) = ( 4�ij ���ijr �12 � ��ijr �6 + 14� r < 21=6�ij0 r � 21=6�ij: (2)An additional repulsive LJ bead is introdu
ed at the 
enter of the sphere in order tomaintain its shape. In Eq. 2, i; j denote either a 
entral (\
") or a surfa
e (\s") bead.The unit system is 
ompletely de�ned by the surfa
e bead parameters by setting �ss,�ss, and the surfa
e bead mass ms to unity. The intera
tion between the 
entral beadand the surfa
e beads is des
ribed by �
s = 3, whi
h is thus the sphere radius, and�
s = 8. Furthermore, the FENE spring 
onstant for the surfa
e beads is k = 300 and
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Figure 1. Raspberry-like model of a 
olloidal sphere. There is a 
entral large bead ofradius R = 3 and 
harge Z = 10. The small beads of radius 1 are 
onne
ted with theirnearest neighbors on the surfa
e via FENE bonds. A repulsive soft-
ore potential isalso operating between all the monomers. The 
ounterions are moving freely in spa
eand intera
t with the 
entral bead via the Coulomb potential and with the surfa
ebeads via the repulsive LJ potential. Moviethe maximum bond extension is R0 = 1:25. To simulate a 
harged 
olloidal parti
le,we pla
e the 
harge at the 
entral bead, and add an appropriate number of 
ounterions(LJ beads with \s" properties) outside the sphere. The ele
trostati
 intera
tion is takeninto a

ount via the Coulomb potentialVel(r) = �BkBT qiqjr (3)between the various 
harges, where the standard Ewald summation te
hnique [25℄ isapplied. In Eq. 3, �B = e2= (4�"0"rkBT ) is the Bjerrum length, kB the Boltzmann
onstant, qi the 
harge of spe
ies i in units of the elementary 
harge e, and T thetemperature.The LB latti
e 
onstant is 
hosen as one (in our LJ unit system), and the 
uid issimulated in a 
ubi
 box with periodi
 boundary 
onditions. The for
e between the LB
uid and the surfa
e beads (or ions) is given by~F = �� �~V � ~u� + ~f: (4)Here, � is the \bare" [20℄ fri
tion 
oeÆ
ient, ~V and ~u are the velo
ities of the bead andthe 
uid (at the position of the bead), respe
tively, while ~f is a Gaussian white noisefor
e with zero mean, whose strength is given via the standard 
u
tuation-dissipationtheorem [19, 20℄ to keep the surfa
e beads and ions at the same temperature as thesolvent. The 
entral bead is not 
oupled to the solvent (here � = ~f = 0); as dis
ussedin the Introdu
tion, the behavior of the model would 
hange only marginally if su
h
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oupling were in
luded. In our simulation we used a fri
tion 
onstant � = 20, atemperature kBT = 1, a 
uid mass density � = 0:85, and a kinemati
 vis
osity � = 3,resulting in a dynami
 vis
osity � = 2:55. At least 20000 MD steps were performedto equilibrate the initial random bead 
on�guration before the intera
tion with the LBsolvent was turned on. Further details on the method 
an be found in [19, 20℄.3. ResultsWe test the simulation method against basi
 relations for an isolated sphere in solvent.First, we look at the 
enter of mass' velo
ity relaxation. The simplest experiment toperform is a \ki
k". The sphere is pla
ed in a LB 
uid at rest (i. e. without thermalnoise), and at time t = 0 all parti
les of the sphere are assigned an identi
al velo
ity~V = 1 in x dire
tion. Fig. 2 monitors the time behavior of the sphere's 
enter ofmass velo
ity, normalized by the initial value. A

ording to linear response theory,this relaxation fun
tion must be identi
al to the normalized 
enter-of-mass velo
ityauto
orrelation fun
tion for Brownian motion in thermal equilibrium, if the initial ki
kis weak enough. This is indeed satis�ed, as a 
omparison of the two 
urves in Fig. 2shows. For the experiment in thermal equilibrium, we performed 10 runs with di�erentrandom number generator initializations, in order to redu
e the statisti
al un
ertainty.It is well-known that simulations of Brownian motion in a hydrodynami
 solventare always strongly a�e
ted by �nite size e�e
ts. The di�usion 
onstant, and thereforealso the relaxation fun
tion, depend on the linear system size L due to hydrodynami
intera
tions with the periodi
 images. The di�usion 
onstant exhibits a �nite-size
orre
tion of order R=L [20, 26℄. Asymptoti
 behavior 
an therefore only be expe
tedfor R=L� 1, and this is why we performed the experiment in a rather large box of sizeL = 80. For the same reason, the equivalen
e between \ki
k" experiment and Brownianmotion will only hold if the 
omparison is done for the same box sizes.One 
learly sees that the initial de
ay of the relaxation fun
tion is 
hara
terized bytwo relaxation pro
esses, one initial fast de
ay followed by a somewhat slower relaxation.Qualitatively, this may be explained as follows: A 
ompa
t sphere of radius R andmass M should exhibit a velo
ity relaxation whi
h, after transient ballisti
 motion,is initially 
hara
terized by an exponential de
ay exp (�t=�), with a relaxation time� = M=�tot. Here, �tot is the total fri
tion 
oeÆ
ient, whi
h we estimate via Stokes'law for sti
k boundary 
onditions as �tot � 6��R � 144. However, the e�e
tive massis time-dependent: While initially only the mass of the beads M = 101 
ontributes, atlater times the 
uid within the sphere is dragged as well, su
h that then the mass isroughly estimated as M � 101+ 4��R3=3 � 214. This gives rise to the initial and �nalrelaxation times �in � 0:7 and �fin � 1:5. However, the initial relaxation time 
annot beobserved, sin
e in the extreme short-time regime ballisti
 e�e
ts play a role. Conversely,the de
ay with �fin is 
learly visible (see Fig. 2).After t � 1, the famous long-time tail [27, 28℄ (normalized relaxation fun
tionV (t)=V (0) = Bt�3=2) sets in. The physi
al me
hanism of this slow relaxation is the
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Figure 2. Normalized translational velo
ity of the 
enter of mass of the 
olloidalsphere in a "ki
k" experiment at kBT = 0, and its normalized velo
ity auto
orrelationfun
tion for Brownian motion at kBT = 1. The dotted 
urve shows the exponentialde
ay derived from the Stokes law and the dashed 
urve the expe
ted long-timeasymptoti
 behavior.
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oeÆ
ient DS and the rotational di�usion
oeÆ
ient DR of the 
olloidal sphere (normalized by the asymptoti
 Stokes-Einsteinand Stokes-Einstein-Debye values) as fun
tions of the inverse size of the primarysimulation 
ell. In the 
ase of DS , the straight line is the analyti
al predi
tion asgiven in the text, while for DR it is a �t to the data.fa
t that the momentum is 
onserved and hen
e transported away di�usively from theparti
le [28℄. For this reason, it 
an only be observed in a suÆ
iently large box. Theprefa
tor of the power law is known in the 
olloidal limit, B = (1=12)(Nm=�)(��)�3=2,where N is the number of beads, and m the bead mass [29, 30℄. It should be notedthat the prefa
tor of the power-law de
ay of the unnormalized velo
ity auto
orrelationfun
tion does not depend on the properties of the sphere at all, but only on thetemperature, and the hydrodynami
 properties of the solvent [29, 30℄. The massdependen
e of B results only from the normalization, i. e. the value of hV 2i a

ordingto the equipartition theorem, hV 2i = 3kBT=(Nm). From this 
onsideration it is 
learthat the short-time value of the sphere's mass (Nm) enters (at t = 0 the shell and theinner 
uid are not yet 
oupled). For our simulation parameters, we �nd B = 0:342. AsFig. 2 shows, the data exhibit the expe
ted behavior very ni
ely.Figure 3 illustrates the �nite size e�e
t in the di�usive properties by plottingthe mean square displa
ement of the 
olloidal sphere as a fun
tion of time, for twodi�erent box sizes L = 6:33R and L = 20R, for Brownian motion at kBT = 1. In thelong-time regime, the slope is given by 6DS, where DS is the self-di�usion 
oeÆ
ient.The �gure 
learly shows that DS in
reases with box size. The redu
ed di�usion inthe small simulation boxes 
an be explained in terms of hydrodynami
 intera
tionswith the periodi
 images, or, equivalently, in terms of suppression of long-wavelength
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ay of angular velo
ity of the 
olloidal sphere. The di�erent 
urvesare marked by the primary simulation box sizes. The solid 
urves show the expe
tedexponential de
ay a

ording to the Debye law and the long-time asymptoti
 behavior.hydrodynami
 modes [20, 26℄. To a

ount for these intera
tions one 
an sum the Oseentensors over all the periodi
 images of the monomers in the 
entral 
ell. The summationgives the box-size dependen
e of the di�usion 
onstant DS = D0 � 2:837kBT=(6��L),where D0 denotes the asymptoti
 Stokes-Einstein value, and higher-order terms in 1=Lhave been negle
ted. We test the validity of this relation for our data for various boxsizes by integrating the velo
ity auto
orrelation fun
tion over time [28℄. In Fig. 4 weplot DS=D0 (D0 = kBT=(6��R) = 6:9 � 10�3) as a fun
tion of 1=L. The simulationresults are in full agreement with the behavior predi
ted by the hydrodynami
 theory[26℄, whi
h demonstrates the ability our model to des
ribe hydrodynami
 intera
tionsin 
olloidal systems.We now look at the relaxation of the rotational motion. We performed a similarki
k experiment as des
ribed above, where now an initial angular velo
ity !0 = 1 wasprovided to the sphere. The data for the normalized de
ay fun
tion !(t)=!(0) arepresented in Fig. 5. The sphere dynami
s shows a 
hara
teristi
 \raw egg" (damped)rotation pattern with a fast initial de
ay and a subsequent slower one. For the rotationalrelaxation of a hard sphere with moment of inertia I and rotational fri
tion 
oeÆ
ient8��R3, theory predi
ts a de
ay a

ording to the Debye law !(t)=!(0) = exp (�t=�r),where the relaxation time is given by �r = I=(8��R3) [31℄. Similarly to the e�e
tivemass, the e�e
tive moment of inertia is expe
ted to in
rease as a fun
tion of time, dueto the time-delayed dragging of the 
uid. Initially we expe
t a hollow-sphere value ofroughly Iin � (2=3)MR2 � 600, where we used the mass of the outer shell M = 100.A more a

urate value is obtained by dire
t summation over the 
ontributing beads,
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ted to bethe 
ompa
t-sphere value Ifin � (2=5)MR2 � 770, where the total mass M � 214has been used. This results in relaxation times �r;in = 0:34 and �r;fin = 0:44. Thesevalues are roughly 
onsistent with a �t to the data in the interval 0:1 < t < 1:0, whi
hyields a somewhat larger relaxation time �r = 0:68 (see Fig. 5). Given the generalina

ura
y of the estimates, and the 
rossover of the Debye relaxation fun
tion both toshort-time ballisti
 behavior, and long-time hydrodynami
 behavior, this deviation isnot too surprising.Similar to the translational motion, the exponential de
ay is then followed by apower-law long-time tail. Theory predi
ts !(t)=!(0) = (�I=�)(4��t)�5=2 [32℄. As wehave seen before, the long-time tail in the translational 
ase is governed by the short-timemass as a result of normalization. Similarly, the rotational tail must be 
ontrolled by theshort-time moment of inertia Iin, whi
h also governs the mean square 
u
tuations of theangular velo
ity via the equipartition theorem h!2i = 3kBT=Iin. For this reason, we 
andetermine Iin by �tting a t�5=2 law to the data, whi
h is mu
h more a

urate than ourrough geometri
al estimate. The �t results in Iin = 533, whi
h is reasonably 
onsistent.If we insert this value into the relaxation time expression, we obtain �r = 0:64, in quitegood agreement with the data. It hen
e seems that 
uid dragging e�e
ts are not yetvery important for the initial Debye relaxation.At longer times, one 
an again noti
e a signi�
ant �nite-size e�e
t: the 
urvesobtained in the smaller simulation box depart from the asymptoti
 power-law line earlier,i. e. the long-time di�usion is hindered at the small system sizes. In fa
t, the power-lawregime is ina

essible at L = 10 while for L = 100 it extends up to t = 200. This value
hara
terizes the interval after whi
h the parti
le starts feeling its own periodi
 images.The rotational di�usion 
onstant DR is given by the Green-Kubo integral [33℄DR = 13 Z 10 dt h~!(t) � ~!(0)i : (5)We 
an evaluate this by again making use of linear response theory: The 
orrelationfun
tion h~!(t) � ~!(0)i is identi
al to the relaxation fun
tion presented in Fig. 5,multiplied with the initial value h!2i, whi
h we know from the equipartition theorem(see above). Using this approa
h, we have 
al
ulated DR for di�erent box sizes L. In anin�nite 
uid,DR has the Stokes-Einstein-Debye valueDR = kBT=(8��R3) = 0:58�10�3,towards whi
h the results indeed 
onverge for L ! 1. Again a 1=L behavior (butweaker than for translational di�usion) is observed, as shown in Fig. 4. It should benoted that the a

ura
y of the data is slightly hampered by the fa
t that we had touse a somewhat arbitrary 
riterion for 
utting o� the integral fun
tion, whi
h does notarrive at a 
onstant value but rather ends up with a linear in
rease originating from asmall nonzero 
onstant angular velo
ity in the long-time limit (as a manifestation of the�nite-size e�e
t).Finally, we have started to study the e�e
t of 
harge on the self-di�usion of the
olloidal parti
le. We performed simulations of a sphere with 
entral 
harge ZC = 10in an LB box of size L = 40. Ten 
ounterions of 
harge �1 were also added. The
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Figure 6. Center of mass velo
ity auto
orrelation fun
tions for a neutral and a
harged 
olloidal sphere. The Green-Kubo integral fun
tion is also shown as solid
urve for Z = 0 and dashed 
urve for Z = 10.Bjerrum length was set to 2. Te
hni
ally, the simulation ran without any problemsjust as well as for the neutral system. In Fig. 6 we 
ompare the de
ay of the velo
ityauto
orrelation fun
tion for the neutral and 
harged spheres. The di�eren
e betweenthe two is not dete
table within our error bars at this 
harge. We 
annot say yet mu
habout the in
uen
e of the 
harges on the dynami
 properties; we do however expe
t thatfor strongly 
harged systems the Debye layer will e�e
tively in
rease the hydrodynami
radius and slow down the di�usion. More work needs to be done to resolve this issue.4. SummaryIn summary, we introdu
ed and tested a new model for simulating 
olloidal dynami
swith in
lusion of the hydrodynami
 e�e
ts on the level of the latti
e-Boltzmannequation. The suggested \raspberry"-like 
olloidal obje
t exhibits the essential featuresof the di�usion of a spheri
al 
olloidal parti
le, and the model solvent provides a propera

ount for the hydrodynami
 intera
tions. Although in this publi
ation we do notpresent a 
omprehensive test of the hydrodynami
 features of our model, the simpletest 
on�rms its validity quite 
onvin
ingly. As the long-range hydrodynami
s relies onthe LB s
heme, and most of the CPU time is spent just for the LB updates, we expe
tfrom the model a performan
e whi
h is similar to other implementations using the LBmethod (although this has not been tested). For the �rst time we 
ombined a model
ontaining expli
it 
harges with a

urate treatment of the hydrodynami
s. We expe
tthis method to have some advantages over the previously applied s
heme [17℄ whi
h
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harge leakage, sin
e 
hargesare modeled as LB populations. In our method: (i) the sti
k boundary 
onditions arerealized not stri
tly, i. e. the parti
le surfa
e is softly bound to the 
uid; (ii) the methodis easily adaptable to the multiple timestep method where the ioni
 a
tion on the 
olloid
an be averaged out somewhat within the integration step for the solvent. We shouldnote that su
h a hybrid simulation requires still some 
omputational e�ort | two millionhybrid steps for the 
olloid 
onsisting of 100 beads in a box of 20�20�20 LB 
ells takeabout 12 hours on a 2 GHz Pentium 4 pro
essor, while it is expe
ted to run a few timesfaster on more sophisti
ated hardware. Here, one step is a MD step of the total systemof beads, plus one LB update of the whole latti
e, where the latter part 
ompletelydominates the CPU e�ort. Some improvement is possible by not updating the LB 
uidat every MD step, as it was done here. For dense systems, where the MD part is nolonger negligible, one should also optimize the intera
tion potentials. Finally, we wouldlike to mention that the algorithm 
an be fully parallelized and we are working on theparallel version.A
knowledgmentsWe thank Christian Holm, J�urgen Horba
h and Kurt Kremer for stimulating dis
ussions,and the latter also for 
riti
al reading of the manus
ript. This work was funded by theSFB TR 6 of the Deuts
he Fors
hungsgemeins
haft.5. Referen
es[1℄ Hansen J-P and L�owen H 2000 Ann. Rev. Phys. Chem. 51 209[2℄ Mazur P and Van Saarloos W 1982 Physi
a A 115 21[3℄ Brady J F and Bossis G 1998 Ann. Rev. Fluid Me
h. 20 111[4℄ Groot R and Warren P 1997 J. Chem. Phys. 107 4423[5℄ Soddemann T, D�unweg B, and Kremer K 2003 Phys. Rev. E 68 046702[6℄ Malevanets A and Kapral R 1999 J. Chem. Phys. 110 8605[7℄ Su

i S 2001 The Latti
e Boltzmann Equation for Fluid Dynami
s and Beyond (Oxford: OxfordUniversity Press)[8℄ Ladd AJC 1993 Phys. Rev. Lett. 70 1339[9℄ Ladd AJC 1994 J. Fluid Me
h. 271 285[10℄ Ladd AJC 1994 J. Fluid Me
h. 271 311[11℄ Ladd AJC and Verberg R 2001 J. Stat. Phys. 104 1191[12℄ Ladd AJC, Hu Gang, Zhu JX, and Weitz DA 1995 Phys. Rev. E 52 6550[13℄ Hagen MHJ, Frenkel D, and Lowe CP 1999 Physi
a A 272 376[14℄ Lowe CP, Frenkel D, and Masters AJ 1995 J. Chem. Phys. 103 1582[15℄ Heemels MW, Hagen MHJ, and Lowe CP 2000 J. Comput. Phys 164 48[16℄ Hagen MHJ, Pagonabarraga I, Lowe CP, and Frenkel D 1997 Phys. Rev. Lett. 78 3785[17℄ Horba
h J and Frenkel D 2001 Phys. Rev. E 64 061507-1[18℄ Horba
h J Private 
ommuni
ation[19℄ Ahlri
hs P and D�unweg B 1998 Int. J. Mod. Phys. C 9 1429[20℄ Ahlri
hs P and D�unweg B 1999 J. Chem. Phys. 111 8225[21℄ Ahlri
hs P, Everaers R, and D�unweg B 2001 Phys. Rev. E 64 040501(R)



A new model for simulating 
olloidal dynami
s 14[22℄ Fogelson AL and Peskin CS 1988 J. Comput. Phys. 79 50[23℄ Malevanets A and Kapral R 2000 J. Chem. Phys. 112 7260[24℄ Malevanets A and Yeomans JM 2000 Europhys. Lett. 52 231[25℄ Allen M and Tildesley DJ 1987 Computer simulation of liquids (Oxford: Oxford University Press)[26℄ D�unweg B and Kremer K 1993 J. Chem. Phys. 99 6983[27℄ Alder B and Wainwright T 1970 Phys. Rev. A 1 18[28℄ Hansen J-P and M
Donald I 1986 Theory of Simple Liquids (London: A
ademi
 Press)[29℄ Hin
h E J 1975 J. Fluid Me
h. 72 499[30℄ Chi
ho
ki B and Felderhof B 1995 Phys. Rev. E 51 5549[31℄ Debye P 1929 Polar Mole
ules (New York: Dover)[32℄ Hauge EH and Martin-L�of A 1973 J. Stat. Phys. 7 259[33℄ Kushi
k J and Berne BJ 1973 J. Chem. Phys. 59 4486


