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In soft–matter systems where Brownian constituents are immersed in a solvent, both thermal
fluctuations and hydrodynamic interactions are important. The article outlines a general scheme
to simulate such systems by coupling Molecular Dynamics for theBrownian particles to a lattice
Boltzmann algorithm for the solvent. By the example of a polymerchain immersed in solvent,
it is explicitly demonstrated that this approach yields (essentially) the same results as Brownian
Dynamics.

1 Introduction

Remark:The present contribution intends to just give a very brief overview over the subject
matter. It is an updated version of a similar article1 that the author has written on occasion
of the 2009 NIC winter school. For more detailed information, the reader is referred to a
longer review article, Ref. 2. —

Many soft–matter systems are comprised of Brownian particles immersed in a solvent.
Prototypical examples are colloidal dispersions and polymer solutions, where the latter, in
contrast to the former, are characterized by non–trivial internal degrees of freedom (here:
the many possible conformations of the macromolecule). Fundamental for these systems is
the separation of length and time scales between “large and slow” Brownian particles, and
“small and fast” solvent particles. “Mesoscopic” simulations focus on the range of length
and time scales which are, on the one hand, too small to allow adescription just in terms of
continuum mechanics of the overall system, but, on the otherhand, large enough to allow
the replacement of the solvent by a hydrodynamic continuum.This latter approximation
is much less severe than one would assume at first glance; detailed Molecular Dynamics
simulations have shown that hydrodynamics works as soon as the length scale exceeds a
few particle diameters, and the time scale a few collision times.

To simulate such systems consistently, one has to take into account that the length and
time scales are so small that thermal fluctuations cannot be neglected. The “Boltzmann
number”Bo (a term invented by us) is a useful parameter for quantifyinghow important
fluctuations are. Given a certain spatial resolutionb (for example, the lattice spacing of
a grid which is used to simulate the fluid dynamics), we may askourselves how many
solvent particlesNp correspond to the scaleb. On average, this is given byNp = ρb3/mp,
whereρ is the mass density andmp the mass of a solvent particle (and we assume a three–
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dimensional system). The relative importance of fluctuations is then given by

Bo = N−1/2
p =

(

mp

ρb3

)1/2

. (1)

It should be noted that for an ideal gas, where the occupationstatistics is Poissonian,Bo is
just the relative statistical inaccuracy of the random variableNp. In soft–matter systems,b
is usually small enough such thatBo is no longer negligible.

Furthermore,hydrodynamic interactionsmust be modeled. In essence, this term refers
to dynamic correlations between the Brownian particles, mediated by fast momentum
transport through the solvent. The separation of time scales can be quantified in terms
of the so–called Schmidt number

Sc =
ηkin
D

, (2)

whereηkin = η/ρ is the kinematic viscosity (ratio of dynamic shear viscosity η and mass
densityρ) of the fluid, measuring how quickly momentum propagates diffusively through
the solvent, andD is the diffusion constant of the particles. Typically, in a dense fluidSc ∼
102 . . . 103 for the solvent particles, while for large Brownian particlesSc is even much
larger. Finally, we may also often assume that the solvent dynamics is in the creeping–flow
regime, i. e. that the Reynolds number

Re =
ul

ηkin
, (3)

whereu denotes the velocity of the flow andl its typical size, is small. This is certainly
true as long as the system is not driven strongly out of thermal equilibrium.

These considerations lead to the natural (but, in our opinion, not always correct) con-
clusion that the method of choice to simulate such systems isBrownian Dynamics (BD)3.
Here the Brownian particles are displaced under the influence of particle–particle forces,
hydrodynamic drag forces (calculated from the particle positions), and stochastic forces
representing the thermal noise. However, the technical problems to do this efficiently
for a large numberN of Brownian particles are substantial. The calculation of the drag
forces involves the evaluation of the hydrodynamic Green’sfunction, which depends on
the boundary conditions, and has an intrinsically long–range nature (such that all particles
interact with each other). Furthermore, these drag terms also determine the correlations
in the stochastic displacements, such that the generation of the stochastic terms involves
the calculation of the matrix square root of a3N × 3N matrix. Recently, there has been
substantial progress in the development of fast algorithms4; however, currently there are
only few groups who master these advanced and complicated techniques. Apart from this,
the applicability is somewhat limited, since the Green’s function must be re–calculated for
each new boundary condition, and its validity is questionable if the system is put under
strong nonequilibrium conditions like, e. g., a turbulent flow — it should be noted that the
Green’s function is calculated for low–Re hydrodynamics.

Therefore, many soft–matter researchers have rather chosen the alternative approach,
which is to simulate the system including the solvent degrees of freedom, with explicit
momentum transport. The advantage of this is a simple algorithm, which scales linearly
with the number of Brownian particles, and is easily parallelizable, due to its locality. The
disadvantage, however, is that one needs to simulate many more degrees of freedom than
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those in which one is genuinely interested —andto do this on the short inertial time scales
in which one is not interested either. It is clear that such anapproach involves essentially
Molecular Dynamics (MD) for the Brownian particles.

Many ways are possible how to simulate the solvent degrees offreedom, and how to
couple them to the MD part. It is just the universality of hydrodynamics that allows us to
invent many models which all will produce the correct physics. The requirements are rather
weak — the solvent model has to just be compatible with Navier–Stokes hydrodynamics
on the macroscopic scale. Particle methods include Dissipative Particle Dynamics (DPD)
and Multi–Particle Collision Dynamics (MPCD)5, while lattice methods involve the direct
solution of the Navier–Stokes equation on a lattice, or lattice Boltzmann (LB). The latter
is a method with which we have made quite good experience, both in terms of efficiency
and versatility. The efficiency comes from the inherent easeof memory management for
a lattice model, combined with ease of parallelization, which comes from the high degree
of locality: Essentially an LB algorithm just shifts populations on a lattice, combined with
collisions, which however only happen locally on a single lattice site. The coupling to the
Brownian particles (simulated via MD) can either be done viaboundary conditions, or via
an interpolation function that introduces adissipativecoupling between particles and fluid.
In this article, we will focus on the latter method.

2 Coupling Scheme

As long as we view LB as just a solver for the Navier–Stokes equation, we may write down
the equations of motion for the coupled system as follows:

d

dt
~ri =

1

mi
~pi, (4)

d

dt
~pi = ~F c

i + ~F d
i + ~F f

i , (5)

∂tρ+ ∂αjα = 0, (6)

∂tjα + ∂βπ
E
αβ = ∂βηαβγδ∂γuδ + fh

α + ∂βσ
f
αβ . (7)

Here,~ri, ~pi andmi are the positions, momenta, and masses of the Brownian particles,
respectively. The forces~Fi acting on the particles are conservative (c, i. e. coming from
the interparticle potential), dissipative (d), and fluctuating (f ). The equations of motion for
the fluid have been written in tensor notation, where Greek indexes denote Cartesian com-
ponents, and the Einstein summation convention is used. Thefirst equation describes mass
conservation; the mass fluxρ~u, where~u is the flow velocity, is identical to the momentum
density~j. The last equation describes the time evolution of the fluid momentum density.
In the absence of particles, the fluid momentum is conserved.This part is described via
the stress tensor, which in turn is decomposed into the conservative Euler stressπE

αβ , the

dissipative stressηαβγδ∂γuδ, and the fluctuating stressσf
αβ . The influence of the particles

is described via an external force density~fh.
The coupling to a particlei is introduced via an interpolation procedure where first the

flow velocities from the surrounding sites are averaged overto yield the flow velocity right
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at the position ofi. In the continuum limit, this is written as

~ui ≡ ~u(~ri) =

∫

d3~r∆(~r, ~ri)~u(~r), (8)

where∆(~r, ~ri) is a weight function with compact support, satisfying
∫

d3~r∆(~r, ~ri) = 1. (9)

Secondly, each particle is assigned a phenomenological friction coefficientΓi, and this
allows us to calculate the friction force on particlei:

~F d
i = −Γi

(

~pi
mi

− ~ui

)

. (10)

A Langevin noise term~F f
i is added to the particle equation of motion, in order to com-

pensate the dissipative losses that come from~F d
i . ~F f

i satisfies the standard fluctuation–
dissipation relation

〈

F f
iα

〉

= 0, (11)
〈

F f
iα (t)F f

jβ (t
′)
〉

= 2kBTΓiδijδαβδ (t− t′) , (12)

whereT is is the absolute temperature andkB the Boltzmann constant. While the con-
servative forces~F c

i conserve the total momentum of the particle system, as a result of
Newton’s third law, the dissipative and fluctuating terms (~F d

i and ~F f
i ) do not. The associ-

ated momentum transfer must therefore have come from the fluid. The overall momentum
must be conserved, however. This means that the force term entering the Navier–Stokes
equation must just balance these forces. One easily sees that the choice

~fh(~r) = −
∑

i

(

~F d
i + ~F f

i

)

∆(~r, ~ri) (13)

satisfies this criterion. It should be noted that we use thesameweight function to interpo-
late the forces back onto the fluid; this is necessary to satisfy the fluctuation–dissipation
theorem for the overall system, i. e. to simulate a well–defined constant–temperature en-
semble. The detailed proof of the thermodynamic consistency of the procedure can be
found in Ref. 2.

We still need to specify the remaining terms in the Navier–Stokes equation. The vis-
cosity tensorηαβγδ describes an isotropic Newtonian fluid:

ηαβγδ = η

(

δαγδβδ + δαδδβγ − 2

3
δαβδγδ

)

+ ηbδαβδγδ, (14)

with shear and bulk viscositiesη andηb. This tensor also appears in the covariance matrix
of the fluctuating (Langevin) stressσf

αβ :
〈

σf
αβ

〉

= 0, (15)
〈

σf
αβ (~r, t)σ

f
γδ (~r

′, t′)
〉

= 2kBTηαβγδδ (~r − ~r′) δ (t− t′) . (16)
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Finally, the Euler stress

πE
αβ = pδαβ + ρuαuβ (17)

describes the equation of state of the fluid (p is the thermodynamic pressure), and convec-
tive momentum transport.

3 Low Mach Number Physics

At this point an important simplification can be made. The equation of state only matters
for flow velocitiesu that are comparable with the speed of soundcs, i. e. for which the
Mach number

Ma =
u

cs
(18)

is large. In the low Mach number regime, the flow may be considered as effectively in-
compressible (although no incompressibility constraint is imposed in the algorithm). The
Mach number should not be confused with the Reynolds numberRe, which rather mea-
sures whether inertial effects are important. Now it turns out that essentially all soft–matter
applications “live” in the low–Ma regime. Furthermore, largeMa is anyway inaccessible
to the LB algorithm, since it provides only a finite set of lattice velocities — and these
essentially determine the value ofcs. In other words, the LB algorithm simply cannot re-
alistically represent flows whose velocity is not small compared tocs. For this reason, the
details of the equation of state do not matter, and thereforeone chooses the system that is
by far the easiest — the ideal gas. Here the equation of state for a system at temperatureT
may be written as

kBT = mpc
2
s. (19)

In the D3Q19 model (the most popular standard LB model in three dimensions, using
nineteen lattice velocities, see below) it turns out that the speed of sound is given by

c2s =
1

3

b2

h2
, (20)

whereb is the lattice spacing andh the time step. Therefore the Boltzmann number can
also be written as

Bo =

(

mp

ρb3

)1/2

=

(

3kBTh
2

ρb5

)1/2

. (21)

4 Lattice Boltzmann 1: Statistical Mechanics

The lattice Boltzmann algorithm starts from a regular grid with sites~r and lattice spacing
b, plus a time steph. We then introduce a small set of velocities~ci such that~cih connects
two nearby lattice sites on the grid. In the D3Q19 model, the lattice is simple cubic, and
the nineteen velocities correspond to the six nearest and twelve next–nearest neighbors,
plus a zero velocity. On each lattice site~r at timet, there are nineteen populationsni(~r, t).
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Each population is interpreted as the mass density corresponding to velocity~ci. The total
mass and momentum density are therefore given by

ρ(~r, t) =
∑

i

ni(~r, t), (22)

~j(~r, t) =
∑

i

ni(~r, t)~ci, (23)

such that the flow velocity is obtained via~u = ~j/ρ. The number of “lattice Boltzmann
particles” which correspond toni is given by

νi =
nib

3

mp
≡ ni

µ
, (24)

wheremp is the mass of a lattice Boltzmann particle, andµ the corresponding mass density.
It should be noted thatµ is a measure of the thermal fluctuations in the system, since,
according to Eq. 21, one hasBo2 = µ/ρ.

If we now assume a “velocity bin”i to be in thermal contact with a large reservoir of
particles, the probability density forνi is Poissonian. Furthermore, if we assume that the
“velocity bins” are statistically independent, but take into account that mass and momen-
tum density are fixed (these variables are conserved quantities during an LB collision step
and should therefore be handled like conserved quantities in a microcanonical ensemble),
we find

P ({νi}) ∝
(

∏

i

ν̄νi

i

νi!
e−ν̄i

)

δ

(

µ
∑

i

νi − ρ

)

δ

(

µ
∑

i

νi~ci −~j

)

. (25)

for the probability density of the variablesνi. This must be viewed as the statistics which
describes the local (single–site) equilibrium under the condition of fixed values of the hy-
drodynamic variablesρ and~j. The parameter̄νi is the mean occupation imposed by the
reservoir, and we assume that it is given by

ν̄i = aci
ρ

µ
, (26)

whereaci > 0 is a weight factor corresponding to the neighbor shell with speedci.
From normalization and cubic symmetry we know that the low–order velocity moments

of the weights must have the form
∑

i

aci = 1, (27)

∑

i

aciciα = 0, (28)

∑

i

aciciαciβ = σ2 δαβ , (29)

∑

i

aciciαciβciγ = 0, (30)

∑

i

aciciαciβciγciδ = κ4 δαβγδ + σ4 (δαβδγδ + δαγδβδ + δαδδβγ) , (31)
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whereσ2, σ4, κ4 are yet undetermined constants, whileδαβγδ is unity if all four indexes
are the same and zero otherwise.

Employing Stirling’s formula for the factorial, it is straightforward to find the set of
populationsneq

i which maximizesP under the constraints of givenρ and~j. Up to second
order inu (low Mach number!) the solution is given by

neq
i = ρaci

(

1 +
~u · ~ci
σ2

+
(~u · ~ci)2
2σ2

2

− u2

2σ2

)

. (32)

The low–order moments of the equilibrium populations are then given by
∑

i

neq
i = ρ, (33)

∑

i

neq
i ciα = jα, (34)

∑

i

neq
i ciαciβ = ρc2sδαβ + ρuαuβ . (35)

The first two equations are just the imposed constraints, while the last one (meaning that
the second moment is just the hydrodynamic Euler stress) follows from imposing two ad-
ditional conditions, which is to choose the weightsaci such that they satisfyκ4 = 0 and
σ4 = σ2

2(= c4s). From the Chapman–Enskog analysis of the LB dynamics (see below) it
follows that the asymptotic behavior in the limit of large length and time scales is compat-
ible with the Navier–Stokes equation only if Eq. 35 holds, and this in turn is only possible
if the abovementioned isotropy conditions are satisfied. Together with the normalization
condition, we thus obtain a set of three equations for theaci . Therefore at least three
neighbor shells are needed to satisfy these conditions, andthis is the reason for choosing
a nineteen–velocity model. For D3Q19, one thus obtainsaci = 1/3 for the zero velocity,
1/18 for the nearest neighbors, and1/36 for the next–nearest neighbors. Furthermore, one
findsc2s = σ2 = (1/3)b2/h2.

For the fluctuations around the most probable populationsneq
i ,

nneq
i = ni − neq

i , (36)

we employ a saddle–point approximation and approximateu by zero. This yields

P ({nneq
i }) ∝ exp

(

−
∑

i

(nneq
i )

2

2µρaci

)

δ

(

∑

i

nneq
i

)

δ

(

∑

i

~ci n
neq
i

)

. (37)

We now introduce normalized fluctuations via

n̂neq
i =

nneq
i√
µρaci

(38)

and transform to normalized “modes” (symmetry–adapted linear combinations of theni,
see Ref. 2)̂mneq

k via an orthonormal transformation̂eki:

m̂neq
k =

∑

i

êkin̂
neq
i , (39)
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k = 0, . . . , 18, and obtain

P ({mk}) ∝ exp



−1

2

∑

k≥4

m2
k



 . (40)

It should be noted that the modes number zero to three have been excluded; they are just
the conserved mass and momentum densities.

5 Lattice Boltzmann 2: Stochastic Collisions

A collision step consists of re-arranging the set ofni on a given lattice site such that both
mass and momentum are conserved. Since the algorithm shouldsimulate thermal fluctu-
ations, this should be done in a way that is (i) stochastic and(ii) consistent with the de-
veloped statistical–mechanical model. This is straightforwardly imposed by requiring that
the collision is nothing but a Monte Carlo procedure, where aMonte Carlo step transforms
the pre–collisional set of populations,ni, to the post–collisional one,n⋆

i . Consistency with
statistical mechanics can be achieved by requiring that theMonte Carlo update satisfies the
condition of detailed balance. Most easily this is done in terms of the normalized modes
m̂k, which we update according to the rule (k ≥ 4)

m̂⋆
k = γkm̂k +

√

1− γ2
krk. (41)

Here theγk are relaxation parameters with−1 < γk < 1, and therk are statistically
independent Gaussian random numbers with zero mean and unitvariance. Mass and mo-
mentum are automatically conserved since the corresponding modes are not updated. Com-
parison with Eq. 40 shows that the procedure indeed does satisfy detailed balance. The
parametersγk can in principle be chosen at will; however, they should be compatible with
symmetry. For example, mode number four corresponds to the bulk stress, with a relax-
ation parameterγb, while modes number five to nine correspond to the five shear stresses,
which form a symmetry multiplett. Therefore one must chooseγ5 = . . . = γ9 = γs. For
the remaining kinetic modes one often usesγk = 0 for simplicity, but this is not necessary.

6 Lattice Boltzmann 3: Chapman–Enskog Expansion

The actual LB algorithm now consists of alternating collision and streaming steps, as sum-
marized in the LB equation (LBE):

ni(~r + ~cih, t+ h) = n⋆
i (~r, t) = ni(~r, t) + ∆i {ni(~r, t)} . (42)

The populations are first re–arranged on the lattice site; this is described by the so–called
“collision operator”∆i. The resulting post–collisional populationsn⋆

i are then propagated
to the neighboring sites, as expressed by the left hand side of the equation. After that, the
next collision step is done, etc.. The collision step may include momentum transfer as a
result of external forces (for details, see Ref. 2); apart from that, it is just given by the
update procedure outlined in the previous section.
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A convenient way to find the dynamic behavior of the algorithmon large length and
time scales is a multi–time–scale analysis. One introducesa “coarse–grained ruler” by
transforming from the original coordinates~r to new coordinates~r1 via

~r1 = ǫ~r, (43)

whereǫ is a dimensionless parameter with0 < ǫ ≪ 1. The rationale behind this is the
fact that any “reasonable” value for the scaler1 will automatically forcer to be large. In
other words: By considering the limitǫ → 0 we automatically focus our attention on large
length scales. The same is done for the time; however, here weintroducetwoscales via

t1 = ǫt (44)

and

t2 = ǫ2t. (45)

The reason for this is that one needs to consider both wave–like phenomena, which happen
on thet1 time scale (i. e. the real time is moderately large), and diffusive processes (where
the real time isverylarge). We now write the LB variables as a function of~r1, t1, t2 instead
of ~r, t. Since changingǫ at fixed~r1 changes~r and thusni, we must take into account that
the LB variables depend onǫ:

ni = n
(0)
i + ǫn

(1)
i + ǫ2n

(2)
i +O(ǫ3). (46)

The same is true for the collision operator:

∆i = ∆
(0)
i + ǫ∆

(1)
i + ǫ2∆

(2)
i +O(ǫ3). (47)

In terms of the new variables, the LBE is written as

ni(~r1 + ǫ~cih, t1 + ǫh, t2 + ǫ2h)− ni(~r1, t1, t2) = ∆i. (48)

Now, one systematically Taylor–expands the equation up to order ǫ2. Sorting by order
yields a hierarchy of LBEs of which one takes the zeroth, first, and second velocity mo-
ment. Systematic analysis of this set of moment equations (for details, see Ref. 2) shows
that the LB procedure, as it has been developed in the previous sections, indeed yields the
fluctuating Navier–Stokes equations in the asymptoticǫ → 0 limit — however only for
low Mach numbers; in the high Mach number regime, where termsof orderu3/c3s can no
longer be neglected, the dynamics definitely deviates from Navier–Stokes.

In particular, this analysis shows that the zeroth–order populations must be identified
with neq

i , and that it isnecessarythat this “encodes” the Euler stress via suitably chosen
weightsaci . Furthermore, one finds explicit expressions for the viscosities:

η =
hρc2s
2

1 + γs
1− γs

, (49)

ηb =
hρc2s
3

1 + γb
1− γb

. (50)
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7 A Polymer Chain in Solvent

In Ref. 6 we explicitly aimed at a comparison between BD and coupled LB–MD for the
samesystem. We chose a well–studied standard benchmark system,a single bead–spring
polymer chain ofN monomers in good solvent in thermal equilibrium. The BD algorithm
is realized via

riα(t+h) = riα(t)+(kBT )
−1

DijαβFjβh+
√
2hBijαβWjβ , i = 1, 2, . . . , N. (51)

Here~ri is the coordinate of theith particle,h is the BD time step,
↔

Dij is the diffusion
tensor coupling particlesi andj, and~Fj denotes the deterministic force on particlej (here
spring force and excluded–volume force). We assume summation convention with respect

to both Cartesian and particle indexes. The tensor
↔

Bij is the matrix square root of
↔

Dij ,

Dijαβ = BikαγBjkβγ , (52)

while ~Wi is a discretized Wiener process,〈Wiα〉 = 0 and〈WiαWjβ〉 = δijδαβ . For the
diffusion tensor we used the Rotne–Prager tensor. The computationally most demanding
part is the calculation of the matrix square root. The exact numerical solution of this prob-
lem via Cholesky decomposition has a computational complexity O(N3). We therefore
rather used Fixman’s trick7,8 to speed up the calculations. This is based on the observation
that the “square root” function, if viewed as a function acting on real numbers, needs to be
evaluated only within a finite interval, spanning from the smallest to the largest eigenvalue.
Since this interval does not contain the singularity at zero, a truncated (Chebyshev) polyno-
mial expansion approximates the function quite well. The same expansion can then also be
used to evaluate the matrix square root. The number of terms needed is empirically found
to scale asO(N0.25). Furthermore, for each term one needs to do a “matrix times vector”
operation, which scales asO(N2), such that the algorithm in total has a computational
complexityO(N2.25). We did not employ an FFT–based “superfast” BD algorithm4; this
would have been quite complicated, and also required to assume a simulation box of size
L3 with periodic bondary conditions, such that an extrapolationL → ∞ would have been
necessary.

Such a finite box size, combined with an extrapolation, is however precisely what is
needed for LB–MD. We therefore ran these simulations for at least three different values
of L in order to allow for meaningful extrapolations (and used the total time for these
three systems to estimate our CPU effort). The typical box sizes that are needed are given
by the requirement that the polymer chain should fit nicely into the box, without much
back–folding. Since in a good solvent the polymer radiusR scales asR ∝ Nν , where
ν ≈ 0.59 is the Flory exponent, we findL3 ∝ N3ν . Furthermore, the computational
cost is completely dominated by the operations required to run the solvent, and hence
the computational complexity isO(N3ν) = O(N1.8). We see that this is slightly better
than BD; however, the prefactor is much smaller for BD. In practice, we find that BD is
roughly two orders of magnitude faster than LB–MD, for the typical chain lengths used in
simulations, see Fig. 1.

The situation is expected to be quite different when one studies a semidilute solution,
where the monomer concentration is still quite low (such that the LB–MD CPU effort is
still dominated by the solvent), but the chains are so long that they strongly overlap. For
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Figure 1. Comparison of the CPU time needed by the LB–MD and BD systems for the equivalent of 1000 LB–
MD time steps for various chain lengthsN . From Ref. 6.

example, Ref. 9 studied50 chains of lengthN = 1000, being well in the semidilute
regime. While the additional chains for the LB–MD system poseessentially no computa-
tional burden at all (rather on the contrary: Flory screening makes the chains shrink, such
that one can afford to run the simulation in a somewhat smaller box), the BD effort (for
our algorithm) is expected to increase by a factor of502.25, i. e. more than three orders
of magnitude — or even more, since one needs a more complicated scheme to evaluate
the hydrodynamic interactions for a periodic system. In other words: For such a system,
BD can at best be competitive if the “superfast”4 version is implemented — and to our
knowledge, this has not yet been tested.

In order to allow a meaningful comparison, both systems haveto be run for the same
system and the same parameters. This implies, firstly, identical interaction potentials be-
tween the beads, and the same temperature. From this one concludes (and numerically
verifies) that the static properties like gyration radius, static structure factor, etc., must all
be identical. For the dynamics, it is important that both simulations are run with the same
value for the shear viscosityη, which is easy to achieve, plus with the same value for the
monomeric friction coefficient. At this point, one has to take into account that the friction
coefficientζ that appears in the BD algorithm (on the diagonal of the diffusion tensor) is
a long–timefriction coefficient, which describes the asymptotic stationary velocity~v of a
particle that is dragged through the fluid with a force~F , ~F = ζ~v, while the friction coeffi-
cientΓ that appears in the LB–MD algorithm via the coupling prescription ~F = Γ(~v − ~u)
(see Eq. 10) is a correspondingshort–timecoefficient that does not yet take the backflow
effects into account. Indeed, for an experiment in which a particle is dragged through the
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Figure 2. The dimensionless long time diffusion constant for the center of mass at various box lengthsL. From
Ref. 6

LB fluid, it is clear that the flow velocity~u will be nonzero, and typically slightly smaller
than~v. Hence,~F = ζ~v = Γ(~v − ~u), i. e. ζ is smaller thanΓ. Since hydrodynamics allows
us to estimate~u up to a numerical prefactorg via a Stokes–like formula,~F = gηa~u, where
a is the range of the interpolation scheme, one finds (see also Ref. 2)

ζ−1 = Γ−1 + (gηa)−1. (53)

For nearest–neighbor linear interpolation, one findsg ≈ 25 if a is identified with the LB
lattice spacing. One hence needs to choose theΓ value in the LB–MD simulations in such
a way that it reproduces the BDζ value.

The diffusion constant of the LB–MD chain depends on the box size, as a result of the
hydrodynamic interaction with the periodic images. Since the latter decays liker−1, one
concludes anL−1 finite size effect, which is nicely borne out by the data of Fig. 2. From
these data one sees also that for an accurate description of the dynamics it is necessary to
not only thermalize the stress modes in the LB algorithm (only these matter in the strict
hydrodynamic limit), but also the kinetic modes, as suggested by the more microscopic
theory outlined above. Taking the finite–size effect and theproper thermalization into
account, the remaining deviation between BD and LB–MD is only a few percent.

The internal Rouse modes of the chain are defined as (p = 1, 2, . . . , N − 1)

~Xp =
1

N

N
∑

n=1

~rn cos

[

pπ

N

(

n− 1

2

)]

. (54)

Figure 3 shows the decay of the normalized mode autocorrelation function up top = 5.
Obviously the agreement with BD is quite good, i. e. the finitesize effect is quite weak.
The reason is the following: The diffusion constant corresponds to the friction of the chain
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Figure 3. Normalized autocorrelation function of the first 5 Rouse modes~Xp for LB–MD simulations at fixed
L = 25 and BD simulations atL → ∞. From Ref. 6.

Figure 4. The autocorrelation function for the first Rouse mode ~X1 at a finite time value of̄t = 700 for LB–MD
simulations at various box lengthsL and BD simulations atL → ∞. From Ref. 6.

as a whole, i. e. to an experiment where the chain is being dragged through the fluid with
a constant force. This gives rise to a flow field that decays liker−1, and thus anL−1 finite
size effect. This total force may also be viewed as the monopole moment of a distribution
of forces acting on the polymer. The Rouse modes however study the internal motion of

13



the chain, i. e. in the center–of–mass system. Therefore, the monopole contribution of the
forces has been subtracted, and only highr–order multipolemoments remain. The dipole
contribution vanishes for symmetry reasons, i. e. the first higher–order multipole is the
quadrupole (this may be vaguely understood by recalling that the mass distribution has a
monopole and a quadrupole moment, but not a dipole moment). The quadrupolar flow
field decays liker−3, and hence one expects anL−3 finite size effect. For a more detailed
derivation, see Ref. 10. This finite size effect is indeed observed, see Fig. 4, demonstrating
that on the one hand the system is theoretically quite well understood, and that on the
other hand such simulations are nowadays so accurate that even rather subtle effects can
be analyzed unambiguously.
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