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In soft-matter systems where Brownian constituents are immhénse solvent, both thermal
fluctuations and hydrodynamic interactions are importang &iticle outlines a general scheme
to simulate such systems by coupling Molecular Dynamics foBtleevnian particles to a lattice
Boltzmann algorithm for the solvent. By the example of a polyotein immersed in solvent,
itis explicitly demonstrated that this approach yields ¢asially) the same results as Brownian
Dynamics.

1 Introduction

Remark:The present contribution intends to just give a very briefreiew over the subject
matter. It is an updated version of a similar artidleat the author has written on occasion
of the 2009 NIC winter school. For more detailed informatitre reader is referred to a
longer review article, Ref. 2. —

Many soft—matter systems are comprised of Brownian pagirthmersed in a solvent.
Prototypical examples are colloidal dispersions and pelysolutions, where the latter, in
contrast to the former, are characterized by non-triviedrimal degrees of freedom (here:
the many possible conformations of the macromolecule)domental for these systems is
the separation of length and time scales between “largeland Brownian particles, and
“small and fast” solvent particles. “Mesoscopic” simutais focus on the range of length
and time scales which are, on the one hand, too small to altbegeription just in terms of
continuum mechanics of the overall system, but, on the dthed, large enough to allow
the replacement of the solvent by a hydrodynamic continulihis latter approximation
is much less severe than one would assume at first glancéledda®olecular Dynamics
simulations have shown that hydrodynamics works as sooheakehgth scale exceeds a
few particle diameters, and the time scale a few collisiores.

To simulate such systems consistently, one has to take ¢etwuat that the length and
time scales are so small that thermal fluctuations cannoebécted. The “Boltzmann
number” Bo (a term invented by us) is a useful parameter for quantifyiogy important
fluctuations are. Given a certain spatial resolutioffior example, the lattice spacing of
a grid which is used to simulate the fluid dynamics), we may @asiselves how many
solvent particlesV,, correspond to the scabe On average, this is given by, = pb®/m,,
wherep is the mass density and, the mass of a solvent particle (and we assume a three—



dimensional system). The relative importance of fluctuettiis then given by
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It should be noted that for an ideal gas, where the occupatatistics is Poissoniaiio is

just the relative statistical inaccuracy of the randomalalg NV,,. In soft-matter systems,

is usually small enough such th&b is no longer negligible.

Furthermorehydrodynamic interactionsiust be modeled. In essence, this term refers
to dynamic correlations between the Brownian particlesdiated by fast momentum
transport through the solvent. The separation of time sczd® be quantified in terms
of the so—called Schmidt number
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whereny;, = n/p is the kinematic viscosity (ratio of dynamic shear visgpgitnd mass
densityp) of the fluid, measuring how quickly momentum propagatesitfely through
the solvent, and is the diffusion constant of the particles. Typically, inende fluidSc ~
102...103 for the solvent particles, while for large Brownian pagiglc is even much
larger. Finally, we may also often assume that the solvemaughjcs is in the creeping—flow
regime, i. e. that the Reynolds number
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wherewu denotes the velocity of the flow aridts typical size, is small. This is certainly
true as long as the system is not driven strongly out of theeapailibrium.

These considerations lead to the natural (but, in our opjmot always correct) con-
clusion that the method of choice to simulate such systemsownian Dynamics (BD).
Here the Brownian particles are displaced under the infle@figarticle—particle forces,
hydrodynamic drag forces (calculated from the particleitpmss), and stochastic forces
representing the thermal noise. However, the technicablpnes to do this efficiently
for a large numbefV of Brownian particles are substantial. The calculationhaf drag
forces involves the evaluation of the hydrodynamic Greéumrgtion, which depends on
the boundary conditions, and has an intrinsically longgeamature (such that all particles
interact with each other). Furthermore, these drag tersw @étermine the correlations
in the stochastic displacements, such that the generatitite stochastic terms involves
the calculation of the matrix square root o8& x 3N matrix. Recently, there has been
substantial progress in the development of fast algorithimswever, currently there are
only few groups who master these advanced and complicataditpies. Apart from this,
the applicability is somewhat limited, since the Greenisclion must be re—calculated for
each new boundary condition, and its validity is questidmafbthe system is put under
strong nonequilibrium conditions like, e. g., a turbuleotfl— it should be noted that the
Green’s function is calculated for lowiRe hydrodynamics.

Therefore, many soft—matter researchers have rather rchibselternative approach,
which is to simulate the system including the solvent degjiefefreedom, with explicit
momentum transport. The advantage of this is a simple dhgoriwhich scales linearly
with the number of Brownian particles, and is easily paliaiile, due to its locality. The
disadvantage, however, is that one needs to simulate marg degrees of freedom than



those in which one is genuinely interestedandto do this on the short inertial time scales
in which one is not interested either. It is clear that suclapgproach involves essentially
Molecular Dynamics (MD) for the Brownian particles.

Many ways are possible how to simulate the solvent degreégedom, and how to
couple them to the MD part. It is just the universality of hydynamics that allows us to
invent many models which all will produce the correct phgsithe requirements are rather
weak — the solvent model has to just be compatible with NaBtykes hydrodynamics
on the macroscopic scale. Particle methods include DigggpRarticle Dynamics (DPD)
and Multi—Particle Collision Dynamics (MPCR)while lattice methods involve the direct
solution of the Navier—Stokes equation on a lattice, ordatBoltzmann (LB). The latter
is a method with which we have made quite good experiencé, ibderms of efficiency
and versatility. The efficiency comes from the inherent eddseemory management for
a lattice model, combined with ease of parallelization,aliidomes from the high degree
of locality: Essentially an LB algorithm just shifts poptitas on a lattice, combined with
collisions, which however only happen locally on a singltide site. The coupling to the
Brownian particles (simulated via MD) can either be donebaandary conditions, or via
an interpolation function that introduceslissipativecoupling between particles and fluid.
In this article, we will focus on the latter method.

2 Coupling Scheme

As long as we view LB as just a solver for the Navier—Stokesa&qun, we may write down
the equations of motion for the coupled system as follows:

%Fi = miiﬁu (4)
Ao pe  Fd B (5)
T
O4p + Oaja =0, (6)
OtJa + 8ﬁ7r55 = 08Napys0yUs + fh+ @mgﬁ. )

Here,7;, p; andm, are the positions, momenta, and masses of the Browniarcleatti
respectively. The forces; acting on the particles are conservativei( e. coming from
the interparticle potential), dissipativé)( and fluctuating ). The equations of motion for
the fluid have been written in tensor notation, where Gredkxas denote Cartesian com-
ponents, and the Einstein summation convention is usedfifBhequation describes mass
conservation; the mass flyxi, wherei is the flow velocity, is identical to the momentum
density;. The last equation describes the time evolution of the fluim@ntum density.
In the absence of particles, the fluid momentum is conserVéds part is described via
the stress tensor, which in turn is decomposed into the ceathee Euler stress;, the

dissipative stresg,s;0-us, and the fluctuating stress, 5- The influence of the particles

is described via an external force densfty.
The coupling to a particléis introduced via an interpolation procedure where first the
flow velocities from the surrounding sites are averaged tovgield the flow velocity right



at the position of. In the continuum limit, this is written as
@ = () = [ EFAF R, ®)
whereA(7, ;) is a weight function with compact support, satisfying
/d"’FA(F,Fi) =1 9)

Secondly, each patrticle is assigned a phenomenologicaiofti coefficientl’;, and this
allows us to calculate the friction force on parti¢ie

ﬁ——n(@—m>. (10)

A Langevin noise ternﬁf is added to the particle equation of motion, in order to com-

pensate the dissipative losses that come fighn F/ satisfies the standard fluctuation—
dissipation relation

(FL) =0, (11)
(FL () Fl; (1)) = 2kpTTi65560s0 (t 1), (12)

whereT is is the absolute temperature ahgd the Boltzmann constant. While the con-
servative forcesﬁiC conserve the total momentum of the particle system, as dt r@fsu
Newton'’s third law, the dissipative and fluctuating terrﬁg @ndﬁif) do not. The associ-
ated momentum transfer must therefore have come from tlte fliie overall momentum
must be conserved, however. This means that the force teteniranthe Navier—Stokes
equation must just balance these forces. One easily seahehzhoice

1 = =3 (B + F) A (13)
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satisfies this criterion. It should be noted that we usestmaeweight function to interpo-
late the forces back onto the fluid; this is necessary tofgatie fluctuation—dissipation
theorem for the overall system, i. e. to simulate a well-@éefinonstant—temperature en-
semble. The detailed proof of the thermodynamic consigteficthe procedure can be
found in Ref. 2.

We still need to specify the remaining terms in the Navieok&¢ equation. The vis-
cosity tensor), 3,5 describes an isotropic Newtonian fluid:

2
Napys =1 <5o¢’y6[56 + 5&56[57 - 3504[55'75) + 77175(1#35'}/53 (14)

with shear and bulk viscositiesandr,. This tensor also appears in the covariance matrix
of the fluctuating (Langevin) stres{ﬁ,:

<a£6> —0, (15)

(L5 (70 0 (7)) = 2kpTagpsd (F— 7) 6 (t = 1), (16)



Finally, the Euler stress
nfﬁ = pdag + puaus (17)

describes the equation of state of the flyidg the thermodynamic pressure), and convec-
tive momentum transport.

3 Low Mach Number Physics

At this point an important simplification can be made. Theagiqun of state only matters
for flow velocitiesu that are comparable with the speed of soupdi. e. for which the
Mach number

Ma=2 (18)

Cs

is large. In the low Mach number regime, the flow may be comsil@s effectively in-
compressible (although no incompressibility constrasritriposed in the algorithm). The
Mach number should not be confused with the Reynolds numteervhich rather mea-
sures whether inertial effects are important. Now it tunmstbat essentially all soft—-matter
applications “live” in the low4/a regime. Furthermore, largel « is anyway inaccessible
to the LB algorithm, since it provides only a finite set of izt velocities — and these
essentially determine the value @f In other words, the LB algorithm simply cannot re-
alistically represent flows whose velocity is not small camgal tocs. For this reason, the
details of the equation of state do not matter, and therefoeechooses the system that is
by far the easiest — the ideal gas. Here the equation of siatedystem at temperature
may be written as

kpT = m,c2. (19)

In the D3Q19 model (the most popular standard LB model inetldinensions, using
nineteen lattice velocities, see below) it turns out thatdpeed of sound is given by

102

2=-— 20

=353 (20)
whereb is the lattice spacing ant the time step. Therefore the Boltzmann number can

also be written as
1/2 9 1/2
kgTh
Bo— (Mo _ (3kBThTN 1)
pb3 pbd

4 Lattice Boltzmann 1: Statistical Mechanics

The lattice Boltzmann algorithm starts from a regular grithvgitesi and lattice spacing
b, plus a time step. We then introduce a small set of velociti@&ssuch thatt;h connects
two nearby lattice sites on the grid. In the D3Q19 model, #ttcke is simple cubic, and
the nineteen velocities correspond to the six nearest aatvéwnext—nearest neighbors,
plus a zero velocity. On each lattice sitat timet, there are nineteen populationg, t).



Each population is interpreted as the mass density comeépg to velocityc;. The total
mass and momentum density are therefore given by

p(Ft) =D n(7t), (22)
;(Fv t) = Z n; (F7 t)é;-, (23)

such that the flow velocity is obtained via= j‘/p. The number of “lattice Boltzmann
particles” which correspond te; is given by
13 .
p= WY (24)

my n
wherem,, is the mass of a lattice Boltzmann particle, anttie corresponding mass density.
It should be noted that is a measure of the thermal fluctuations in the system, since,
according to Eq. 21, one hdo? = 1/p.

If we now assume a “velocity bin? to be in thermal contact with a large reservoir of
particles, the probability density for, is Poissonian. Furthermore, if we assume that the
“velocity bins” are statistically independent, but takéoimccount that mass and momen-
tum density are fixed (these variables are conserved gearditiring an LB collision step
and should therefore be handled like conserved quantitiaamicrocanonical ensemble),
we find

v L =
P({v}) x (H VZ!e 1>6<uZui—p>5<uZVici—]>. (25)
for the probability density of the variables. This must be viewed as the statistics which
describes the local (single:site) equilibrium under thedition of fixed values of the hy-
drodynamic variableg andj. The parametep; is the mean occupation imposed by the
reservoir, and we assume that it is given by

v =a%l (26)

)

1

wherea® > 0 is a weight factor corresponding to the neighbor shell withesic; .
From normalization and cubic symmetry we know that the lodeovelocity moments
of the weights must have the form

> et =1, (27)

Z a“ciq =0, (28)
1
> a“iciatip = 02 8ap, (29)
Z a“ cinCigCiy = 0, (30)
Z O/Ciciaciﬁci'yci(s = R4 5@676 + 04 (6a65’y5 + 5@7555 + 6(¥555"{) ) (31)
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whereos, 04, k4 are yet undetermined constants, whilg;.,s is unity if all four indexes
are the same and zero otherwise.

Employing Stirling’s formula for the factorial, it is stigitforward to find the set of
populationsz;? which maximizesP under the constraints of givenand;. Up to second
order inu (low Mach number!) the solution is given by

it = pas (145G, @A w2 (32)
i =P o) 203 209 | -
The low—order moments of the equilibrium populations asnthiven by
7
> niia = ja (34)
Z n;lcinCip = PCECSaB + puqug. (35)

The first two equations are just the imposed constraintdewhe last one (meaning that
the second moment is just the hydrodynamic Euler stredgifsifrom imposing two ad-
ditional conditions, which is to choose the weights such that they satisfy, = 0 and
o4 = 03(= ¢%). From the Chapman-Enskog analysis of the LB dynamics (dee/pi
follows that the asymptotic behavior in the limit of largadgh and time scales is compat-
ible with the Navier—Stokes equation only if Eq. 35 holdg] &mis in turn is only possible
if the abovementioned isotropy conditions are satisfiedgeliver with the normalization
condition, we thus obtain a set of three equations fordhe Therefore at least three
neighbor shells are needed to satisfy these conditionsthasids the reason for choosing
a nineteen—velocity model. For D3Q19, one thus obtafs= 1/3 for the zero velocity,
1/18 for the nearest neighbors, ah@36 for the next—nearest neighbors. Furthermore, one
findsc? = oy = (1/3)b?/h2.

For the fluctuations around the most probable populatigfs

n;?=n; —ni, (36)

we employ a saddle—point approximation and approximdig zero. This yields

P({n?SQ}) X exp ( Z (2/:::;7 ) (Z nﬂeq) 5 (Zan?eQ> ) (37)

We now introduce normalized fluctuations via

ne
n; a

fl?eq = 7Jpa0i (38)

and transform to normalized “modes” (symmetry—adapteghlircombinations of the;,
see Ref. 2)n,“? via an orthonormal transformati@n,:

~ neq Z éx Aneq7 (39)



k=0,...,18, and obtain

P ({mi) scoxp |~ Somit | (40)
k>4

It should be noted that the modes number zero to three havedxetuded; they are just
the conserved mass and momentum densities.

5 Lattice Boltzmann 2: Stochastic Collisions

A collision step consists of re-arranging the setpbn a given lattice site such that both
mass and momentum are conserved. Since the algorithm ssiouldate thermal fluctu-
ations, this should be done in a way that is (i) stochastic(@ndonsistent with the de-
veloped statistical-mechanical model. This is straightéodly imposed by requiring that
the collision is nothing but a Monte Carlo procedure, whekéoate Carlo step transforms
the pre—collisional set of populations,, to the post—collisional one,;. Consistency with
statistical mechanics can be achieved by requiring thatitrete Carlo update satisfies the
condition of detailed balance. Most easily this is done imtof the normalized modes
my, which we update according to the rufe %t 4)

my, = g + /1 — Yk (41)

Here thev, are relaxation parameters withl < v, < 1, and ther, are statistically
independent Gaussian random numbers with zero mean andamiaihce. Mass and mo-
mentum are automatically conserved since the correspgmnaires are not updated. Com-
parison with Eq. 40 shows that the procedure indeed doesfysdetailed balance. The
parameters;, can in principle be chosen at will; however, they should bapatible with
symmetry. For example, mode number four corresponds toutestress, with a relax-
ation parametet,, while modes number five to nine correspond to the five sheassts,
which form a symmetry multiplett. Therefore one must chogse- ... = vg = v,. For
the remaining kinetic modes one often usgs= 0 for simplicity, but this is not necessary.

6 Lattice Boltzmann 3: Chapman—Enskog Expansion

The actual LB algorithm now consists of alternating caliisand streaming steps, as sum-
marized in the LB equation (LBE):

n;(F+ Gih,t + h) = n} (7, t) = ny (7, t) + A; {n;i (7, 0) } . (42)

The populations are first re—arranged on the lattice site;istdescribed by the so—called
“collision operator"A;. The resulting post—collisional population$ are then propagated
to the neighboring sites, as expressed by the left hand $ithe @quation. After that, the

next collision step is done, etc.. The collision step mayude momentum transfer as a
result of external forces (for details, see Ref. 2); apannfithat, it is just given by the

update procedure outlined in the previous section.



A convenient way to find the dynamic behavior of the algoritbmlarge length and
time scales is a multi-time—scale analysis. One introdac&oarse—grained ruler” by
transforming from the original coordinat&$o new coordinatesg; via

7 = ef, 43)

wheree is a dimensionless parameter with< ¢ < 1. The rationale behind this is the
fact that any “reasonable” value for the scajewill automatically forcer to be large. In
other words: By considering the limit— 0 we automatically focus our attention on large
length scales. The same is done for the time; however, heretrmeucetwo scales via

tl =€t (44)
and
ty = €%t. (45)

The reason for this is that one needs to consider both w&espfienomena, which happen
on thet; time scale (i. e. the real time is moderately large), andidite processes (where
the real time isverylarge). We now write the LB variables as a functiorrpft,, t5 instead
of 7, t. Since changing at fixedr; changes’and thus»;, we must take into account that
the LB variables depend an

ni =n\% + engl) + e2n52) +O(€%). (46)

The same is true for the collision operator:
A=A 1A £ 2AP 1 o). (47)
In terms of the new variables, the LBE is written as
n; (71 + €C;h, t1 + €h, ta + th) — (71, b1, t2) = A, (48)

Now, one systematically Taylor-expands the equation uprdera®. Sorting by order
yields a hierarchy of LBEs of which one takes the zeroth,,fastd second velocity mo-
ment. Systematic analysis of this set of moment equatiandftails, see Ref. 2) shows
that the LB procedure, as it has been developed in the pregiections, indeed yields the
fluctuating Navier—Stokes equations in the asymptetie 0 limit — however only for
low Mach numbers; in the high Mach number regime, where terhosderu3 /c2 can no
longer be neglected, the dynamics definitely deviates fravidd—Stokes.

In particular, this analysis shows that the zeroth—ord@ufaiions must be identified
with n;?, and that it isnecessaryhat this “encodes” the Euler stress via suitably chosen
weightsa©. Furthermore, one finds explicit expressions for the visiass

_ hoci 1t (49)
2 1_757
hpc? 1+
= npcs 2 T (50)
31—



7 A Polymer Chain in Solvent

In Ref. 6 we explicitly aimed at a comparison between BD anapted LB—MD for the
samesystem. We chose a well-studied standard benchmark syatsimgle bead—spring
polymer chain ofV monomers in good solvent in thermal equilibrium. The BD aitipon
is realized via

Fia(t+1h) = Tia(t)+(kpT) " DijasFish+V2hBijasWs,  i=1,2,...,N. (51)

Ad
Herer; is the coordinate of théth particle,k is the BD time stepD;; is the diffusion

tensor coupling particlesand, andﬁ denotes the deterministic force on partiglénere
spring force and excluded—volume force) We assume surametinvention with respect

to both Cartesian and particle indexes. The ter&gns the matrix square root d’r)u,
Dijaﬁ = Bika’yBjkB'yv (52)

while W; is a discretized Wiener procesdVi,) = 0 and(W;,W,g) = 0;;005. For the
diffusion tensor we used the Rotne—Prager tensor. The catiqually most demanding
part is the calculation of the matrix square root. The exaaterical solution of this prob-
lem via Cholesky decomposition has a computational conitgleéX(N?3). We therefore
rather used Fixman’s triék to speed up the calculations. This is based on the obsemvatio
that the “square root” function, if viewed as a function agton real numbers, needs to be
evaluated only within a finite interval, spanning from theadlest to the largest eigenvalue.
Since this interval does not contain the singularity at zatouncated (Chebyshev) polyno-
mial expansion approximates the function quite well. Thmeesaxpansion can then also be
used to evaluate the matrix square root. The number of teemded is empirically found
to scale a®)(NN°-2%). Furthermore, for each term one needs to do a “matrix tineesov”
operation, which scales &3(/N?), such that the algorithm in total has a computational
complexityO(N?2-2°). We did not employ an FFT-based “superfast” BD algoriththis
would have been quite complicated, and also required tan@ssusimulation box of size
L? with periodic bondary conditions, such that an extrapotafi — co would have been
necessary.

Such a finite box size, combined with an extrapolation, iséww precisely what is
needed for LB—-MD. We therefore ran these simulations foeast three different values
of L in order to allow for meaningful extrapolations (and usee tbtal time for these
three systems to estimate our CPU effort). The typical beassthat are needed are given
by the requirement that the polymer chain should fit nicetp ithe box, without much
back—folding. Since in a good solvent the polymer raditiscales as? o« NV, where

~ 0.59 is the Flory exponent, we find3 o« N3¥. Furthermore, the computational
cost is completely dominated by the operations requireduiothe solvent, and hence
the computational complexity ©(N3") = O(N!#®). We see that this is slightly better
than BD; however, the prefactor is much smaller for BD. Inctiee, we find that BD is
roughly two orders of magnitude faster than LB—MD, for thgitwal chain lengths used in
simulations, see Fig. 1.

The situation is expected to be quite different when oneistual semidilute solution,
where the monomer concentration is still quite low (such tha LB-MD CPU effort is
still dominated by the solvent), but the chains are so lomg tiey strongly overlap. For
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Figure 1. Comparison of the CPU time needed by the LB—-MD and Bifesys for the equivalent of 1000 LB—
MD time steps for various chain lengt6. From Ref. 6.

example, Ref. 9 studied0 chains of lengthV = 1000, being well in the semidilute
regime. While the additional chains for the LB—-MD system pesgentially no computa-
tional burden at all (rather on the contrary: Flory scregnimtakes the chains shrink, such
that one can afford to run the simulation in a somewhat smbbe&), the BD effort (for
our algorithm) is expected to increase by a factob@¥2°, i. e. more than three orders
of magnitude — or even more, since one needs a more compulisateeme to evaluate
the hydrodynamic interactions for a periodic system. Ireothords: For such a system,
BD can at best be competitive if the “superfédstersion is implemented — and to our
knowledge, this has not yet been tested.

In order to allow a meaningful comparison, both systems ha\ee run for the same
system and the same parameters. This implies, firstly, icnibteraction potentials be-
tween the beads, and the same temperature. From this onkidemn¢and numerically
verifies) that the static properties like gyration radiuatis structure factor, etc., must all
be identical. For the dynamics, it is important that bothidations are run with the same
value for the shear viscosity, which is easy to achieve, plus with the same value for the
monomeric friction coefficient. At this point, one has togakto account that the friction
coefficient¢ that appears in the BD algorithm (on the diagonal of the diffn tensor) is
a long—timefriction coefficient, which describes the asymptotic stiasiry velocityv of a
particle that is dragged through the fluid with a folceF = (¥, while the friction coeffi-
cientI” that appears in the LB—MD algorithm via the coupling prqﬁdmhﬁ =T(0—1u)
(see Eq. 10) is a correspondisfort—timecoefficient that does not yet take the backflow
effects into account. Indeed, for an experiment in whichréigla is dragged through the

11
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Figure 2. The dimensionless long time diffusion constantterdenter of mass at various box lengthsFrom
Ref. 6

LB fluid, it is clear that the flow velocity; will be nonzero, and typically slightly smaller
than@. Hence F' = (7 = I'(¥ — @), i. e. ¢ is smaller thar". Since hydrodynamics allows
us to estimate up to a numerical prefactgrvia a Stokes—like formula’ = gnaii, where
a 1s the range of the interpolation scheme, one finds (see @at®R

¢Th=T""4 (gna)~". (53)

For nearest—neighbor linear interpolation, one finds 25 if « is identified with the LB
lattice spacing. One hence needs to choosé thedue in the LB—MD simulations in such
a way that it reproduces the BDvalue.

The diffusion constant of the LB—MD chain depends on the lizg, &s a result of the
hydrodynamic interaction with the periodic images. Sirfee latter decays like~!, one
concludes ar.~* finite size effect, which is nicely borne out by the data of.Rlg From
these data one sees also that for an accurate descriptiba df/hamics it is necessary to
not only thermalize the stress modes in the LB algorithmydhése matter in the strict
hydrodynamic limit), but also the kinetic modes, as suggpbsty the more microscopic
theory outlined above. Taking the finite—size effect and gheper thermalization into
account, the remaining deviation between BD and LB-MD iy @nflew percent.

The internal Rouse modes of the chain are definegg as1,2,..., N — 1)
N
= 1 L |pm 1
XP:N;T”COb |:N <n—2>] . (54)

Figure 3 shows the decay of the normalized mode autocaoel&inction up top = 5.
Obviously the agreement with BD is quite good, i. e. the fisie effect is quite weak.
The reason is the following: The diffusion constant coroes}s to the friction of the chain
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Figure 3. Normalized autocorrelation function of the first &uRe modesX,, for LB-MD simulations at fixed
L = 25 and BD simulations af. — oc. From Ref. 6.
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Figure 4. The autocorrelation function for the first Rouse eid at a finite time value of = 700 for LB-MD
simulations at various box lengttisand BD simulations at. — oo. From Ref. 6.

as awhole, i. e. to an experiment where the chain is beinggeddathrough the fluid with
a constant force. This gives rise to a flow field that decaysik', and thus ard,~*! finite
size effect. This total force may also be viewed as the moleapoment of a distribution
of forces acting on the polymer. The Rouse modes howevey sha&dnternal motion of
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the chain, i. e. in the center—of-mass system. Therefogentinopole contribution of the
forces has been subtracted, and only highr—order multipalments remain. The dipole
contribution vanishes for symmetry reasons, i. e. the fiighdr—order multipole is the
guadrupole (this may be vaguely understood by recallingttieamass distribution has a
monopole and a quadrupole moment, but not a dipole momertig gladrupolar flow
field decays like-=3, and hence one expects &n? finite size effect. For a more detailed
derivation, see Ref. 10. This finite size effect is indeedeole, see Fig. 4, demonstrating
that on the one hand the system is theoretically quite weletstood, and that on the
other hand such simulations are nowadays so accurate twatrather subtle effects can
be analyzed unambiguously.
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