
Phase Diagrams of Alloys and AdsorbedMonolayers: Some Recent ResultsB. D�unweg, S. K�ammerer, M. PresberInstitut f�ur Physik, Universit�at Mainz, Postfach 3980D{55099 Mainz, GermanyAbstractWe discuss some recent work done on the calculation of phase diagrams of modelsof binary alloys and adsorbed monolayers. For the nearest{neighbor Ising antifer-romagnet on the fcc lattice (model for the Cu{Au system) we study a rather largelattice of 4 � 643 spins. This is necessary since the inherent frustration of the lat-tice induces a very small interfacial tension between ordered domains. We �nd noindications for the suggested L0 phase, and locate the triple point at a nonzero tem-perature. There is some numerical evidence that it might in fact be a multicriticalpoint. We then discuss the extension of lattice gas models to \elastic lattice gases"(ELGs) which include also translational degrees of freedom. Special attention ispaid to the statistical treatment of vacant sites, and it is shown that a system A+ vacancies is no longer equivalent to a system A + B. The ELG Hamiltonian isthen studied for three{dimensional models on the diamond lattice for the unmixingof semiconductor alloys (where we �nd Mean{Field{like critical behavior), and fora two{dimensional model for c(2 � 2) structure formation.1 Introduction: Lattice Gas and Ising ModelsAlthough originally invented for magnetic systems, the Ising model is, in many cases, nota particularly good representation for real magnets, since its spin dimensionality n = 1 istoo low. Conversely, it is very well suited to describe substitutional binary alloys (AB) oradsorbed monolayers, since in both cases there is a \pre{de�ned" lattice given by eitherthe mixed crystal (three{dimensional alloy) or the adsorption sites of the substrate surface(two{dimensional adsorbate system), and there are two states per lattice site available(A{atom vs. B{atom in the alloy case, adsorbate atom vs. vacancy in the monolayercase). This analogy is made rigorous by the lattice gas model with pair interactions,HLG = �Xi n"Aci + "B(1� ci)o (1)+ Xhiji nvAAnn cicj + vABnn [ci(1� cj) + cj(1� ci)] + vBBnn (1� ci)(1� cj)o+ Xhhijii nvAAnnncicj + vABnnn [ci(1� cj) + cj(1� ci)] + vBBnnn(1� ci)(1� cj)o + : : : :1



Here, ci = 1 if site i is occupied by an A{atom, while ci = 0 otherwise (in the adsorbatecase, B is just a vacancy). hiji and hhijii denote pairs of nearest and of next{nearestneighbors, respectively, and of course the model could also include interactions of evenlarger range. "A is the energy which is released upon placing an A{atom on a site, whilevAAnn is the energy needed to build a nearest neighbor bond of two A{atoms. The othersymbols' meaning is analogous. This Hamiltonian is quite general, and for an alloy onewould specify "A = "B = 0, while for an adsorbate "B = vAB::: = vBB::: = 0.Now this model is straightforwardly mapped onto an Ising model [1] by introducingthe pseudospin variables Si = 2ci � 1 = �1, and studying the model of N sites in thegrand{canonical ensemble, whose partition function isZgc = NXNA=0 exp(��ANA) exp(��BNB)Zc(NA); (2)where � is the inverse temperature 1=(kBT ), �A and �B denote the chemical potentialsof species A and B, respectively (of course, �B = 0 in the adsorbate case), andZc(NA) = XfcigjNA exp (��HLG) (3)is the canonical partition function, the sum running over all con�gurations compatiblewith the constraint Pi ci = NA (which automatically means Pi(1� ci) = NB = N �NA,such that in the alloy case one should use, strictly spoken, the term \semi{grand canonicalensemble"). With this transformation one �nds, apart from an irrelevant prefactorZgc = XfSig exp (��HI) (4)with HI = �JnnXhiji SiSj � Jnnn XhhijiiSiSj � : : :�HXi Si (5)and H = 12 (�A � �B) + 12 �"A � "B� (6)�znn4 �vAAnn � vBBnn �� znnn4 �vAAnnn � vBBnnn�� : : : ;Jnn = 14 �2vABnn � vAAnn � vBBnn � ; (7)Jnnn = 14 �2vABnnn � vAAnnn � vBBnnn� ; (8)etc. Here znn and znnn denote the coordination numbers of the lattice in the nearest andnext{nearest neighbor shell, respectively.Though its apparent simplicity, HI allows for a very rich physics. This is so becausethe model allows for competing interactions and resulting complicated antiferromagneticstructures. For a given set of J 's, the usual Monte Carlo analysis of such a Hamiltonianproceeds as follows: (i) Find the ground states as a fuction of H; (ii) identify the phases,the pertinent order parameters (usually linear combinations of sublattice magnetizations),and their symmetry properties; (iii) from that, conclude the universality class of second{order transitions, if applicable (e. g. Ising, XY with cubic anisotropy, etc.); (iv) calculate2



the phase diagram. This program looks rather straightforward, and in many cases it is.However, there are cases where the intrinsic complexity of HI causes quite challengingproblems, and one such case will be discussed in some detail in the next Section.Nevertheless, despite these rather interesting properties, the above approach is clearlylimited. One obvious de�ciency is the symmetry of the resulting phase diagram: From theIsing symmetry (invariance ofHI with respect to Si ! �Si and H ! �H), one concludesthat the phase diagram in the grand{canonical ensemble (H{T plane) is symmetric aroundH = 0, while the corresponding canonical phase diagram (c{T plane, 0 � c � 1 beingthe concentration of A{atoms) must be symmetric around c = 0:5. However, the phasediagrams of real systems are often strongly asymmetric, and the traditional approach toremedy this \sickness" has been to include also triplet interactions, i. e. terms / SiSjSk.However, this symmetry will also be destroyed as soon as the model also includes elas-tic interactions, i. e. explicitly takes into account the translational degrees of freedom ofeach particle. Moreover, this modi�cation also changes the range of the e�ective interac-tion between the spins qualitatively because two spins, although being located rather faraway from each other, nevertheless interact with each other due to the long{range elasticdistortions of the lattice. For this reason, these systems are also of fundamental physicalinterest, since the universal critical behavior of second{order phase transitions may wellbe a�ected. The rest of this contribution will therefore discuss some recent studies ofsuch models. Sec. 3 will be devoted to the modeling and the related methodologicalproblems, while Sec. 4 and 5 discuss the application to a three{dimensional model for amixture of Si and Ge (note that the e�ects of elastic interactions, i. e. most notably theatomic size mismatch, are expected to be most pronounced in covalently bonded systemslike semiconductor alloys), and to a two{dimensional model for an adsorbed monolayerof hydrogen on a palladium (100) surface, respectively.2 The Nearest{Neighbor Ising Antiferromagnet onthe FCC LatticeWe study the Hamiltonian of Eqn. 5 on the fcc lattice for the case J = Jnn < 0, while allother exchange couplings vanish, and we limit ourselves to H > 0 for symmetry reasons.A physical realization of this system is the alloy CuxAu1�x, i. e. in this system the sameordered superstructures occur [2]. The phase diagram of this model has been the subject ofa long{standing debate, and calculations have been done, with ever{increasing accuracy,using the Mean Field approximation or Kikuchi's cluster variation method (CVM) [3{9],low{temperature expansions [10{12] and Monte Carlo (MC) simulations [13{20, 9]. Thepresent MC study [21, 22] is the most expensive simulation of the system so far, and hasattempted to resolve the controversial issues about the location of the triple point andabout the existence of the L0 phase (see below).The reason why this system has been so hard to analyze is the geometric frustrationof the fcc lattice: It is impossible to assign spins to a nearest{neighbor tetrahedron suchthat all six bonds are antiferromagnetic. Therefore, the ground state [23] does not exhibitthree{dimensional order but only two{dimensional order (except for H > 12jJ j, where allspins are up), i. e. it is a sequence of perfectly ordered (either ferromagnetic or antiferro-magnetic) (100) planes. Every antiferromagnetic plane yields a twofold degeneracy (sinceit may be shifted freely in itself), such that the ground state is macroscopically degenerate3



with nevertheless vanishing entropy. For H < 4jJ j, all planes are antiferromagnetic, whilefor 4jJ j < H < 12jJ j every second plane is ferromagnetic. At the \superdegenerate" pointH = 4jJ j the ground state entropy is nonzero.For T > 0, three{dimensional order becomes entropically stabilized [10{12], since theordered phases AB (H < 4jJ j) and A3B (4jJ j < H < 12jJ j) admit more low{energyexcitations than a disordered ground state. As usual, a con�guration of two ordereddomains separated by two interfaces (also called antiphase boundaries, APBs; note theperiodic boundary conditions) costs a free energy penalty of �F = 2�L2, where L is thelinear system size and � the interfacial tension [24]. However, the pathology is that �has a purely entropic origin, and hence vanishes quickly upon T ! 0. For this reason,L must be rather large in order to make �F su�ciently large, and practical tests [21]showed that we needed an N = 4 � L3 system with L = 64, while L = 32 still showedsome tendency towards APBs, and L = 16, which had been used in older studies [13{15],is clearly too small.In order to describe the ordered phases, we decompose the system into four interpen-etrating simple cubic sublattices (a, b, c, d), and introduce 0 = (ma +mb +mc +md)=4 1 = (ma +mb �mc �md)=4 2 = (ma �mb +mc �md)=4 (9) 3 = (�ma +mb +mc �md)=4;where m� are the sublattice magnetizations varying between �1 and +1.  0 is the totalmagnetization, and  1,  2 and  3 are the components of the three{dimensional orderparameter ~ , which vanishes in the disordered phase where all sublattices are equivalent.The perfectly ordered AB state is then given by two sublattices with Si = +1, the othertwo sublattices having magnetization �1. Likewise, in the A3B state only one sublatticehas magnetization�1, all the other spins being Si = +1. The AB phase is hence describedby the six states ~ = (� AB; 0; 0), (0;� AB; 0) and (0; 0;� AB), and the A3B phase bythe four states ~ = ( A3B;  A3B;  A3B), ( A3B ;� A3B;� A3B), (� A3B;  A3B;� A3B),(� A3B ;� A3B;  A3B), where j ABj < 1 and j A3Bj < 1=2 describe states which are notperfectly ordered. The so{called L0 phase corresponds to three di�erent sublattice magne-tizations (ideally, two sublattices up, one down, and one with random spin orientation);this phase has been found stable by CVM calculations in the vicinity of H = 4jJ j [7]. Wecarefully searched for this phase at various state points by starting the system in a perfectL0 state, and monitoring the time evolution of the sublattice magnetizations. In all cases,the system ended up in an AB or A3B state, and hence we believe that this phase is anartifact of the CVM.Similarly, the old MC studies [13{15] had suggested that the triple point, where AB,A3B and the disordered phase coexist, should occur at H = 4jJ j, T = 0. We hencelooked, in a similar fashion, also for stability of the disordered phase near H = 4jJ jat low temperatures, with the same result, i. e. evolution into an AB or A3B state.Therefore, the triple point must occur at a nonzero temperature. We then mapped outthe phase boundaries, using standard hysteresis loops and thermodynamic integration to�nd intersecting branches of the free energy F , using the relations N 0 = �@F=@H andU = �T 2@(F=T )=@T for the internal energy.Note that all transition lines are expected to be of �rst order: The six states of the AB4



phase correspond to a Heisenberg model with cubic anisotropy, whose transition into thedisordered phase has been shown to be �rst{order by renormalization{group arguments[25]. Similarly, the A3B phase corresponds to a 4{state Potts model (relevant for thetransition into the disordered phase), while the transition from A3B to AB correspondsto a 3{state Potts model (note that one out of three sublattices must be ipped) [26].Our results are summarized in Fig. 1. One sees that the data indeed con�rm theanticipated �rst{order behavior of all three transition lines, and the triple point is locatedat kBTt=jJ j = 0:98 � 0:02, Ht=jJ j = 3:60 � 0:04. Moreover, we �nd that all �rst{orderjumps along all three lines get very small when approaching the triple point. We hencebelieve that this point might actually be a multicritical point, such that the jumps wouldtend to zero. Indeed, our order parameter data along the AB $ A3B transition line arewell compatible with tricritical scaling. However, our resolution is not �ne enough tounambiguously answer this subtle question; this would require further large{scale simu-lations of even signi�cantly larger lattices. We believe that an accurate �nite{size scalinganalysis would prove very di�cult, due to the high order parameter dimensionality, andthe very large minimum system size which is necessary. It should also be noted that amulticritical point is not predicted by Landau theory [22].3 Inclusion of Elastic InteractionsThe \fundamental" approach to a classical simulation of an alloy or adsorbate system withcontinuous degrees of freedom would consist in the speci�cation of an interatomic potential(depending on distances, bond angles, atomic species, : : : ) and, for modeling the inuenceof a substrate, an external potential. The particles would then freely move around, and,depending on the current geometric con�guration, �nd the neighbors with which theyinteract. One could also introduce a grand{canonical ensemble via particle creation anddestruction, or a semi{grand canonical description via changes A$ B. Indeed, for uids,this approach must be used, and has recently been applied to rather accurate studies ofthe gas{liquid transition of two{ and three{dimensional Lennard{Jones systems [27, 28].However, it is also obvious that such a model is computationally rather cumbersome:Each particle's neighbor shell uctuates and must be continuously checked and updated.We have hence chosen to deliberately neglect these uctuations and instead study a two{or three{dimensional network with the same topology as the original lattice. Since thistopology is conserved during the simulation, one can use the same neighbor list for theinteractions once and for all, such that from the point of view of data structures thesimulation is as e�cient as a simple lattice simulation. Actually, the types of Hamiltonianswe are interested in are directly related to the original lattice gas, Eqn. 1: One simplyhas to replace the interaction parameters vAAnn etc. by distance{depending functions,vAAnn ! vAAnn (j~ri � ~rjj) (10)(similarly the other v's), and the adsorption energies "A, "B by functions depending onthe particle's distance from its ideal adsorption site:"A ! "A ����~ri � ~ridi ���� : (11)Again, for describing an alloy one would specify "A = "B = 0, while in the adsorbate case"B = vAB::: = vBB::: = 0. The resulting Hamiltonian shall be denoted with HELG (\elasticlattice gas"). 5
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Figure 1: (From Ref. [22]) a) Total magnetization as function of �eld, for temperaturesas indicated. Hysteresis indicates the �rst{order nature of the transition AB $ A3B. b)Branches of the free energy per site as function of �eld, at temperature kBT = 0:85jJ j,resulting from a cubic spline �t to the magnetization data and thermodynamic integration.Errors in the individual data points were estimated via standard MC error analysis, whilethe error in the free energy was estimated via standard error propagation. For sake ofclarity of the plot, a \background" contribution linear in H has been subtracted. c)Hysteresis loops of order parameter component  3, which vanishes in the simulated ABstate, while it is nonzero in the A3B phase. The �rst{order jumps decrease stronglyupon approaching the triple point. d) Phase diagram in the grand{canonical ensemble.Filled symbols have been obtained by thermodynamic integration, open symbols by directinspection of order parameter hystereses. e) Phase diagram in the canonical ensemble.f) Order parameter component  3, evaluated along the AB $ A3B coexistence line, asa function of temperature. The line represents a �t  3 / (Tt � T )�t with kBTt = 0:99jJ jand �t = 0:2416, while tricritical scaling would imply �t = 1=4. However, every exponentin the range 0:2 : : : 0:3 is compatible with the data.6



Of course, such a simpli�ed Hamiltonian loses some of the physics which could oth-erwise be modeled by the translational degrees of freedom, since both structural phasetransitions as well as melting are explicitly excluded. However, su�ciently far away fromsuch transitions we expect the model to describe the physics reasonably well.This model has a number of peculiarities which shall now be discussed. First of all,one should note that the particles should be considered as distinguishable: Each particlecan be uniquely identi�ed by its position on the network, and hence prefactors (NA!)�1,(NB!)�1 do not occur in the partition function. Moreover, the model's \philosophy" is toassign independent degrees of freedom ci and ~ri to each lattice site i, and to also updatethese degrees of freedom independently of each other in the grand{canonical ensemble.However, if the B{particle is a vacancy, this assignment is unphysical and arti�cial, sincephysically it does not make sense to ask for the coordinate of a non{existent particle.Nevertheless, this assignment is useful in order to facilitate a compact and straightforwardsimulation algorithm. This is the reason why the transformation to the grand{canonicalensemble is no longer as straightforward as before, and why the systems A + B (alloy)and A + vacancies (adsorbate) are no longer equivalent [29].Let us now discuss the transformation to the grand{canonical ensemble in some moredetail. Eqn. 2 is of course still valid, but Zc must now also include the translationaldegrees of freedom of the real particles. To make this more explicit, consider the latticesites as enumerated from 1 to N . A given con�guration fcig can then be associated in aunique way with indices i1 < i2 < : : : < iNA and j1 < j2 < : : : < jNB such that cik = 1and cjk = 0. Moreover, we introduce the numbers �nn(i; j) = 1 if i and j are nearestneighbors, and zero otherwise, and similarly �nnn(i; j) for next{nearest neighbors, etc.HELG can then be rewritten asHELG = � NAXk=1 "A ����~rik � ~ridik ����� NBXk=1 "B ����~rjk � ~ridjk ���� (12)+ X1�k<l�NA �nn(ik; il)vAAnn (j~rik � ~ril j)+ NAXk=1 NBXl=1 �nn(ik; jl)vABnn (j~rik � ~rjlj)+ X1�k<l�NB �nn(jk; jl)vBBnn (j~rjk � ~rjlj)+ : : : ;where the next{nearest neighbor and higher contributions are written in the same wayas the nearest neighbor terms. In the alloy case we then �nd for the canonical partitionfunction, using an arbitrary normalization volume V0,Zalloyc (NA) = XfcigjNA V �NA0 V �NB0 Z d~ri1 : : : Z d~riNA � (13)� Z d~rj1 : : : Z d~rjNB exp (��HELG (f~rikg ; f~rjlg))= XfcigjNA V �N0 Z d~r1 : : : Z d~rN exp (��HELG (fcig ; f~rig)) ;
7



such that, apart from a constant prefactor,Zalloygc = XfcigV �N0 Z d~r1 : : : Z d~rN exp (��Heff (fcig ; f~rig)) (14)with Heff = HELG � (�A � �B)Xi ci: (15)I. e. in this case the same transformation as in the simple lattice gas case applies. Heff can,of course, be used directly to control a standard Metropolis algorithm. In the adsorbatecase with vacancies, however, only the coordinates of the real particles appear:Zadsorbc (NA) = XfcigjNA V �NA0 Z d~ri1 : : : Z d~riNA exp (��HELG (f~rikg)) : (16)We now construct an e�ective Hamiltonian Heff by requiring that the grand{canonicalpartition function Zadsorbgc can also be written in the form of Eqn. 14. Then Heff can beused directly for a standard Metropolis scheme, too. We start with the ansatz [29]Heff = HELG � (�A + �kBT )Xi ci +Xi (1� ci)U0 ����~ri � ~ridi ���� : (17)The physical motivation is that without the counterterms � > 0, U0 � 0 particle destruc-tion processes become more and more likely with increasing temperature and increasingsystem size, for entropical reasons: The ghost particles can explore the full system vol-ume, while the real particles are con�ned to their immediate neighborhood. The purposeof U0 is to con�ne also the ghost particles around their adsorption sites, while the term� provides for the necessary temperature dependence (for higher temperatures, the cre-ation of real particles becomes more and more favored by this term). Inserting Eqn. 17into Eqn. 14, one �nds, after splitting the integration into real coordinates ~rik and ghostparticle coordinates ~rjl,Zadsorbgc = NXNA=0 exp (��ANA) exp (NA�+NB ln �)Zadsorbc (NA); (18)where we have introduced the single{particle partition function resulting from the poten-tial U0, � = V �10 Z d~r exp (��U0(~r)) : (19)Obviously, a correct simulation algorithm is obtained for � = ln � (note �B = 0). Wehave tested [29] two choices of U0, (i) U0 = 0, i. e. � = ln(V=V0), where V is thetotal system volume, and (ii) a square{well potential which con�nes the particle to avolume Vc, i. e. � = ln(Vc=V0). It turned out that only the second choice is useful, forpurely dynamic reasons: If no con�ning potential is used, the ghost particles are free totravel through all of the system. However, as soon as they are some lattice constantsaway from their ideal site, a rematerialization would place them onto a very high energylevel, due to the strong potential "A (for which we used a harmonic spring). Hence,this rematerialization is forbidden by the Boltzmann factor, and does not occur untilthe random walker happens to come close to its ideal site again. The correlation time8



of the algorithm should be roughly proportional to the time needed for these \loops",and this should, from di�usion arguments, scale like L2 if L is the linear system size.I. e. this algorithm has intrinsic critical slowing down built in, independent of the statepoint! The square{well potential obviously removes this problem, while, per construction,it nevertheless yields correct static averages. Note also that the arbitrary normalizationparameter V0 enters the simulation algorithm. This means that the chemical potential�A is only de�ned after V0 has been speci�ed, i. e. a change of V0 corresponds to atemperature{dependent rede�nition of the zero of �A. Hence, for such simulations the�A{T phase diagram needs the additional speci�cation of V0.One also sees rather easily that the Ising symmetry will in general no longer hold forthe ELG: After transforming to pseudospin variables, the Hamiltonian assumes the formH = H0 (f~rig)�Xhiji Jij (f~rig)SiSj � Xhhijii Jij (f~rig)SiSj � : : :�Xi Hi (f~rig)Si; (20)and it is impossible to induce a change Hi ! �Hi via just changing the chemical potential(note also that for the so{called \compressible Ising model" [30] Hi � 0). Hence, we donot view the Ising language as particularly useful for the ELG. For adsorbed monolayers,the \elastic" route towards phase diagram asymmetries has already qualitatively beennoted by Persson [31].4 The Si{Ge Unmixing TransitionFor a binary alloy of silicon and germanium, we studied an ELG on the diamond lattice.Apart from nearest{neighbor pair interactions, we also introduced three{body interac-tions. This was not done in order to induce a phase diagram asymmetry, but ratherin order to stabilize the fourfold coordinated structure of the diamond lattice, i. e. thetetrahedron angle. The �rst simulation [32] used the Keating potential [33]:v��nn(r) = ���nn + E�� �r2 � �l��0 �2�2 (21)with �; � 2 fA;Bg. The corresponding three{body term isv��3 = A�� �~rij � ~rkj + 13 l��0 l�0 �2 ; (22)i. e. the summation runs over all angles with vertex at site j, occupied with species �(note cos �t = 1=3 for the tetrahedron angle �t). For the interaction parameters, see Ref.[32]. This model was simulated at constant vanishing pressure [34] in order to accomodatethe atomic size mismatch, for systems of up to N = 8 � 103 sites. The unmixing phasediagram was calculated using thermodynamic integration procedures [32].The critical behavior of the model was analyzed by a multi{histogram analysis [35] ofdata taken near the critical point. The results are shown in Fig. 2. First, we calculatedthe fourth{order cumulant of the (extensive) magnetization (in Ising language),U4 = 1� D(M � hMi)4E3 D(M � hMi)2E2 ; (23)9
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Figure 2: (From Ref. [32]) Critical behavior of the ELG modeling a Si{Ge alloy using theKeating potential: a) Maximum value of the cumulant as a function of temperature, forthree system sizes as indicated. b) Data collapsing plot for the susceptibility, checking forIsing{like critical behavior. c) Same as b) for Fisher{renormalized exponents. d) Sameas b) for Mean Field critical behavior.as a function of both chemical potential and temperature and determined, at �xed tem-perature, its maximum, the location de�ning the critical chemical potential. Plotting theresulting values as a function of temperature yields Fig. 2 a), showing that the standardcumulant intersection method for an accurate determination of the critical point worksalso for the ELG.The �nite{size scaling relation for the susceptibility reads in the Ising case� = (NkBT )�1 �DM2E� hMi2� (24)� = L=� ~� �tL1=�� ; (25)with t = T=Tc � 1,  = 1:24, � = 0:63, while for Fisher{renormalized exponents [36](which are not expected in the present case) one has to replace  ! eff = =(1 � �),� ! �eff = �=(1� �) with � = 0:12. In the Mean Field case one has [37]� = Ld=2 ~� �tLd=2� : (26)As seen from Fig. 2 b){d), the data are in best agreement with Mean Field criticalbehavior. This is probably due to an e�ective long{range interaction induced by theelastic distortions. It is expected that this corresponds to a dipolar interaction, for whichthe upper critical dimension is d = 3 [38].It should be mentioned that a similar study [39] was also done for the Stillinger{Weber(SW) potential [40]. The same Mean{Field{like behavior was found; however, the SW10
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 Figure 3: (From Ref. [39]) a) Unmixing phase diagram of Si1�xGex alloys using di�erentmodels: Keating potential [32] (open squares), SW potential [39] (solid circles), Terso�potential [41]. This latter potential is even signi�cantly more complicated, and the criticalbehavior had not been studied in this paper. b) Lattice constant of pure Si as a functionof temperature, for Keating potential (dashed line), SW potential (open circles), and �tto experiments (solid line).potential yields a di�erent critical temperature, and a more physical behavior of thermalexpansion, see Fig. 3. For more details, see Refs. [32, 39].5 Hydrogen on Pd(100)We used a simple two{dimensional ELG (adsorbate and vacancies) on the square latticeto model, e. g., the adsorption of H on Pd, taking into account both nearest as well asnext{nearest neighbor interactions [29]. The Hamiltonian is speci�ed via simple harmonicsprings, "A(r) = k02 r2 (27)vAAnn (r) = �nn + knn2 (r � lnn)2 (28)and vAAnnn(r) = �nnn + knnn2 (r � lnnn)2 (29)where the lattice constant is set to unity, and the springs' rest lengths are, for simplicity,assumed to be fully compatible with the substrate lattice, lnn = 1 and lnnn = p2. Wechoose �nn = +4 and �nnn = �4 in dimensionless units, and, for simplicity, k0 = knn =knnn = 1. The ghost particles were con�ned to circular areas of unit radius around theideal adsorption sites (cf. Eqn. 17). Likewise, we set the normalization volume V0, whichde�nes the chemical potential for T > 0, to V0 = 1.For ki = 0 the model reduces to a LG whose properties had been studied a long timeago [42]. The phase diagram's topology (see Fig. 4) is unchanged by the elastic e�ects.There occurs just one ordered structure, c(2�2), i. e. a nearest{neighbor antiferromagnet(cf. Fig. 5), whose transition to the disordered phase is of second order for high temper-atures, while it is of �rst order for low temperatures. Interestingly enough, the overall11
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Figure 4: (From Ref. [29]) a) Phase diagram of the two{dimensional model speci�ed inEqns. 27{29, in the grand{canonical ensemble. The asymmetry is not surprising, in viewof the chemical potential for T > 0 being unique only up the normalization volume V0 (cf.Sec. 3). Solid circles denote second{order transitions, while diamonds denote hysteresisranges of �rst{order transitions. b) Phase diagram of the same model in the canonicalensemble; 0 � � � 1 is the coverage. Solid circles, 0 � � � 0:5; open circles, 0:5 � � � 1.Data for � and 1� � have been included in the same �gure in order to make the weakasymmetry more visible. Errors are always of the order of symbol sizes.
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Figure 5: (From Ref. [29]) The c(2� 2) structure.asymmetry of the canonical phase diagram is rather weak. Moreover, the overall shape isonly weakly changed in comparison with the pure LG [42].
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Figure 6: (From Ref. [29]) a) Data collapsing plot of the staggered susceptibility for 2dIsing exponents, at Tc = 4:231. b) Same as a) for Mean �eld behavior.The second{order phase transitions were analyzed by standard �nite{size scaling ofthe susceptibility of the staggered magnetization, i. e. the di�erence in sublattice magne-tizations of the two sublattices separated by nearest{neighbor bonds, using system sizesL = 10; 20; 30. The data are not accurate enough to draw �rm conclusions, but it seemsthat they are in better agreement with Ising{like behavior than with Mean Field, see Fig.6. This would further corroborate the hypothesis that the upper critical dimension isd = 3 for the ELG.AcknowledgementsThe work reported here was done in close collaboration with D. P. Landau, K. Binder,M. Laradji, and M. d'Onorio de Meo. B. D. also gratefully acknowledges support fromthe Alexander von Humboldt foundation, and from a NATO travel grant.
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