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Although originally invented for magnetic systems, the Ising model is, in many cases, not
a particularly good representation for real magnets, since its spin dimensionality n = 1 is
too low. Conversely, it is very well suited to describe substitutional binary alloys (AB) or
adsorbed monolayers, since in both cases there is a “pre—defined” lattice given by either
the mixed crystal (three-dimensional alloy) or the adsorption sites of the substrate surface
(two—dimensional adsorbate system), and there are two states per lattice site available
(A-atom vs. B-atom in the alloy case, adsorbate atom vs. vacancy in the monolayer
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Abstract

We discuss some recent work done on the calculation of phase diagrams of models
of binary alloys and adsorbed monolayers. For the nearest—neighbor Ising antifer-
romagnet on the fcc lattice (model for the Cu—~Au system) we study a rather large
lattice of 4 x 643 spins. This is necessary since the inherent frustration of the lat-
tice induces a very small interfacial tension between ordered domains. We find no
indications for the suggested L’ phase, and locate the triple point at a nonzero tem-
perature. There is some numerical evidence that it might in fact be a multicritical
point. We then discuss the extension of lattice gas models to “elastic lattice gases”
(ELGs) which include also translational degrees of freedom. Special attention is
paid to the statistical treatment of vacant sites, and it is shown that a system A
+ vacancies is no longer equivalent to a system A + B. The ELG Hamiltonian is
then studied for three-dimensional models on the diamond lattice for the unmixing
of semiconductor alloys (where we find Mean—Field-like critical behavior), and for
a two—dimensional model for ¢(2 x 2) structure formation.

Introduction: Lattice Gas and Ising Models

case). This analogy is made rigorous by the lattice gas model with pair interactions,

Hic = —Z {6ACZ~ +eB(1 - Cz)}

+ 3 {umteie; + opl el — o) + ¢5(1 — )] + 0B (1 = &) (1 = ¢j)}
(i5)

+ > {vmmcie +vab la(l—c) + (L =) +olh (=) (1 —cj)f +....
((i3))



Here, ¢; = 1 if site i is occupied by an A—atom, while ¢; = 0 otherwise (in the adsorbate
case, B is just a vacancy). (ij) and ((ij)) denote pairs of nearest and of next—nearest
neighbors, respectively, and of course the model could also include interactions of even
larger range. £” is the energy which is released upon placing an A-atom on a site, while

v24 is the energy needed to build a nearest neighbor bond of two A-atoms. The other

symbols’ meaning is analogous. This Hamiltonian is quite general, and for an alloy one
would specify 4 = ¢P = 0, while for an adsorbate e = v48 = BB =0,

Now this model is straightforwardly mapped onto an Ising model [1] by introducing
the pseudospin variables S; = 2¢; — 1 = +1, and studying the model of N sites in the

grand—canonical ensemble, whose partition function is

N
Zge = Y exp(BuaNa) exp(BupNp)Z.(Na), (2)
Ns=0

where [ is the inverse temperature 1/(kgT), pa and pp denote the chemical potentials
of species A and B, respectively (of course, up = 0 in the adsorbate case), and

Z(Na)= Y exp(—FHLc) (3)

fei}ny

is the canonical partition function, the sum running over all configurations compatible
with the constraint Y, ¢; = N4 (which automatically means ;(1 — ¢;) = Ng = N — Ny,
such that in the alloy case one should use, strictly spoken, the term “semi—grand canonical
ensemble”). With this transformation one finds, apart from an irrelevant prefactor

Zye =Y exp(=fHr) (4)
{si}
with
%I:_JnnZSiSj_Jnnn Z SlS]——HZSl (5)
w (G z‘
and
H o= (=) +5 (= <") ()
~ 9 Ha — UB 5 € €
Znn [ AA BB Znan [ AA BB
_T ( nn — Unn ) - 4 (Unnn - vnnn) T
_ 1 AB AA BB
Jnn - Z (2vnn ~ Unn — Unn ) ) (7)
_ 1 AB AA BB
Jnnn - Z (2vnnn ~ Unnn — Unnn) ) (8)

etc. Here z,, and z,,, denote the coordination numbers of the lattice in the nearest and
next—nearest neighbor shell, respectively.

Though its apparent simplicity, H; allows for a very rich physics. This is so because
the model allows for competing interactions and resulting complicated antiferromagnetic
structures. For a given set of J’s, the usual Monte Carlo analysis of such a Hamiltonian
proceeds as follows: (i) Find the ground states as a fuction of H; (ii) identify the phases,
the pertinent order parameters (usually linear combinations of sublattice magnetizations),
and their symmetry properties; (iii) from that, conclude the universality class of second—
order transitions, if applicable (e. g. Ising, XY with cubic anisotropy, etc.); (iv) calculate
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the phase diagram. This program looks rather straightforward, and in many cases it is.
However, there are cases where the intrinsic complexity of H; causes quite challenging
problems, and one such case will be discussed in some detail in the next Section.

Nevertheless, despite these rather interesting properties, the above approach is clearly
limited. One obvious deficiency is the symmetry of the resulting phase diagram: From the
[sing symmetry (invariance of #; with respect to S; — —S; and H — —H), one concludes
that the phase diagram in the grand—canonical ensemble (H-T plane) is symmetric around
H = 0, while the corresponding canonical phase diagram (¢-T plane, 0 < ¢ < 1 being
the concentration of A-atoms) must be symmetric around ¢ = 0.5. However, the phase
diagrams of real systems are often strongly asymmetric, and the traditional approach to
remedy this “sickness” has been to include also triplet interactions, i. e. terms oc S;5;S.

However, this symmetry will also be destroyed as soon as the model also includes elas-
tic interactions, i. e. explicitly takes into account the translational degrees of freedom of
each particle. Moreover, this modification also changes the range of the effective interac-
tion between the spins qualitatively because two spins, although being located rather far
away from each other, nevertheless interact with each other due to the long-range elastic
distortions of the lattice. For this reason, these systems are also of fundamental physical
interest, since the universal critical behavior of second—order phase transitions may well
be affected. The rest of this contribution will therefore discuss some recent studies of
such models. Sec. 3 will be devoted to the modeling and the related methodological
problems, while Sec. 4 and 5 discuss the application to a three-dimensional model for a
mixture of Si and Ge (note that the effects of elastic interactions, i. e. most notably the
atomic size mismatch, are expected to be most pronounced in covalently bonded systems
like semiconductor alloys), and to a two—dimensional model for an adsorbed monolayer
of hydrogen on a palladium (100) surface, respectively.

2 The Nearest—Neighbor Ising Antiferromagnet on
the FCC Lattice

We study the Hamiltonian of Eqn. 5 on the fcc lattice for the case J = .J,, < 0, while all
other exchange couplings vanish, and we limit ourselves to H > 0 for symmetry reasons.
A physical realization of this system is the alloy Cu;Auy_,, i. e. in this system the same
ordered superstructures occur [2]. The phase diagram of this model has been the subject of
a long—standing debate, and calculations have been done, with ever—increasing accuracy,
using the Mean Field approximation or Kikuchi’s cluster variation method (CVM) [3-9],
low—temperature expansions [10-12] and Monte Carlo (MC) simulations [13-20, 9]. The
present MC study [21, 22] is the most expensive simulation of the system so far, and has
attempted to resolve the controversial issues about the location of the triple point and
about the existence of the L' phase (see below).

The reason why this system has been so hard to analyze is the geometric frustration
of the fcc lattice: It is impossible to assign spins to a nearest-neighbor tetrahedron such
that all six bonds are antiferromagnetic. Therefore, the ground state [23] does not exhibit
three-dimensional order but only two—dimensional order (except for H > 12|J|, where all
spins are up), i. e. it is a sequence of perfectly ordered (either ferromagnetic or antiferro-
magnetic) (100) planes. Every antiferromagnetic plane yields a twofold degeneracy (since
it may be shifted freely in itself), such that the ground state is macroscopically degenerate



with nevertheless vanishing entropy. For H < 4|.J|, all planes are antiferromagnetic, while
for 4].J| < H < 12|.J| every second plane is ferromagnetic. At the “superdegenerate” point
H = 4|J| the ground state entropy is nonzero.

For T > 0, three-dimensional order becomes entropically stabilized [10-12], since the
ordered phases AB (H < 4|J|) and A3B (4]J| < H < 12|J|) admit more low—energy
excitations than a disordered ground state. As usual, a configuration of two ordered
domains separated by two interfaces (also called antiphase boundaries, APBs; note the
periodic boundary conditions) costs a free energy penalty of AF = 20L? where L is the
linear system size and o the interfacial tension [24]. However, the pathology is that o
has a purely entropic origin, and hence vanishes quickly upon 7" — 0. For this reason,
L must be rather large in order to make AF sufficiently large, and practical tests [21]
showed that we needed an N = 4 x L3 system with L = 64, while L = 32 still showed
some tendency towards APBs, and L = 16, which had been used in older studies [13-15],
is clearly too small.

In order to describe the ordered phases, we decompose the system into four interpen-
etrating simple cubic sublattices (a, b, ¢, d), and introduce

Yo (Mg +my + me +myg) /4

P = (Mg +my —m.—my)/4

g = (Mg — my+ me. —my)/4 (9)
3 = (—mg + my+ me. —my)/4,

where m,, are the sublattice magnetizations varying between —1 and +1. ), is the total
magnetization, and v, ¥y and 3 are the components of the three—dimensional order
parameter 1,5, which vanishes in the disordered phase where all sublattices are equivalent.
The perfectly ordered AB state is then given by two sublattices with S; = +1, the other
two sublattices having magnetization —1. Likewise, in the A3B state only one sublattice
has magnetization —1, all the other spins being S; = +1. The AB phase is hence described
by the six states ¢ = (£1hap,0,0), (0,£¢45,0) and (0,0, £1p45), and the A;B phase by
the four states v = (Ya3p, Va3, Vasp), (Yasp, —Vasp, —VasB), (—Vass, Vasp, —VasB),
(= a3B, —Vasp, Yasp), where |ap| < 1 and |a3p| < 1/2 describe states which are not
perfectly ordered. The so—called L' phase corresponds to three different sublattice magne-
tizations (ideally, two sublattices up, one down, and one with random spin orientation);
this phase has been found stable by CVM calculations in the vicinity of H = 4|.J| [7]. We
carefully searched for this phase at various state points by starting the system in a perfect
L' state, and monitoring the time evolution of the sublattice magnetizations. In all cases,
the system ended up in an AB or A3B state, and hence we believe that this phase is an
artifact of the CVM.

Similarly, the old MC studies [13—15] had suggested that the triple point, where AB,
A3B and the disordered phase coexist, should occur at H = 4|J|, T = 0. We hence
looked, in a similar fashion, also for stability of the disordered phase near H = 4|J|
at low temperatures, with the same result, i. e. evolution into an AB or A3B state.
Therefore, the triple point must occur at a nonzero temperature. We then mapped out
the phase boundaries, using standard hysteresis loops and thermodynamic integration to
find intersecting branches of the free energy F', using the relations Ny = —0F/0H and
U= —T?J(F/T)/JT for the internal energy.

Note that all transition lines are expected to be of first order: The six states of the AB
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phase correspond to a Heisenberg model with cubic anisotropy, whose transition into the
disordered phase has been shown to be first—order by renormalization—group arguments
[25]. Similarly, the A3B phase corresponds to a 4-state Potts model (relevant for the
transition into the disordered phase), while the transition from A3;B to AB corresponds
to a 3-state Potts model (note that one out of three sublattices must be flipped) [26].

Our results are summarized in Fig. 1. One sees that the data indeed confirm the
anticipated first—order behavior of all three transition lines, and the triple point is located
at kgTy/|J| = 0.98 £ 0.02, H;/|J| = 3.60 £ 0.04. Moreover, we find that all first—order
jumps along all three lines get very small when approaching the triple point. We hence
believe that this point might actually be a multicritical point, such that the jumps would
tend to zero. Indeed, our order parameter data along the AB <+ A3B transition line are
well compatible with tricritical scaling. However, our resolution is not fine enough to
unambiguously answer this subtle question; this would require further large—scale simu-
lations of even significantly larger lattices. We believe that an accurate finite-size scaling
analysis would prove very difficult, due to the high order parameter dimensionality, and
the very large minimum system size which is necessary. It should also be noted that a
multicritical point is not predicted by Landau theory [22].

3 Inclusion of Elastic Interactions

The “fundamental” approach to a classical simulation of an alloy or adsorbate system with
continuous degrees of freedom would consist in the specification of an interatomic potential
(depending on distances, bond angles, atomic species, ... ) and, for modeling the influence
of a substrate, an external potential. The particles would then freely move around, and,
depending on the current geometric configuration, find the neighbors with which they
interact. One could also introduce a grand-canonical ensemble via particle creation and
destruction, or a semi—grand canonical description via changes A <> B. Indeed, for fluids,
this approach must be used, and has recently been applied to rather accurate studies of
the gas-liquid transition of two— and three-dimensional Lennard—Jones systems [27, 28|.

However, it is also obvious that such a model is computationally rather cumbersome:
Each particle’s neighbor shell fluctuates and must be continuously checked and updated.
We have hence chosen to deliberately neglect these fluctuations and instead study a two—
or three-dimensional network with the same topology as the original lattice. Since this
topology is conserved during the simulation, one can use the same neighbor list for the
interactions once and for all, such that from the point of view of data structures the
simulation is as efficient as a simple lattice simulation. Actually, the types of Hamiltonians
we are interested in are directly related to the original lattice gas, Eqn. 1: One simply
has to replace the interaction parameters vA4 etc. by distance—depending functions,

Ve = U (|7 = 751) (10)

A

similarly the other v’s), and the adsorption energies ¢4, £ by functions depending on
g g

the particle’s distance from its ideal adsorption site:

6A—>6A(ﬁ-—77fd). (11)
Again, for describing an alloy one would specify ¢4 = ¢® = 0, while in the adsorbate case
el = v48 = yBB = (). The resulting Hamiltonian shall be denoted with Hgrg (“elastic

lattice gas”).
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Figure 1: (From Ref. [22]) a) Total magnetization as function of field, for temperatures
as indicated. Hysteresis indicates the first—order nature of the transition AB <> A3B. b)
Branches of the free energy per site as function of field, at temperature kT = 0.85|J],
resulting from a cubic spline fit to the magnetization data and thermodynamic integration.
Errors in the individual data points were estimated via standard MC error analysis, while
the error in the free energy was estimated via standard error propagation. For sake of
clarity of the plot, a “background” contribution linear in H has been subtracted. «¢)
Hysteresis loops of order parameter component 3, which vanishes in the simulated AB
state, while it is nonzero in the A3B phase. The first—order jumps decrease strongly
upon approaching the triple point. d) Phase diagram in the grand-canonical ensemble.
Filled symbols have been obtained by thermodynamic integration, open symbols by direct
inspection of order parameter hystereses. e) Phase diagram in the canonical ensemble.
/) Order parameter component 3, evaluated along the AB <+ A3B coexistence line, as
a function of temperature. The line represents a fit ¢ oc (T — T')?* with kpT; = 0.99].J|
and (3; = 0.2416, while tricritical scaling would imply 3; = 1/4. However, every exponent
in the range 0.2...0.3 is compatible with the data.



Of course, such a simplified Hamiltonian loses some of the physics which could oth-
erwise be modeled by the translational degrees of freedom, since both structural phase
transitions as well as melting are explicitly excluded. However, sufficiently far away from
such transitions we expect the model to describe the physics reasonably well.

This model has a number of peculiarities which shall now be discussed. First of all,
one should note that the particles should be considered as distinguishable: Each particle
can be uniquely identified by its position on the network, and hence prefactors (N4!)~ 1,
(Ng!)~! do not occur in the partition function. Moreover, the model’s “philosophy” is to
assign independent degrees of freedom ¢; and 7; to each lattice site 7, and to also update
these degrees of freedom independently of each other in the grand-canonical ensemble.
However, if the B—particle is a vacancy, this assignment is unphysical and artificial, since
physically it does not make sense to ask for the coordinate of a non—existent particle.
Nevertheless, this assignment is useful in order to facilitate a compact and straightforward
simulation algorithm. This is the reason why the transformation to the grand—canonical
ensemble is no longer as straightforward as before, and why the systems A + B (alloy)
and A + vacancies (adsorbate) are no longer equivalent [29].

Let us now discuss the transformation to the grand—canonical ensemble in some more
detail. Eqn. 2 is of course still valid, but Z. must now also include the translational
degrees of freedom of the real particles. To make this more explicit, consider the lattice
sites as enumerated from 1 to N. A given configuration {c¢;} can then be associated in a
unique way with indices 4 < 7o < ... < iy, and j; < jo < ... < jn, such that ¢;, =1
and ¢j, = 0. Moreover, we introduce the numbers x,,(7,j) = 1 if 7 and j are nearest
neighbors, and zero otherwise, and similarly Xpn,(i,j) for next—nearest neighbors, etc.
Herc can then be rewritten as

Ny . Np A
Here = —Z5A(Fz'k_7:?g>_253(‘f}k_f;i) (12)
k=1 k=1
+ Z Xnn(ika Z.l)v;?v;,q (|Flk o FHD
1<k<I<N4
Ny Np
20> Xl ) v (175 — 7))
k=11=1
+ Z Xnn(jkajl)van (|ij - sz|)
1<k<I<Np

+ ...,

where the next—nearest neighbor and higher contributions are written in the same way
as the nearest neighbor terms. In the alloy case we then find for the canonical partition
function, using an arbitrary normalization volume V},

ZMu(Ny) = S Vg My /dﬁl.../dﬁNA X (13)
{eid v,
X /dFjl . ../dFjNB exp (—fHpre ({7}, {7,})
= Z V;;N/dfi .. /dFN exXp (_ﬂHE'LG’ ({Cz} ) {7:;})) )

{ei}Iny,



such that, apart from a constant prefactor,

Zabor = SV [ [ diexp (< 8Hops (e} (7)) (14)
{ei}
with
Herr = Hrre — (pa — 1ip) ZCZ (15)

I. e. in this case the same transformation as in the simple lattice gas case applies. H.ss can,
of course, be used directly to control a standard Metropolis algorithm. In the adsorbate
case with vacancies, however, only the coordinates of the real particles appear:

22Ny = Y i [ar, [, eo (<AHe (7). (16)
{ei}In,

We now construct an effective Hamiltonian H.¢; by requiring that the grand-canonical
partition function Z3%**"* can also be written in the form of Eqn. 14. Then H.ss can be
used directly for a standard Metropolis scheme, too. We start with the ansatz [29]

). (17)

d

Herr = Herg — (s + akgT) ZCZ- + Z(l —c)Uy (

The physical motivation is that without the counterterms a > 0, Uy > 0 particle destruc-
tion processes become more and more likely with increasing temperature and increasing
system size, for entropical reasons: The ghost particles can explore the full system vol-
ume, while the real particles are confined to their immediate neighborhood. The purpose
of Up is to confine also the ghost particles around their adsorption sites, while the term
« provides for the necessary temperature dependence (for higher temperatures, the cre-
ation of real particles becomes more and more favored by this term). Inserting Eqn. 17
into Eqn. 14, one finds, after splitting the integration into real coordinates 7, and ghost
particle coordinates 77,

N
Zg*" = 3 exp (BuaNa) exp (Naa + Npln ) Z2"" (Ny), (18)
N4=0

where we have introduced the single—particle partition function resulting from the poten-
tial U[),

¢ =Vt [ drexp (~5U(7) (19)

Obviously, a correct simulation algorithm is obtained for & = In¢ (note pp = 0). We
have tested [29] two choices of Uy, (i) Uy = 0, i. e. a = In(V/V}), where V is the
total system volume, and (ii) a square-well potential which confines the particle to a
volume V,, i. e. a = In(V./V;). It turned out that only the second choice is useful, for
purely dynamic reasons: If no confining potential is used, the ghost particles are free to
travel through all of the system. However, as soon as they are some lattice constants
away from their ideal site, a rematerialization would place them onto a very high energy
level, due to the strong potential ¢ (for which we used a harmonic spring). Hence,
this rematerialization is forbidden by the Boltzmann factor, and does not occur until
the random walker happens to come close to its ideal site again. The correlation time



of the algorithm should be roughly proportional to the time needed for these “loops”,
and this should, from diffusion arguments, scale like L? if L is the linear system size.
I. e. this algorithm has intrinsic critical slowing down built in, independent of the state
point! The square—well potential obviously removes this problem, while, per construction,
it nevertheless yields correct static averages. Note also that the arbitrary normalization
parameter Vj enters the simulation algorithm. This means that the chemical potential
14 is only defined after Vy has been specified, i. e. a change of V; corresponds to a
temperature—dependent redefinition of the zero of ps. Hence, for such simulations the
p1a—T phase diagram needs the additional specification of V.

One also sees rather easily that the Ising symmetry will in general no longer hold for
the ELG: After transforming to pseudospin variables, the Hamiltonian assumes the form

M= ({7i}) = > Jy ({73}) iS5 = X° Juy ({Fi}) SiSj — ... = D Hi ({7i}) S, (20)

(ij) ((ig))

and it is impossible to induce a change H; — — H; via just changing the chemical potential
(note also that for the so—called “compressible Ising model” [30] H; = 0). Hence, we do
not view the Ising language as particularly useful for the EL.G. For adsorbed monolayers,
the “elastic” route towards phase diagram asymmetries has already qualitatively been
noted by Persson [31].

4 The Si—Ge Unmixing Transition

For a binary alloy of silicon and germanium, we studied an ELG on the diamond lattice.
Apart from nearest—neighbor pair interactions, we also introduced three—body interac-
tions. This was not done in order to induce a phase diagram asymmetry, but rather
in order to stabilize the fourfold coordinated structure of the diamond lattice, i. e. the
tetrahedron angle. The first simulation [32] used the Keating potential [33]:

- (13")2]2 (21)

with a, 3 € {A, B}. The corresponding three-body term is

vpn (r) = ¢ + B2

n

1 2
W2 gony {ﬁj P+ glgﬁlgﬁ} , (22)

i. e. the summation runs over all angles with vertex at site j, occupied with species (3
(note cos ©; = 1/3 for the tetrahedron angle ©,). For the interaction parameters, see Ref.
[32]. This model was simulated at constant vanishing pressure [34] in order to accomodate
the atomic size mismatch, for systems of up to N = 8 x 10? sites. The unmixing phase
diagram was calculated using thermodynamic integration procedures [32].

The critical behavior of the model was analyzed by a multi-histogram analysis [35] of
data taken near the critical point. The results are shown in Fig. 2. First, we calculated
the fourth—-order cumulant of the (extensive) magnetization (in Ising language),

Uy=1-

7 (23)
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Figure 2: (From Ref. [32]) Critical behavior of the ELG modeling a Si—-Ge alloy using the
Keating potential: a) Maximum value of the cumulant as a function of temperature, for
three system sizes as indicated. b) Data collapsing plot for the susceptibility, checking for
Ising-like critical behavior. ¢) Same as b) for Fisher-renormalized exponents. d) Same
as b) for Mean Field critical behavior.

as a function of both chemical potential and temperature and determined, at fixed tem-
perature, its maximum, the location defining the critical chemical potential. Plotting the
resulting values as a function of temperature yields Fig. 2 a), showing that the standard
cumulant intersection method for an accurate determination of the critical point works
also for the ELG.

The finite—size scaling relation for the susceptibility reads in the Ising case

X = (NkgT) ™t ((M?) — (M)?) (24)

x =Ly (tr), (25)

with ¢ = T/T. — 1, v = 1.24, v = 0.63, while for Fisher—renormalized exponents [36]
(which are not expected in the present case) one has to replace v — verr = v/(1 — @),
v — Vesr =v/(1 — «) with a = 0.12. In the Mean Field case one has [37]

X = LY2% (tL4?) | (26)

As seen from Fig. 2 b)-d), the data are in best agreement with Mean Field critical
behavior. This is probably due to an effective long—range interaction induced by the
elastic distortions. It is expected that this corresponds to a dipolar interaction, for which
the upper critical dimension is d = 3 [38].

It should be mentioned that a similar study [39] was also done for the Stillinger-Weber
(SW) potential [40]. The same Mean-Field-like behavior was found; however, the SW
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Figure 3: (From Ref. [39]) ¢) Unmixing phase diagram of Si; ,Ge, alloys using different
models: Keating potential [32] (open squares), SW potential [39] (solid circles), Tersoff
potential [41]. This latter potential is even significantly more complicated, and the critical
behavior had not been studied in this paper. b) Lattice constant of pure Si as a function
of temperature, for Keating potential (dashed line), SW potential (open circles), and fit
to experiments (solid line).

potential yields a different critical temperature, and a more physical behavior of thermal
expansion, see Fig. 3. For more details, see Refs. [32, 39].

5 Hydrogen on Pd(100)

We used a simple two—dimensional ELG (adsorbate and vacancies) on the square lattice
to model, e. g., the adsorption of H on Pd, taking into account both nearest as well as
next-nearest neighbor interactions [29]. The Hamiltonian is specified via simple harmonic
springs,

k
elr) = 507»2 (27)
AA knn 2
Unn (T) = d)nn + - (T - lnn) (28)
and "
UAA) = Gun + 2 (1 = )’ (29)

where the lattice constant is set to unity, and the springs’ rest lengths are, for simplicity,
assumed to be fully compatible with the substrate lattice, l,,, = 1 and [, = V2. We
choose ¢, = +4 and ¢,,, = —4 in dimensionless units, and, for simplicity, ky = kp, =
knnn = 1. The ghost particles were confined to circular areas of unit radius around the
ideal adsorption sites (cf. Eqn. 17). Likewise, we set the normalization volume V;, which
defines the chemical potential for 7" > 0, to V, = 1.

For k; = 0 the model reduces to a LG whose properties had been studied a long time
ago [42]. The phase diagram’s topology (see Fig. 4) is unchanged by the elastic effects.
There occurs just one ordered structure, ¢(2 x 2), i. e. a nearest—neighbor antiferromagnet
(cf. Fig. 5), whose transition to the disordered phase is of second order for high temper-
atures, while it is of first order for low temperatures. Interestingly enough, the overall
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Figure 4: (From Ref. [29]) a) Phase diagram of the two—dimensional model specified in
Eqns. 27-29, in the grand—canonical ensemble. The asymmetry is not surprising, in view
of the chemical potential for 7 > 0 being unique only up the normalization volume Vj (cf.
Sec. 3). Solid circles denote second—order transitions, while diamonds denote hysteresis
ranges of first—order transitions. b) Phase diagram of the same model in the canonical
ensemble; 0 < © < 1is the coverage. Solid circles, 0 < © < 0.5; open circles, 0.5 < O < 1.
Data for © and 1 — © have been included in the same figure in order to make the weak
asymmetry more visible. Errors are always of the order of symbol sizes.
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Figure 5: (From Ref. [29]) The ¢(2 x 2) structure.

asymmetry of the canonical phase diagram is rather weak. Moreover, the overall shape is
only weakly changed in comparison with the pure LG [42].

0.025 0.40

0.020

y et L
0.010 / 1 0.10 o topeet® e

0.005 0.00
-0.06 -0.03 00 0.03 -0.06

0.
LY (T, - 1)

Figure 6: (From Ref. [29]) a) Data collapsing plot of the staggered susceptibility for 2d
[sing exponents, at 7. = 4.231. b) Same as a) for Mean field behavior.

The second—order phase transitions were analyzed by standard finite-size scaling of
the susceptibility of the staggered magnetization, i. e. the difference in sublattice magne-
tizations of the two sublattices separated by nearest—neighbor bonds, using system sizes
L =10, 20,30. The data are not accurate enough to draw firm conclusions, but it seems
that they are in better agreement with Ising-like behavior than with Mean Field, see Fig.
6. This would further corroborate the hypothesis that the upper critical dimension is
d = 3 for the ELG.
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